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ABSTRACT The advent of deep learning in the past decade has significantly helped advance image inpaint-
ing. Although achieving promising performance, deep learning-based inpainting algorithms still struggle
from the distortion caused by the fusion of structural and contextual features, which are commonly obtained
from, respectively, deep and shallow layers of a convolutional encoder. Motivated by this observation,
we propose a novel progressive inpainting network that maintains the structural and contextual integrity
of a processed image. More specifically, inspired by the Gaussian and Laplacian pyramids, the core of
the proposed network is a feature extraction module named GLE. Stacking GLE modules enables the
network to extract image features from different image frequency components. This ability is important
to maintain structural and contextual integrity, for high frequency components correspond to structural
information while low frequency components correspond to contextual information. The proposed network
utilizes the GLE features to progressively fill in missing regions in a corrupted image in an iterative
manner. Our benchmarking experiments demonstrate that the proposed method achieves clear improvement
in performance over many state-of-the-art inpainting algorithms.

INDEX TERMS Deep image inpainting, image pyramid.

I. INTRODUCTION
Image inpainting is the task of restoring missing patches
of pixels in an image [1], [2], [7]. As the name suggests,
inpainting targets filling in missing parts of an image (i.e.,
image holes) with contextually meaningful information so
that the image can be restored to its original form. This could
be a quite difficult task for machines, for it is an ill-posed
inverse problem [8]. It requires not only the ability to predict
what is missing, but also whether it fits within the context of
the image or not. Thus, a key to attaining satisfying inpainting
results is to ensure that the reconstructed pixels are consistent
with the uncorrupted region and exhibit coherence in both
structure and texture.

As a main remedy for restoring image quality, inpaint-
ing is of great importance nowadays, for modern societies
are increasingly reliant on visual content with images as its
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building block, from surveillance systems to autonomous
vehicles, media streaming, and conference calls. Storing,
displaying, and exchanging huge amounts of images make
them prone to damage, one of which is missing pixels (image
holes). It is thus unsurprising to see increasing research inter-
est in inpainting within the computer vision community.

A. MOTIVATION
Many image inpainting techniques have been proposed over
the past two decades. They could loosely be grouped into two
major categories: traditional and modern. The main defining
difference between the two categories is the use of deep
learning. The traditional category of techniques could col-
lectively be divided into two sub-categories [8]: exemplar-
based and diffusion-based. The former approach [9] searches
for the best matching patches from known regions and pastes
them into missing regions. Such techniques have high com-
putational costs for patch searching and generate unrealistic
results due to the lack of perspective transformation. The
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diffusion-based techniques, on the other hand, recreate a
missing region with features from its surrounding known
region. Although diffusion-based techniques are more effi-
cient than their exemplar-based counterparts, they result in
over-smoothed inpainting results because of regularization
based on partial-differential equations.

The advent of deep learning in computer vision has created
a surge of inpainting techniques that utilize Deep Neural
Networks (DNNs). Although those techniques exhibit some
overlap with the tradition diffusion-based techniques, they
define the state-of-the-art in inpainting, and, therefore, merit
a category of their own. Most of the early works on inpainting
with deep learning, like [10] and [11], follow a two-stage
approach, which firstly learns the image structure from a
given edge/structure map of a corrupted image, then refines
the missing region with a texture generator. However, two-
stage image inpainting methods usually cause artifacts due to
their limited ability to recover both structure and texture.

To deal with those artifacts, progressive inpainting tech-
niques have been explored. They rely on the idea that not
all predicted pixels in a region plagued with artifacts are
defective; some are good predictions that could be utilized to
improve the re-generated region and weed out the artifacts.
Hence, those techniques fill in the missing holes by iterat-
ing over the image and learning from previously-predicted
pixels. Examples of such techniques are the full-resolution
residual network proposed by Guo et al. [12] and the iterative
confidence feedback network proposed by Zheng et al. [13].
Despite the improvement they provide over two-stage tech-
niques, the performance of progressive techniques is still
prone to artifacts. This could be traced back to the inexplicit
modelling of structure and texture in those techniques.

Fusing structure and texture awareness with progressive
inpainting is arguably the most promising approach to over-
coming visual artifacts, which shall be followed in this paper.
Developing structure and texture-aware algorithms has been
explored recently in Guo et al. [14]. Two different but cou-
pled autoencoders are trained with structure and texture con-
straints to fill in holes in corrupted images. The results are
encouraging, but the algorithm can cause distortion in deep
parts of the hole due to one-stage feature fusion. This could
be overcome by incorporating progressive inpainting into the
learning process.

B. CONTRIBUTION
In an attempt to bring together progressive learning and
fusion of texture and structure, this paper presents aGaussian-
Laplacian feature Extraction (GLE)module. Themain contri-
butions of the proposed architecture are summarized below:

• GLE Module: Inspired by image pyramid, we propose
a GLE module to obtain features from high and low
image frequency components. Those components pro-
vide texture information (low-frequency components)
and structure information (high-frequency components).
The GLE module leverages those multi-frequency com-
ponents to learn textural and structