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Decoding Polar Codes for a Generalized
Gilbert-Elliott Channel With Unknown Parameter

Yong Fang and Jun Chen , Senior Member, IEEE

Abstract— Decoding of polar codes, a class of
capacity-achieving channel codes, typically requires the
perfect knowledge of channel parameter in advance. This paper
aims to investigate how to decode polar codes when channel
parameter is unknown. Specifically, we study a generalized
Gilbert-Elliott channel model, which assumes that the channel
switches between a finite number of states. On the platform of
Soft CANcellation (SCAN), which is a low-complexity iterative
decoding algorithm of polar codes superior to the widely-used
Successive Cancellation (SC) decoder, we propose three
adaptive algorithms, i.e., Sliding-Window SCAN (SWSCAN),
Weighted-Window SCAN (W2SCAN), and Linear-Weighting
SCAN (LWSCAN). These adaptive SCAN decoders are seeded
with a coarse estimate of channel state, and after each SCAN
iteration, the decoders progressively refine the estimate of
channel state. Experimental results demonstrate that the
proposed adaptive SCAN decoders outperform the original
SCAN decoder and other competitors.

Index Terms— Polar codes, channel with memory, soft
cancellation, channel estimation.

I. INTRODUCTION

IN 2009, Arıkan proposed a novel channel coding technique
based on a simple finding [1]: After an eXclusive OR

(XOR) operation on the inputs, two independent and identical
physical channels can form two different virtual channels.
Let W1 and W2 be two physical channels and from them,
two virtual channels V1 and V2 are formed. If W1 and W2

are mutually independent and W1 = W2 = W , where
W stands for a symmetric binary-input channel, we have
I(V1) ≤ I(W ) ≤ I(V2) and I(V1) + I(V2) = 2I(W ), where
I(·) denotes the capacity of a given channel. By repeating
this operation n times, N = 2n independent and identical
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physical channels Wi’s can form N different virtual channels
Vi’s, and

�N
i=1 I(Vi) = NI(W ). It is proved in [1] that,

as N → ∞, degraded virtual channels will become useless,
i.e., their capacities tend to 0 while upgraded virtual channels
will become perfect, i.e., their capacities tend to 1. In addition,
the fraction of perfect virtual channels will approach I(W )
while the fraction of useless virtual channels will approach
1−I(W ) [1]. This phenomenon is called channel polarization.
Thus, by sorting all virtual channels and assigning K <
NI(W ) best virtual channels to carry information bits while
leaving the other (N − K) inferior virtual channels idle,
we will get a class of capacity-achieving channel codes—polar
codes [1]. Theoretically, the inputs of idle virtual channels can
be arbitrarily set, but they are usually fixed to zeros in practice
and thus called frozen bits. Due to the regular layered structure
of polarization, the encoding complexity of polar codes is
O(N log2 N). As for decoding complexity, if the virtual chan-
nels are highly polarized, there is a simple and efficient hard
decoding algorithm—Successive Cancellation (SC), whose
complexity is O(N log2 N) [1]. Possessing so many merits
(near-linear complexity and capacity-achieving performance),
polar codes immediately arouse keen interest from both acad-
emia and industry, and quickly find an application in 5G [2].

Though polar codes are capacity-achieving as N → ∞,
the performance is poor for short to moderate code length.
There are mainly two reasons: imperfect polarization and
small minimum distance. The problem of imperfect polar-
ization can be resolved by using large kernels or adopting
better decoding algorithms. Notice that SC decoding is actually
designed based on the assumption of perfect polarization, so it
must be carefully tuned if virtual channels are imperfectly
polarized. There are two ways to improve SC decoding: One
is maintaining multiple branches during decoding, e.g., list
decoding [3] and stack decoding [4]; the other is using iterative
soft decoding, e.g., Soft CANcellation (SCAN) decoding [5].
More recently, SCAN decoding is combined with the SC List
(SCL) algorithm in [6]. For the problem of small minimum
distance, there are two solutions: One is serially concatenating
polar codes with some outer codes, e.g., Cyclic Redundancy
Check (CRC) codes [4]; the other is using dynamic frozen
bits [7], i.e., every frozen bit is allowed to be a function of
previous information bits instead of zero.

As shown in [1], the construction of polar codes for mem-
oryless channels consists of three steps: (a) Calculating the
capacities of virtual channels induced by physical channels;
(b) sorting virtual channels according to their capacities;
(c) assigning best virtual channels to carry information bits.
It is clear that a polar code constructed in this way is
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customized for a specific channel and may not be suitable
for other channels. To address this issue, a universal chan-
nel polarization method is proposed in [8], which includes
several layers of slow transforms that combine different chan-
nels followed by several layers of Arıkan’s fast transforms
that combine identical channels. For universal polar codes,
the locations of “perfect” and “useless” virtual channels are
almost independent of the given physical channels. It means
that polar codes can be designed without the knowledge of
channels. To decode universal polar codes effectively, the SCL
algorithm is extended in [9].

Polar codes were originally designed for stationary chan-
nels. It is shown in [10] that Arıkan’s construction polarizes
non-stationary channels in the same way as it polarizes
stationary channels. Further in [11], to speed up the polariza-
tion of non-stationary channels, Arıkan’s channel polarization
transform is combined with certain permutations at each
polarization level as well as certain skipped operations.

All the aforementioned works on polar codes involve only
memoryless channels. In practice, channels with memory
widely exist in communication and storage systems, so it is
important to study the applications of polar codes to such
channels. In [12], a special kind of channels with memory are
considered. It is proved that, if any two physical channels Wi

and Wi+k tend to be independent as k increases, the virtual
channels Vi’s will be polarized by Arıkan’s construction just as
in the case of memoryless channels (Theorem 1 of [12]), and
the polarization speed of upgraded virtual channels is the same
as that of memoryless channels (Theorem 2 of [12]). In [12],
it is conjectured that the polarization speed of degraded virtual
channels is the same as that of memoryless channels (Conjec-
ture 3 of [12]), which is proved for a special class of channels
with memory in [13]. Specifically, if the inputs/outputs/states
of physical channels Wi’s form a Finite-state Aperiodic Irre-
ducible Markov (FAIM) process, the polarization speed of
degraded virtual channels is the same as that of memoryless
channels (Theorem 13 of [13]). In [14], universal polar codes
are extended to channels with memory.

A very important model for channel memory is Inter-Symbol
Interference (ISI). In [15], a practical decoding algorithm
of polar codes for ISI channels, i.e., SC Trellis (SCT), was
proposed, which makes use of the trellis structure of channel
state transitions. This algorithm is generalized to arbitrary
finite-state channels in [16]. In addition, following [17], which
extends polar codes to asymmetric channels, [16] puts for-
ward two encoding methods for polar codes, which are able
to generate the desired capacity-achieving input distribution.
A merit of the SCT algorithm is that it requires no knowledge
of channel state.1 As many other channel codes, the decoder
of polar codes typically needs to be seeded with channel
state, and accurate estimate of channel state tends to benefit
decoding performance. For stationary memoryless channels,
the constant state can be easily estimated at the decoder by
various methods, e.g., inserting additional pilot symbols [18].

1Note that channel state is different from channel parameter. For example,
if channel state is Markovianly-varying, the state transition probability matrix
is called channel parameter. Though the SCT algorithm requires no channel
state, it still needs channel parameter.

However, for finite-state channels, since the state is time-
varying, it is hardly possible to exactly trace the local state
at each time. Fortunately, the SCT algorithm succeeds in
handling the problem. To achieve better results, the SCL
algorithm can be combined with the SCT algorithm to handle
finite-state channels for (universal) polar codes [9], which will
be referred to as SC Trellis List (SCTL) algorithm in this paper.

In this paper, we consider a special kind of finite-state
channels different from ISI channels. In our model, there is
no ISI, but the state of additive channel noise is Markovianly-
varying. This model is actually a generalized form of the
Gilbert-Elliott channel, which has many applications in prac-
tice. For example, it can be used to approximate the pat-
terns of burst error, packet loss, and channel attenuation.
We assume that the parameter of additive channel noise
is known in advance at neither encoder nor decoder. Note
that this setting is different from that of the SCTL algo-
rithm. In [15] and [16], channel parameter is assumed to
be known, even though exact channel state at each time
is unavailable, and the SCTL algorithm seeds the decoder
with channel parameter instead of channel state. In our prior
works [19], [20], the problem of transmitting Low-Density
Parity-Check (LDPC) codes over smoothly-varying chan-
nels with unknown parameter has been studied. A variant
of Belief Propagation (BP) algorithm, i.e., the so-called
Sliding-Window BP (SWBP) algorithm, is developed, which
can exactly estimate the local state of smoothly-varying
channel at each time during decoding, even though channel
parameter is unknown. The SWBP is a pilot-free method for
joint channel decoding and state estimation that possesses
many merits, e.g., low complexity, low error rate, and strong
robustness. So the following questions naturally arise: Can
SWBP be used to decode polar codes over Gilbert-Elliott
channels, and if yes, how to implement it and how well it
performs?

The above questions will be answered in the present paper.
We show that on the platform of SCAN decoding, it is possible
to adapt the core idea of SWBP to polar codes over Gilbert-
Elliott channels. The reason why we choose SCAN as the
platform to extend SWBP from LDPC codes to polar codes is
that SCAN decoding is an iterative algorithm with low com-
plexity. We develop a counterpart of SWBP for polar codes,
called Sliding-Window (SW) SCAN (SWSCAN). Like SWBP,
the SWSCAN is also a pilot-free method for joint channel
decoding and state estimation, and the role of state estimation
is to improve decoding performance. Further, we enhance
SWSCAN by introducing unequal tap weights and get a
variant called Weighted-Window (WW) SCAN (W2SCAN).
Both SWSCAN and W2SCAN are low-pass filters in essence,
so they may be more suited to smoothly-varying channel.
To handle Gilbert-Elliott channels with abrupt state changes,
this paper proposes a method named Linear-Weighting (LW)
SCAN (LWSCAN). These three adaptive SCAN decoders
for Gilbert-Elliott channels are the main contributions of
this paper. However, it is worth mentioning that these
three adaptive SCAN decoders, in their present forms, are
not yet able to cope with non-additive or non-symmetric
channels.
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The rest of this paper is arranged as below. Sect. II
defines a generalized Gilbert-Elliott channel model. Sect. III
describes the SCAN algorithm in detail. Sect. IV, Sect. V,
and Sect. VI present the SWSCAN, W2SCAN, and LWSCAN
algorithms, respectively. Sect. VII reports simulation results.
Finally, Sect. VIII concludes this paper.

II. GENERALIZED GILBERT-ELLIOTT CHANNEL

A Gilbert-Elliott channel is a Binary Symmetric Channel
(BSC) with time-varying crossover probability determined by
a two-state Markov process. The Gilbert-Elliott channel model
can be generalized from two aspects: (a) The channel may
include more than two states; (b) the channel may not be a
BSC. Let Xi and Yi be the input and the output of a gener-
alized Gilbert-Elliott channel at time i. We set Yi = Xi ⊕ Zi

(for the BSC) or Yi = (1− 2Xi)+ Zi (for the Additive White
Gaussian Noise (AWGN) channel, if the Binary Phase Shift
Keying (BPSK) modulation is used), where Zi is the channel
noise independent of Xi. It can be seen that a generalized
Gilbert-Elliott channel is an additive noise channel without ISI.
Assume that X1:N � (X1, . . . , XN) is an independent and
uniformly-distributed (i.u.d.) binary random process, and Z1:N

is a Hidden Markov Model (HMM) random process. Let Si

be the hidden state of Zi. Let S = {1, . . . , κ} be the space of
channel state. The state sequence S1:N is a 1st-order stationary
Markov process with κ× κ transition matrix A = (αs,t)κ×κ,
where s, t ∈ S and

αs,t � Pr(Si+1 = t|Si = s). (1)

Further, assume that the channel W (y1:N |x1:N , s1:N) is
conditionally-memoryless given state:

W (y1:N |x1:N , s1:N ) =
N�

i=1

Wi(yi|xi, si), (2)

where Wi(yi|xi, si) denotes the i-th sub-channel. For the BSC
model, let �(s) denote the conditional crossover probability
given state s ∈ S. Then given Si = si, the local crossover
probability at time i is �(si) and Zi is a Bernoulli random
variable with bias probability �(si): Zi ∼ B(�(si)). For the
AWGN channel model, let σ2(s) denote the conditional noise
variance given state s ∈ S. Then given Si = si, the local noise
variance at time i is σ2(si) and Zi is a zero-mean Gaussian
random variable with variance σ2(si): Zi ∼ N (0, σ2(si)).
For conciseness, let �i � �(si) and σ2

i � σ2(si). We call
�̄ = 1

N

�N
i=1 �i the global crossover probability and σ̄2 =

1
N

�N
i=1 σ2

i the global noise variance.

III. AN OVERVIEW OF POLAR CODES

This section will first briefly review encoding of polar codes
and then describe SCAN decoding of polar codes in detail,
which is extremely important for the reader to understand
the algorithms proposed in the next sections. This section
ends with a discussion of decoding correctness check and a
comparison of three decoders in different fields.

A. Encoding of Polar Codes

The message u1:N ∈ B
N is encoded into codeword x1:N =

u1:NGN = u1:NBNF⊗n, where BN permutes u1:N in the
bit-reversed order, F = ( 1,0

1,1 ), and ⊗ denotes the Kronecker
product. Then x1:N is transmitted over a noisy physical
channel W1:N . If W1:N is a generalized Gilbert-Elliott chan-
nel, the memory between adjacent physical sub-channels will
make the polarization effect of virtual sub-channels unsatis-
fying. To achieve better polarization effect for virtual sub-
channels, we decorrelate adjacent physical sub-channels by
permuting x1:N before transmission, i.e., xπ(i) is transmitted
over Wi, where (π(1), . . . , π(N)) is a random permutation
of (1, . . . , N) [21], [22]. After permutation, better polariza-
tion effect can be obtained for virtual sub-channels (see the
example to be given in sub-Sect. VII-A).

For polar codes, N virtual sub-channels can be constructed
from N physical sub-channels by n levels of polarization.
Let Vl,i denote the i-th virtual sub-channel after l levels
of polarization, where 0 ≤ l ≤ n and 1 ≤ i ≤ N .
Initially, we set V0,π(i) = Wi. Then as l increases from 1 to
n, we have (Vl,i, Vl,i+2n−l) ← (Vl−1,i, Vl−1,i+2n−l), where
1 ≤ (i − k2n−l+1) ≤ 2n−l for 0 ≤ k < 2l−1. Finally,
N virtual sub-channels Vn,1:N after n levels of polarization
are sorted according to their capacities. For an (N, K) polar
code, only K virtual sub-channels with the largest capacities
are used to deliver information bits, while the others are left
idle. Let A be the set of indices of top K virtual sub-channels
and Ac = {1, . . . , N} \ A. For any i ∈ Ac, ui is called a
frozen bit and is often set to 0. Recent works indicate that
dynamically-set frozen bits can bring gains [7].

B. Soft CANcellation (SCAN) Decoding

Compared with LDPC codes, an advantage of polar codes
is that they can be decoded at very low complexity by the
SC algorithm. However, the performance of SC decoding is
seriously impacted by the degree of channel polarization. For
short to medium code length, which is relevant to the current
main application of polar codes in 5G [2], virtual sub-channels
are far from perfectly polarized, so SC decoding may perform
poorly. To achieve better performance, SCL decoding [3]
may be used instead. However, both SC decoding and SCL
decoding are non-iterative in nature, while the algorithms to
be developed in the following sections require an iterative
decoder. Hence we will use SCAN decoding, which is an
iterative algorithm. As shown by Fig. 1, to implement SCAN
decoding, we define two (n+1)×N matrices: (Ll,i)(n+1)×N

and (Rl,i)(n+1)×N . The former stores the messages passed
from x-nodes to u-nodes, while the latter stores the messages
passed from u-nodes to x-nodes. For ui, Rn,i is its intrinsic
message and Ln,i is its extrinsic message, while for xi, L0,i is
its intrinsic message and R0,i is its extrinsic message. In this
way, SCAN decoding can be iterated. Like SC decoding,
SCAN decoding can be implemented in the Likelihood field
(L-field), the Likelihood Ratio (LR) field (LR-field), or the
Log-LR (LLR) field (LLR-field).

1) Initialization of SCAN Decoding: Let Wi(y|x, s) be the
i-th physical sub-channel and let ŝi be the estimate of si.
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Fig. 1. An example of SCAN decoding for polar codes, where Ll,i’s refer to the messages propagated from x-nodes to u-nodes, and Rl,i’s refer to the
messages propagated from u-nodes to x-nodes. The symbol +© denotes channel degradation and the symbol =© denotes channel upgradation.

Depending on the running field of SCAN decoding, Ll,i and
Rl,i should be initialized in different ways (assume that frozen
bits are set to 0):

• L-Field: L0,π(i) = Wi(yi|1, ŝi) ∈ [0, 1] for i ∈ [1 : N ]
and Rn,i = 0 for i ∈ Ac. For other l and i, we set
Ll,i = Rl,i = 0.5.

• LR-Field: L0,π(i) = Wi(yi|0,ŝi)
Wi(yi|1,ŝi)

∈ R
+ for i ∈ [1 : N ]

and Rn,i = +∞ for i ∈ Ac. For other l and i, we set
Ll,i = Rl,i = 1.

• LLR-Field: L0,π(i) = log Wi(yi|0,ŝi)
Wi(yi|1,ŝi)

∈ R for i ∈ [1 : N ]
and Rn,i = +∞ for i ∈ Ac. For other l and i, we set
Ll,i = Rl,i = 0.

It will be seen in sub-Sect. VII-D that with our methods to
be proposed in the next sections, the estimate of si can be
very coarse while not affecting the result significantly. More
details about how to set ŝi can be found in the first paragraph
of Sect. IV.

2) Schedule of SCAN Decoding: SCAN decoding includes
one or more iterations, each of which contains N/2 rounds.
Each round includes an x-to-u pass calculating Ln,1:N ,
the extrinsic messages of u1:N , followed by a u-to-x pass cal-
culating R0,1:N , the extrinsic messages of x1:N . It is instruc-
tive to illustrate SCAN decoding via an example. In Fig. 1,
the solid lines with left arrows form the x-to-u message flow,
and the dashed lines with right arrows form the u-to-x message
flow. The black solid/dashed lines with left/right arrows denote
the intrinsic messages of x-nodes/u-nodes. For N = 8, each

SCAN iteration includes four rounds, marked with different
colors, red for the first, cyan for the second, green for the third,
and blue for the fourth. It can be seen from Fig. 1 that after
each round, two elements of Ln,1:N will be calculated, but
only after the last round of an iteration, all elements of R0,1:N

will be calculated as a whole. The schedule of SCAN decoding
when N 
= 8 can be deduced by analogy. For more details,
please refer to the released source code (polar_dec_fp.m and
polar_dec_bp.m) [31].

3) Notation for SCAN Decoding: In [5], SCAN decoding
was proposed in the LLR-field, which can be easily extended
to the L-field and the LR-field. To begin with, let us define
some equivalent operations in different fields. For a, b ∈ [0, 1],
we define

a⊕ b � 1− (1− 2a)(1− 2b)
2

∈ [0, 1]. (3)

It is interesting to note that for a, b ∈ B, a⊕ b defined by (3)
is just the XOR of a and b. For a, b ∈ R

+, we define

a � b � ab + 1
a + b

∈ R
+. (4)

For x ∈ R
+, we define

Ψ(x) � − log tanh(x/2) ∈ R
+. (5)

It is easy to verify Ψ−1(x) = Ψ(x). We define the sign
function as

sgn(x) �
�

0, x ≥ 0
1, x < 0.

(6)
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Fig. 2. Message-passing kernel for SCAN decoding, where 1 ≤ l ≤ n,
0 ≤ k < 2l−1, and 1 ≤ (i − k2n−l+1) ≤ 2n−l.

With the help of Ψ(x) and sgn(x), for a, b ∈ R, we define

a � b �
� |a � b| = Ψ(Ψ(|a|) + Ψ(|b|))

sgn(a � b) = sgn(a)⊕ sgn(b), (7)

where | · | denotes the absolute value of a real number. Let
a′ = 1−a

a , b′ = 1−b
b , and c′ = 1−c

c . Let a′′ = log(a′), b′′ =
log(b′), and c′′ = log(c′). Given c = a⊕ b, it is easy to verify
c′ = a′ � b′ and c′′ = a′′ � b′′. It is obvious that a⊕ b, a � b,
and a�b are equivalent operations in the L-field, the LR-field,
and the LLR-field, respectively.

Finally, for a, b ∈ [0, 1], we define

a⊗ b � ab

ab + (1 − a)(1− b)
∈ [0, 1]. (8)

It is easy to verify that a⊗ b, a× b, and a + b are equivalent
operations in the L-field, the-LR field, and the LLR-field,
respectively.

4) Message-Passing Kernel of SCAN Decoding: Fig. 2
shows the message-passing kernel. Let 1 ≤ (i− k2n−l+1) ≤
2n−l, where 1 ≤ l ≤ n and 0 ≤ k < 2l−1. With the
notations defined in the previous subsection, we can get
the message-passing kernels in different fields. For example,
in LLR-field, the kernel for the x-to-u message passing is�

Ll,i = Ll−1,i � (Ll−1,i+2n−l + Rl,i+2n−l)
Ll,i+2n−l = (Ll−1,i � Rl,i) + Ll−1,i+2n−l ,

(9)

and the kernel for the u-to-x message passing is�
Rl−1,i = Rl,i � (Ll−1,i+2n−l + Rl,i+2n−l)
Rl−1,i+2n−l = (Ll−1,i � Rl,i) + Rl,i+2n−l .

(10)

In L-field, the message-passing kernels can be obtained
by replacing � with ⊕ and replacing + with ⊗. In LR-
field, the message-passing kernels can be obtained by replac-
ing � with � and replacing + with ×. For more details,
please refer to the source code (channel_upgrade.m and chan-
nel_degrade.m) released in [31].

5) Termination of SCAN Decoding: Let βi be the overall
message of ui, i.e.,

βi =

⎧⎨
⎩

Ln,i ⊗Rn,i, in L-field
Ln,i ×Rn,i, in LR-field
Ln,i + Rn,i, in LLR-field.

(11)

After each SCAN iteration, for every i ∈ A, we make a hard
decision: ûi = 1I(βi), where

1I(x) �
�

1, x ∈ I
0, x /∈ I (12)

and I takes different forms depending on the implementation
field:

I =

⎧⎨
⎩

(0.5, 1], in L-field
[0, 1), in LR-field
(−∞, 0), in LLR-field.

(13)

Usually, decoding correctness of polar codes is verified by
CRC checksums. If frozen bits are fixed, we can define a set
C ⊂ A and let uC be the CRC checksum of uA\C . If ûA\C
and ûC satisfy the CRC constraint, ûA\C is deemed correct and
the decoding will be ceased [4]. If frozen bits are dynamic,
uAc is the CRC checksum of uA. If ûA and ûAc satisfy the
CRC constraint, ûA is deemed correct and the decoding will
be ceased [7].

However, with SCAN, the decoding correctness of polar
codes can be verified in the absence of CRC checksums [6],
[23]. After each SCAN iteration, besides ûA, we also estimate
x1:N . Let γi be the overall message of xi, i.e.,

γi =

⎧⎨
⎩

L0,i ⊗R0,i, in L-field
L0,i ×R0,i, in LR-field
L0,i + R0,i, in LLR-field.

(14)

For every i ∈ [1 : N ], we make a hard decision: x̂i = 1I(γi),
where I is defined by (13). If û1:NGN = x̂1:N , the decoding
is ceased; otherwise, one more iteration is run. Just as LDPC
codes, to avoid endless loop, a threshold is set as the upper
bound of the iteration number. If the iteration number is greater
than the threshold, the decoding will be forcedly terminated.
Now it can be seen that decoding correctness can be verified
without resorting to additional information not contained in
polar codes.

C. Comparison of SCAN Decoding in Different Fields

1) Stability: It is well known that decoding channel codes
in the L-field and the LR-field is usually unstable due to the
Not-a-Number (NaN) issue that occurs if 0 ·∞, 0/0, or∞/∞.
By convention, we define ∞/∞ = 0/0 = 0 · ∞ = 1. Let us
analyze the stability of SCAN decoding in different fields:

• L-Field: There are two kinds of operations: ⊕ and ⊗.
As shown by (3), since two operands of ⊕ are defined
over [0, 1], the ⊕ operation has no NaN issue. For the ⊗
operation, as shown by (8), the NaN issue will occur if
one operand is 0 and the other is 1. We define (0⊗ 1) =
(1⊗ 0) = 0.5.

• LR-Field: There are two kinds of operations: � and ×.
At first glance, the � operation defined by (4) has the
NaN issue. However, if we rewrite (4) as

ab + 1
a + b

=
1

1/a + 1/b
+

1
a + b

∈ R
+, (15)

the NaN issue is eliminated automatically. It is easy to
get (0�0) = (∞�∞) =∞ and (0�∞) = (∞�0) = 0.
For the × operation, the NaN issue is unavoidable.

• LLR-Field: There are two kinds of operations: � and
+. Then according to (7), the definition of �, it is
obvious that SCAN decoding in the LLR-field has neither
multiplication nor division, so there is no NaN issue.
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With the NaN issue properly handled, SCAN decoding in
different fields will produce similar results, as shown in sub-
Sect. VII-B.

2) Complexity: It is well known that the arithmetic
operations have an increasing order of hardware imple-
mentation complexities as follows: bitwise operation, addi-
tion/subtraction, multiplication, and division. Let us make a
comparison as below:

• L-Field: As shown by (3), a⊕b needs only one multipli-
cation of (1− 2a) and (1− 2b) (note that multiplying or
dividing a variable by 2 can be implemented by bitwise
shifting). As shown by (8), a⊗b needs two multiplications
and one division. Overall, three multiplications and one
division are needed.

• LR-Field: As shown by (15), a� b needs four divisions.
Overall, one multiplication and four divisions are needed.

• LLR-Field: As shown by (7), the key component in the
calculation of a�b is the function Ψ(·), which is usually
implemented by a Look-Up Table (LUT). Hence, neither
multiplication nor division is needed.

From the above analysis, we can find that the complexity
of SCAN decoding decreases in the order of LR-field, L-
field, and LLR-field. However, if the LUT technique is not
used, SCAN decoding in the LLR-field will be of the highest
complexity, because the log and tanh operations are very time-
consuming, as shown in sub-Sect. VII-B.

IV. STATE ESTIMATION VIA SLIDING-WINDOW

ALGORITHM

Now we focus on L0,1:N , the intrinsic messages of x-nodes.
To trigger SCAN decoding, we seed L0,1:N with estimated
local states of physical sub-channels:

• BSC model: Xπ(i) is sent and Yπ(i) = Xπ(i) ⊕ Zi is
received. Let �i be the bias probability of Zi and �̂i be
the estimate of �i. Then

L0,π(i) =

⎧⎨
⎩

(1 − �̂i)yπ(i) + �̂i(1− yπ(i)), in L-field
(1−�̂i

�̂i
)1−2yπ(i) , in LR-field

(1 − 2yπ(i)) log 1−�̂i

�̂i
, in LLR-field.

(16)

• AWGN channel model: (1−2Xπ(i)) is sent and Yπ(i) =
(1− 2Xπ(i)) + Zi is received. Let σ2

i be the variance of
Zi and σ̂2

i be the estimate of σ2
i . Then

L0,π(i) =

⎧⎪⎪⎨
⎪⎪⎩

1
1 + exp(2yπ(i)/σ̂2

i )
, in L-field

exp(2yπ(i)/σ̂2
i ), in LR-field

2yπ(i)/σ̂2
i , in LLR-field.

(17)

Once the intrinsic messages L0,1:N of x-nodes are initial-
ized, they will remain unchanged during decoding. However,
the decoder may be less effective if the channel is mis-
estimated. For LDPC codes, if the intrinsic messages of
variable nodes are coarsely seeded, a significant gain can
be achieved by elaborately refining the intrinsic messages
of variable nodes after each BP iteration. There are many
schemes that can achieve this goal. Among them, SWBP
decoding [19], [20] is particularly attractive due to its low

error rate, low complexity, and strong robustness. Since SCAN
decoding is also an iterative algorithm, it is natural to expect
that the SWBP algorithm can be extended from LDPC codes to
polar codes on the platform of SCAN decoding. The principle
is as below. First, we initialize �̂i or σ̂2

i arbitrarily. For example,
it is usually not difficult to estimate the global crossover
probability �̄ = 1

N

�N
i=1 �i (for the BSC model) or the global

noise variance σ̄2 = 1
N

�N
i=1 σ2

i (for the AWGN channel
model), so we can initially set �̂i = �̂ or σ̂2

i = σ̂2 for all
i ∈ [1 : N ], where �̂ is the estimate of �̄ and σ̂2 is the estimate
of σ̄2. Then after each SCAN iteration, we update �̂i or σ̂2

i by
some means.

A. Problem Formulation

At the decoder, depending on the channel model, either
yπ(1:N) = xπ(1:N)⊕ z1:N or yπ(1:N) = (1− 2xπ(1:N)) + z1:N

is received. After each SCAN iteration, we get γi, the overall
message of xi, by (14), which can be used to calculate the a
posteriori probability that Xi = 1:

pi =

⎧⎨
⎩

γi, in L-field
1

1+γi
, in LR-field
1

1+exp(γi)
, in LLR-field.

(18)

From yi and pi, depending on the channel model, we either
calculate (for the BSC model)

ẑi � |pπ(i) − yπ(i)| (19)

or calculate (for the AWGN channel model)

ẑ2
i � pπ(i)(yπ(i) + 1)2 + (1− pπ(i))(yπ(i) − 1)2. (20)

We can take ẑi as the soft estimate of zi. Now our problem
is how to estimate �1:N from ẑ1:N or estimate σ2

1:N �
(σ2

1 , . . . , σ2
N ) from ẑ2

1:N � (ẑ2
1 , . . . , ẑ

2
N).

B. Sliding-Window SCAN

1) Basic Principle: Let us consider the BSC model first.
To avoid out-of-bound accesses, for window size (2m + 1),
we pad ẑ1:N to get

ẑ(1−m):(N+m) = (ẑm, . . . , ẑ1, ẑ1:N , ẑN , . . . , ẑN−m+1), (21)

i.e., ẑi = ẑ1−i for (1 −m) ≤ i ≤ 0 and ẑi = ẑ2N+1−i for
(N + 1) ≤ i ≤ (N + m). This is actually the symmetric
padding. Note that (21) is not an ad hoc formula and we will
find its use in sub-Sect. V-B. Then a simple way to estimate
�i is

�̂i =
1

2m + 1

m	
i′=−m

ẑi+i′ = �̂i−1+
1

2m + 1
(ẑi+m − ẑi−1−m).

(22)

Similarly, a simple way to estimate σ2
i is

σ̂2
i =

1
2m + 1

m	
i′=−m

ẑ2
i+i′

= σ̂2
i−1 +

1
2m + 1

(ẑ2
i+m − ẑ2

i−1−m). (23)
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It is also shown by (22) and (23) that �̂i or σ̂2
i can be

deduced recursively by sliding window, so given �̂i−1 or
σ̂2

i−1, the order of complexity to calculate �̂i or σ̂2
i is O(1),

irrespective of half window size m. We refer to this scheme
as Sliding-Window (SW) SCAN (SWSCAN). A similar scheme
based on BP decoding of LDPC codes is called SWBP in [19],
[20].

2) Window Size: As shown by (22) and (23), half window
size m plays a key role in SWSCAN. To find the optimal m,
we need to exploit the conditionally-memoryless property. Let
us take the BSC model for example. We slightly modify (22)
to get

�̂i(m) =
1

2m

m	
i′=1

(ẑi−i′ + ẑi+i′) (24)

and define the cross entropy between ẑ1:N and �̂1:N as

η(m) � −
N	

i=1

(ẑi log �̂i(m) + (1− ẑi) log(1− �̂i(m))). (25)

By comparing (24) with (22), one can find that ẑi is
excluded from the estimate of �i, which makes �̂i(m) and ẑi

approximately conditionally independent of each other given
�i. In other words, �̂i(m) and ẑi can be approximately taken
as two independent observations of �i, i.e., ẑi ↔ �i ↔ �̂i(m).
Hence, the cross entropy η(m) can be used as a criterion
to evaluate different half window sizes m. Similarly, for the
AWGN channel model, we slightly modify (23) to get

σ̂2
i (m) =

1
2m

m	
i′=1

(ẑ2
i−i′ + ẑ2

i+i′) (26)

and define the cross entropy between ẑ2
1:N and σ̂2

1:N as

η(m) � −�N
i=1 log



1√

2πσ̂2
i (m)

exp(− ẑ2
i

2σ̂2
i (m)

)
�

∝�N
i=1

�
ẑ2

i

σ̂2
i (m)

+ log σ̂2
i (m)


. (27)

Now the optimal m can be obtained by

ṁ = argmin
m

η(m). (28)

As shown by (25) and (27), the order of complexity to
compute η(m) is O(N). In view of the low complexity of
η(m), we suggest implementing (28) simply by a full search
over {1, . . . , N/2}. If so, the order of complexity of SWSCAN
is O(N2), the same as that of SWBP [19], [20].

C. Underflow and Overflow Handling

As shown by (24), for small m, it is likely that �̂i(m) is
equal to 0 or 1, which will cause illegal log operation in (25).
In the SWBP algorithm [19], [20], this problem is solved by
setting lower and upper bounds for �̂i(m). However, such a
solution is not very desirable because it not only increases
the complexity but also induces a new problem, namely, how
to set lower and upper bounds. Inspired by the Krichevsky-
Trofimov (KT) formula [24], we propose a better solution to
this problem. For the BSC model, we modify (24) to get

�̂i(m) =
1

2m + 1

�
�̃ +

m	
i′=1

(ẑi−i′ + ẑi+i′ )

�
, (29)

where 0 < �̃ < 1. The standard KT formula sets �̃ to 0.5,
but we set �̃ to 1

N

�N
i=1 ẑi in (29). It is because the KT

formula was originally designed for arithmetic coding that
is sequential in nature. Hence, the arithmetic codec has no
a priori knowledge of z1:N before encoding or decoding.
On the contrary, most channel codes, e.g., polar codes and
LDPC codes, are block codes. With the knowledge of ẑ1:N ,
it is conceivably better to set �̃ to the mean of ẑ1:N rather
than 0.5. Similarly, for the AWGN channel model, we set
σ̃2 � 1

N

�N
i=1 ẑ2

i and refine (26) to

σ̂2
i (m) =

1
2m + 1

�
σ̃2 +

m	
i′=1

(ẑ2
i−i′ + ẑ2

i+i′)

�
. (30)

V. STATE ESTIMATION VIA WEIGHTED-WINDOW

ALGORITHM

As shown by (29) and (30), SWSCAN decoding (and SWBP
decoding for LDPC codes) is actually equivalent to a low-pass
filter with equal tap weights 1

2m+1 . It is natural to attempt
unequal tap weights. That is the topic of this section.

A. Weighted-Window SCAN

1) BSC Model: Let (w−m, . . . , w−1, w0, w1, . . . , wm) be
the tap weight vector, where w0 is the coefficient of �̃ in (29)
or the coefficient of σ̃2 in (30). It is very reasonable to set w0

to the average of all (2m+1) weights, i.e., w0 ≡ 1
2m+1 . If so,

when m = 0, we have w0 = 1 and thus �̂i = �̃ or σ̂2
i = σ̃2,

which is the desired result, and as m increases, the effect of �̃
or σ̃2 will be diluted. Moreover, for simplicity, it is very natural
to use symmetric taps, i.e., wi′ = w−i′ for 1 ≤ i′ ≤ m. Let
ai+i′ � ẑi−i′ + ẑi+i′ and ai � (ai+1, . . . , ai+m)� ∈ R

m×1

for 1 ≤ i ≤ N . Let w � (w1, . . . , wm)� ∈ R
m×1. For the

BSC model, each term of (29) is unequally weighted:

�̂i(w) � w0�̃ +
m	

i′=1

wi′(ẑi−i′ + ẑi+i′) = a�
i w + w0�̃. (31)

We approximate the cross entropy between ẑ1:N and �̂1:N
with the 
2-distance to reduce the complexity. It is easy to get

(�̂i(w) − ẑi)2 ∝
�
w�aia�

i w− 2(ẑi − w0�̃)a�
i w
�

=
�
w�Hiw − 2f�i w

�
, (32)

where Hi = aia�
i ∈ R

m×m and fi = (ẑi − w0�̃)ai ∈ R
m×1.

Let H =
�N

i=1 Hi and f =
�N

i=1 fi. Then η(m) defined by
(25) can be approximated with

η(w) �
N	

i=1

(�̂i(w)− ẑi)2 ∝
�
w�Hw− 2f�w

�
. (33)

This is a standard least-square problem with the optimal
solution

ẇ = arg min
w

η(w) = H−1f . (34)

However, the optimal w obtained by (34) performs very
poorly in practice, because there is no constraint on w.
In many cases, the autocorrelation function of a random
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process looks like the geometric distribution. Hence, consider-
ing its physical meanings, the following constraints on w are
reasonable:

• Non-negativity and Monotonicity: w1 ≥ · · · ≥ wm ≥
0. This is because the correlation between Zi and Zi+k

should be weaker as k increases.
• Convexity: (wi′−1 − wi′ ) ≥ (wi′ − wi′+1), i.e., wi′ ≤

wi′−1+wi′+1
2 . This is due to the convexity of geometric

distribution.
• Normality: w0 +

�m
i′=1 2wi′ = 1 and thus

�m
i′=1 wi′ =

m
2m+1 .

With the above constraints imposed, the problem is now
formatted as

ẇ = argmin
w

η(w) s.t. w1 ≥ · · · ≥ wm ≥ 0,

wi′ ≤ wi′−1+wi′+1
2 ,

m�
i′=1

wi′ = m
2m+1 . (35)

It is a standard quadratic programming problem that can be
easily solved. We refer to this scheme as Weighted-Window
(WW) SCAN (W2SCAN) decoding. It is easy to verify that the
constraint set in (35) is not empty, so the optimization problem
defined by (35) has a solution. Let us give an example to show
that the optimal solution to (35) may not be an equal-weight
vector. Assume m = 2 and f = 0. If H = ( 1,0

0,1 ), it is easy
to get that the solution to (35) is ẇ = (1/5, 1/5)�, which is
an equal-weight vector. However, if H = ( 1,0

0,2 ), the solution
to (35) is ẇ = (4/15, 2/15)�, which is not an equal-weight
vector.

2) AWGN Channel Model: We define ai+i′ � ẑ2
i−i′ + ẑ2

i+i′

and ai � (ai+1, . . . , ai+m)� ∈ R
m for 1 ≤ i ≤ N . Then it is

easy to get

σ̂2
i (w) = a�

i w + w0σ̃
2 (36)

and

(σ̂2
i (w)− ẑ2

i )2 ∝ �w�Hiw− 2f�i w
�
, (37)

where Hi = aia�
i ∈ R

m×m and fi = (ẑ2
i − w0σ̃

2)ai ∈ R
m.

Still let H =
�N

i=1 Hi and f =
�N

i=1 fi. We approximate
(27) with

η(w) �
N	

i=1

(σ̂2
i (w)− ẑ2

i )2 ∝ �w�Hw− 2f�w
�
. (38)

Since (38) and (33) have exactly the same form, they can
be solved using the same method (35). The only difference is
that η(w) in (35) is now defined by (38).

B. Complexity of W2SCAN

Now we consider how to calculate H and f . Let H =
(hk,l)m×m and f = (fk)m×1, where 1 ≤ k, l ≤ m. For the
BSC model, we have

hk,l = hl,k =
N	

i=1

ai+kai+l =
N	

i=1

(ẑi−k + ẑi+k)(ẑi−l + ẑi+l)

(39)

and

fk =

�
N	

i=1

ẑiai+k

�
− w0�̃

�
N	

i=1

ai+k

�
. (40)

According to the definition of ai+k, we have

gk �
N	

i=1

ẑiai+k =
N	

i=1

ẑi(ẑi−k + ẑi+k) (41)

and
N	

i=1

ai+k =
N	

i=1

ẑi−k +
N	

i=1

ẑi+k. (42)

Following the padding formula (21), it is easy to get��N
i=1 ẑi−k = 2

�k
i′=1 ẑi′ +

�N−k
i′=k+1 ẑi′�N

i=1 ẑi+k =
�N−k

i′=k+1 ẑi′ + 2
�N

i′=N−k+1 ẑi′
. (43)

Substituting (43) into (42), we get

N	
i=1

ai+k = 2
N	

i′=1

ẑi′ = 2N�̃, (44)

where �̃ = 1
N

�N
i=1 ẑi. Note that

�N
i=1 ai+k is a constant for

all 1 ≤ k ≤ m. Finally, we get

fk = gk − 2N�̃2

2m + 1
. (45)

Let Φ � (φk,l)(2m+1)×(2m+1) ∈ R
(2m+1)×(2m+1), where

−m ≤ k, l ≤ m, and

φk,l = φl,k �
N	

i=1

ẑi+kẑi+l. (46)

As shown by (46), φk,l is to some extent similar to the
autocorrelation of ẑ1:N . Then according to (39) and (41),
we have �

hk,l = φ−k,−l + φ−k,l + φk,−l + φk,l

gk = φk,0 + φ−k,0
. (47)

Thus, if only Φ is known, H and f can be easily calculated.
According to (46), the order of complexity to calculate Φ
is O(Nm2). Note that H is a covariance matrix, so it is a
positive semi-definite Hessian matrix and (35) can be solved
in polynomial time [25]. As H ∈ R

m×m, the polynomial
complexity of (35) is in m, not N . More precisely, the order of
complexity of solving (35) is O(m3) (see Sect. 5.3.2 of [26]).
The complexity of W2SCAN is dominated by two steps:
calculating Φ, whose order of complexity is O(Nm2), and
solving (35), whose order of complexity is O(m3). Since
m ≤ N/2, the order of complexity of W2SCAN is O(Nm2).

The above analysis for the BSC model can be easily
extended to the AWGN channel model by replacing (45) with

fk = gk − 2Nσ̃4

2m + 1
, (48)

where σ̃2 = 1
N

�N
i=1 ẑ2

i , and replacing (46) with

φk,l = φl,k �
N	

i=1

ẑ2
i+kẑ2

i+l. (49)
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C. Window Size

The half window size m is a factor that has significant
impact on the performance of W2SCAN. Varying m leads
to a tradeoff between error rate and complexity: Larger m
will lower error rate but increase computational complexity.
One choice is setting the half window size m of W2SCAN to
ṁ obtained by (28) of SWSCAN. This is actually a mixture
of SWSCAN and W2SCAN, and its order of complexity is
O(N3) in the worst case of m = N/2. For simplicity, in all
experiments of this paper, we set the half window size m of
W2SCAN to

√
N , and thus the order of complexity is O(N2),

the same as that of SWSCAN. Hence, we can make a fair
comparison between SWSCAN and W2SCAN.

VI. STATE ESTIMATION VIA LINEAR-
WEIGHTING ALGORITHM

As shown in Sect. IV and Sect. V, both SWSCAN and
W2SCAN are low-pass filters in essence, so they may not
work well for piecewise-stationary channel with abrupt state
changes. This section will make a different attempt to handle
this issue.

The Linear-Weighting (LW) algorithm, also known
as Willems’ LW algorithm named after the inventor
Willems [27], is a classical method to estimate the
local state of piecewise-stationary binary sources.
Combining arithmetic coding with the LW algorithm
can compress piecewise-stationary binary sources at very low
redundancy [27]. Below, we will first introduce the standard
form of LW algorithm, then apply it to state estimation for
time-varying channels. Finally, we will compare SWSCAN,
W2SCAN, and LWSCAN.

A. Basic Principle of LW Algorithm

Let x1:N be a piecewise-stationary binary source with
unknown parameter. The LW algorithm is designed for sequen-
tial codec. To encode xi, source bias probability at time i is
needed. If there is an abrupt state change between xi′−1 and
xi′ , where 1 ≤ i′ ≤ i, and the piece xi′:i is stationary, then the
bias probability of xi can be estimated by xi′:(i−1) with the
KT formula [24]. Let Ti, where 1 ≤ Ti ≤ i, denote the time
of the last abrupt state change before xi. More specifically,
if Ti = i′, where 1 ≤ i′ ≤ i, there is an abrupt state
change between xi′−1 and xi′ , and the piece xi′ :i is stationary.
Initially, Pr(T1 = 1) = 1. Let us define

qi,i′ � Pr(X1:i = x1:i, Ti = i′), (50)

where 1 ≤ i ≤ N and 1 ≤ i′ ≤ i. Initially, q1,1 =
Pr(X1 = x1, T1 = 1) = Pr(X1 = x1) · Pr(T1 = 1) =
0.5. For simplicity, we will abbreviate qi,i′ as qi′ . Let �́i be
the estimated bias probability of xi. We sequentially encode
x1:N with �́1:N . Initially, �́1 = 0.5. Then for 2 ≤ i ≤ N ,
the following steps are carried out to estimate �i.

1) Calculate State Weight: wi′ = qi′(1−αi′) for 1 ≤ i′ ≤
(i − 1) and wi =

�i−1
i′=1 qi′αi′ , where αi′ = 1

2(i−i′) is
the transition probability from state i′ to state i.

2) Estimate the Conditional Bias Probability at time i
given state i′ with the KT formula:

εi′ =
0.5 +

�i−1
i′′=i′ xi′′

i− i′ + 1
, (51)

where 1 ≤ i′ ≤ i. In particular, if i = i′, then εi′ = 0.5.
3) Estimate the Bias Probability at time i:

�́i =
�i

i′=1 wi′εi′�i
i′=1 wi′

. (52)

4) qi′ is updated through

qi′ = wi′(xiεi′ + (1− xi)(1 − εi′)). (53)

B. Adapt LW Algorithm for Channel Coding

Consider the following communication problem: x1:N ∈
B

N is sent and y1:N = x1:N⊕z1:N ∈ B
N is received. Assume

that x1:N is memoryless and uniformly distributed, and x1:N

and z1:N are mutually independent. The noise sequence z1:N

can be viewed as a binary source whose bias probability
vector �1:N is just the crossover probability vector between
x1:N and y1:N . Though z1:N is unknown during decoding,
its soft estimate ẑ1:N can be obtained by (19) after each
SCAN iteration. So with x1:N of (51) and (53) replaced by
ẑ1:N , the LW algorithm in sub-Sect. VI-A can be leveraged to
estimate the crossover probability vector �1:N between x1:N

and y1:N . This approach is most suitable when the noise
sequence is approximately piecewise-stationary.2

However, different from source coding which usually pro-
ceeds sequentially, channel coding is typically implemented in
a blockwise manner. Hence the LW algorithm can be further
improved. First, as with SWSCAN and W2SCAN, we can set
�́1 = �̃ � 1

N

�N
i=1 ẑi and

εi′ =
�̃ +

�i−1
i′′=i′ ẑi′′

i− i′ + 1
, (54)

i.e., the bias 0.5 in (51) is replaced with �̃. Second, the LW
algorithm can perform both forward and backward iterations
in the block channel coding setting as opposed to forward
iterations only in the sequential source coding setting. Let �̀i

be the estimate of �i by the backward LW algorithm. Better
performance can be achieved if we use �̂i = �́i+�̀i

2 to update
the intrinsic messages L0,1:N for SCAN decoding of polar
codes. We refer to this scheme as Linear-Weighting SCAN
(LWSCAN). Note that different from the forward-backward
algorithm for HMM, �̂i is equal to the arithmetic average rather
than geometric average of �́i and �̀i, because the KT formula
is itself an arithmetic average.

C. Extension to AWGN Channel

For the AWGN channel model, x1:N ∈ B
N is sent and

y1:N = (1 − 2x1:N ) + z1:N is received. Let ẑ2
1:N be the soft

estimate of z2
1:N obtained by (20) after each SCAN iteration.

Let σ2
1:N be the variance vector of z1:N and σ́2

1:N be the
forward estimate of σ2

1:N . Initially, σ́2
1 = σ̃2 � 1

N

�N
i=1 ẑ2

i .

2For example, this is the case when αs,s ≈ 1 for s ∈ S .
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Then σ2
i for 2 ≤ i ≤ N can be estimated by the following

steps.

1) Calculate State Weight: Transition probabilities are
purely subject to the investigated state model, no matter
whether the channel is BSC or AWGN. So this step is
completely the same as in sub-Sect. VI-A.

2) Estimate the Conditional Noise Variance at time i
given state i′: The variance of a normal random variable
can be estimated by the arithmetic average of squared
samples, so this step is a generalization of the KT
formula:

ζ2
i′ =

σ̃2 +
�i−1

i′′=i′ ẑ2
i′′

i− i′ + 1
, (55)

where 1 ≤ i′ ≤ i. In particular, if i = i′, then ζ2
i′ = σ̃2.

3) Estimate the Noise Variance at time i:

σ́2
i =

�i
i′=1 wi′ ζ

2
i′�i

i′=1 wi′
. (56)

4) As shown by (53), qi′ is actually the product of wi′ and
Pr(Xi = xi|Ti = i′). It is easy to deduce by analogy
that qi′ should be updated through

qi′ =
wi′�
2πζ2

i′
· exp



− ẑ2

i

2ζ2
i′

�
. (57)

Of course, the above steps can be iterated backward to
obtain σ̀2

1:N , the backward estimate of σ2
1:N . Finally, we use

σ̂2
1:N = σ́2

1:N +σ̀2
1:N

2 to update the intrinsic messages L0,1:N and
then run the next SCAN iteration. This is the AWGN-version
of LWSCAN.

D. Comparison Between SWSCAN, W2SCAN, and LWSCAN

1) Complexity: As analyzed in [27], the order of complexity
of the LW algorithm is O(N2), so the order of complexity
of LWSCAN is also O(N2), the same as that of SWSCAN.
Since the two competitors have the same order of complexity,
they can be fairly compared. However, it should be noticed
that the LW algorithm runs sequentially, so it is hard to be
parallelized. On the contrary, the SW algorithm can be easily
parallelized because the metrics of different half window sizes
are independent of each other and can be calculated in parallel.
As for W2SCAN, the complexity is on the order of O(Nm2),
so if m is comparable to N , e.g., m = N/2, the complexity
of W2SCAN is higher than SWSCAN and LWSCAN.

2) Memory: It is easy to find that for both SWSCAN and
LWSCAN, the additional memory usage for state estimation is
on the order of O(N). As for W2SCAN, if m is comparable to
N , the additional memory usage for state estimation is on the
order of O(m2), higher than that of SWSCAN and LWSCAN,
because Φ is the largest matrix of size (2m + 1) × (2m +
1). For more detail, the reader may refer to the source code
released in [31].

VII. EXPERIMENTAL RESULTS

On the platform of SCAN decoder, we have realized three
adaptive decoders, i.e., SWSCAN, W2SCAN, and LWSCAN.

Below we will: (a) give a simple example to illustrate the
advantage of permutation for polar codes over channels with
memory; (b) compare the implementations of SCAN decoder
in different fields; (c) compare SWSCAN decoder with SCTL
decoder; and (d) compare three adaptive SCAN decoders.
We use Frame-Error-Rate (FER) and Bit-Error-Rate (BER)
as the indicator of error-correcting capability and use runtime
as the indicator of decoding complexity.

A. Advantage of Permutation

In sub-Sect. III-A, it is pointed out that for channels
with memory, the permutation step after polar encoding is
advantage for the polarization of virtual sub-channels. Now
we give a simple example to verify this assertion. Consider a
two-state AWGN channel with transition probability α1,2 =
α2,1 = 1/16. The AWGN variance is 0.5 at the good state and
2 at the bad state. The intrinsic messages of x-nodes, L0,1:N ,
where code length N = 210, are initialized with global AWGN
variance σ̄2 = 1.25. We run 104 trials and count the Bhat-
tacharyya parameter for each virtual sub-channel. The result
is shown in Fig. 3. Note that the two sub-figures have different
ranges along the Z(W )-direction. As shown by sub-Fig. 3(a),
if there is no permutation after encoding, the maximal value
of Z(W ) is smaller than 0.5, i.e., virtual sub-channels are
insufficiently polarized. In contrast, as shown by sub-Fig. 3(b),
if the output bits of polar encoder are permuted, the maximal
value of Z(W ) is 0.5, i.e., virtual sub-channels are deeply
polarized. This simple example clearly confirms the advantage
of the permutation step for polar codes over channels with
memory.

B. SCAN Decoders in Different Fields

SCAN decoding was originally carried in the LLR-field [5].
In Sect. III, we also implement SCAN decoding in the L-field
and the LR-field. Now we give a simple example to compare
SCAN decoders in different fields. We sort N = 210 virtual
sub-channels according to the 5G reliability file [2] and set
the code rate to 0.5, i.e., only K = N/2 = 29 best
virtual sub-channels are dedicated to information bits. Five
memoryless AWGN channels with different noise variances
are evaluated. When Eb/N0 = 1dB, the decoding is ceased
if 256 erroneous frames are detected; similarly, 128 for
Eb/N0 = 1.5dB, 64 for Eb/N0 = 2dB, 32 for Eb/N0 =
2.5dB, and 16 for Eb/N0 = 3dB. For each trial, at most
10 iterations are attempted. As here we are more concerned
with error rates, no LUT technique is used for the LLR-
SCAN. It can be seen from Fig. 4 that the implementations
of SCAN decoding in different fields yield very similar per-
formance, but as Eb/N0 increases, there is a trend that the
LLR-SCAN wins out, while the LR-SCAN becomes worse
[sub-Fig. 4(a)]. In sub-Fig. 4(b), we show the ratio of running
time of LR-SCAN and LLR-SCAN to L-SCAN. Note that
both LR-SCAN and LLR-SCAN are slower than L-SCAN,
and the LLR-SCAN is the slowest, if no LUT technique
is used.
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Fig. 3. A simple example of Bhattacharyya parameter to illustrate the advantage of permutation after encoding for polar codes over channels with memory.
(a) No permutation. (b) With permutation.

Fig. 4. Comparison of the implementations of SCAN decoding in different fields. (a) Error rates. (b) Ratio of running time of LR-SCAN and LLR-SCAN
to L-SCAN.

C. Comparison With SCTL Decoder
The SCT algorithm was proposed in [15] for decoding

polar codes over ISI channels, and was extended to general
finite-state channels in [16]. The SCTL algorithm is the
combination of the SCT algorithm with the SCL algorithm [9].
Its order of complexity is O(|S|3LN log2 N) and its order
of memory usage is O(|S|2LN log2 N), where |S| is the
cardinality of state space, L is the list size, and N is the code
length [9]. It is interesting to make a comparison between
SCTL and SWSCAN. Consider a Gilbert-Elliott channel with
state transition probability α1,2 = α2,1 = 0.01. The crossover
probability is 0 at the good state and 0.2 at the bad state,
hence the global crossover probability is �̄ = 0.1. For SCTL,
we run the algorithm in [16] to obtain sorted virtual sub-
channels, and the list size is set to 16. For SWSCAN, we still
use the 5G reliability file [2], and the maximum iteration
number is set to 10. We test five code rates from 0.25 to 0.5.

For code rate 0.25, we run 104 trials, while for other rates,
we run 103 trials. In Fig. 5, the parameter set of the Gilbert-
Elliott channel is known at the receiver for the SCTL decoder,
while for other decoders, the parameter set is unknown and
the intrinsic messages of x-nodes, L0,1:N , are initialized with
�̄. Except SCTL, all decoders are implemented in the L-field.
From Fig. 5, we can make some interesting observations. First,
for channels with memory, it is very important to permute
the output bits of polar encoder (cf. Fig. 3). Second, SCAN
improves SC, and further, SWSCAN improves SCAN. Third,
in general, SWSCAN is significantly better than SCTL in term
of FER, but slightly worse in term of BER. Finally, as code
rate decreases, there is a trend that SCTL will win out.

Fig. 5 reveals that for hidden Markov channels, the methods
based on state transition trellis, e.g., the SCTL algorithm, may
not yield satisfactory results. It is not beyond our expectation
because a similar phenomenon has been found for the problem
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Fig. 5. Comparison of SWSCAN decoder with SCTL decoder. (a) FER. (b) BER.

of Slepian-Wolf coding [28], i.e., lossless distributed source
coding, which is in essence a problem of channel coding. This
is because polar codes are a class of block codes, and the hid-
den Markov model may be de-synchronized for any blockwise
coding scheme based on state transition trellis. For example,
it is found in [29] that the forward-backward algorithm is not
enough for Slepian-Wolf coding of HMM-correlated binary
sources due to asynchronization. To re-synchronize the hidden
Markov model, a small proportion of the original source bits,
which are equi-spaced, must be transmitted accompanying the
compressed bitstream [29]. The asynchronization problem of
hidden Markov model can be solved with sequential coding
schemes, e.g., distributed arithmetic coding [30]. If one still
sticks to block codes, then the coding scheme should be based
on state estimation, e.g., SWBP, SWSCAN, etc., rather than
state transition trellis.

D. Comparison of Adaptive SCAN Decoders

1) Preparation: We use a κ-state HMM-AWGN channel to
test the proposed algorithms. The space of AWGN variance is
{0, 2σ̄2

κ−1 , . . . , 2(κ−1)σ̄2

κ−1 }, and the state transition probability is
αs,t ≡ λ−1 for all s 
= t. The 5G reliability file [2] is used to
sort N = 210 virtual sub-channels and code rate is fixed to 0.5.
We define Eb/N0 = −10 log10 σ̄2, where σ̄2 = 1

N

�N
i=1 σ2

i .
Information bits uA are uniformly generated and the forbidden
bits uAc are set to zero. After encoding, x1:N is randomly
permuted. For SCAN and its variants, the maximum iteration
number is set to 10. All decoders are implemented in the LR-
field. The following experiments are run on a six-core CPU.
For each setting, at most 104 trials are run on each core, and
the loop on each core will be terminated if 50 erroneous frames
are detected.

2) Benchmarks: Our benchmarks are the SC and SCAN
decoders seeded with σ̄2. As shown by sub-Fig. 6(a), com-
pared with the SC decoder, about 0.2dB gain can be achieved
by the SCAN decoder with 10 iterations. To show how much
gain can be achieved if the channel state is perfectly known at

the decoder, we seed the SC and SCAN decoders with σ2
1:N .

As shown by sub-Fig. 6(a), for both SC and SCAN decoders,
significant gains can be obtained if x-nodes are seeded with
σ2

1:N instead of σ̄2. For the SC decoder, accurate channel state
information can bring about 0.8dB gain, while for the SCAN
decoder, accurate channel state information can bring about
1dB gain. Hence, there is still potentially considerable room
for improvement with respect to adaptive channel estimation.

3) Gain of Adaptive SCAN Decoders: We compare three
adaptive SCAN decoders with the original non-adaptive SCAN
decoder in sub-Fig. 6(b), where all decoders are seeded with
σ̄2. It can be found that adaptive SCAN decoders can achieve
about 0.2dB gain. It can also be found that among three
adaptive SCAN decoders, LWSCAN is the best, SWSCAN
is the worst, and W2SCAN is in between.

It is noticed in [20] that SWBP is robust to the initial esti-
mate of σ2

1:N . Even though σ̂2
1:N is set to 2σ̄2 or σ̄2/2 instead

of σ̄2, almost the same performance can be achieved [20].
Compared with channel underestimation, e.g., σ̂2

1:N is set
to σ̄2/2, channel overestimation, e.g., σ̂2

1:N is set to 2σ̄2,
needs fewer iterations [20]. This finding coincides with the
well-known fact that channel overestimation is usually less
destructive than channel underestimation. So we also attempt
seeding adaptive SCAN decoders with 2σ̄2. As shown in sub-
Fig. 6(c), surprisingly, adaptive SCAN decoders seeded with
2σ̄2 can achieve about 0.4dB gain, significantly higher than
adaptive SCAN decoders seeded with σ̄2. This finding not
only shows the robustness of adaptive SCAN decoders to
initial settings, but also reconfirms the advantage of channel
overestimation [20].

Encouraged by the success of channel overestimation
for adaptive SCAN decoders, we also attempt seeding
non-adaptive decoders with 2σ̄2. Unfortunately, as shown
in sub-Fig. 6(a), the performance of non-adaptive decoders
exhibits severe degradation if the channel is overestimated.
An unexpected finding from sub-Fig. 6(a) is that for low
Eb/N0, the iterative SCAN decoder is even worse than the
non-iterative SC decoder.
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Fig. 6. Comparison of adaptive SCAN decoders with non-adaptive decoders. FER comparison between (a) SC decoder and SCAN decoder, (b) SCAN
decoder and adaptive SCAN decoders, and (c) SCAN decoder and adaptive SCAN decoders with overestimated AWGN variances. (d) Runtime comparison
between SCAN decoder and adaptive SCAN decoders.

Finally, we compare the complexity of three adaptive SCAN
decoders. The ratio of running time between each (adaptive)
SCAN decoder and the SC decoder is shown in sub-Fig. 6(d).
It can be found that the SWSCAN decoder runs almost as fast
as the SCAN decoder. Surprisingly, in some cases, the SWS-
CAN decoder is even faster than the SCAN decoder. There
are two reasons for this phenomenon. On one hand, the metric
formulas (25) and (27) for each sliding-window size is very
simple, and on the other hand, fewer iterations are needed
by the SWSCAN decoder due to refined estimates of channel
states. A similar phenomenon regarding the SWBP decoder
for LDPC codes is reported in [20]. The W2SCAN decoder
runs slower than the SWSCAN decoder, but faster than the
LWSCAN decoder. So from the viewpoint of complexity,
SWSCAN is better than W2SCAN, and W2SCAN is better
than LWSCAN.

VIII. CONCLUSION

This paper studies the problem of decoding polar codes
over a special class of finite-state channels, i.e., general-

ized Gilbert-Elliott channels, with unknown parameters. It is
revealed that, by permuting codewords before transmission and
adopting iterative SCAN decoding, it is possible to estimate
the time-varying channel state online. Three methods have
been proposed in this work. The first is SWSCAN, which
is an extension of SWBP from LDPC codes to polar codes.
By optimizing the tap weights of SWSCAN with quadratic
programming, we get W2SCAN. The third is LWSCAN, which
is an extension of the LW algorithm from source estimation to
channel estimation. Simulation results show that three adaptive
SCAN algorithms significantly improve the performance of
polar codes over generalized Gilbert-Elliott channels.

The software package has been released on the first author’s
GitHub [31].
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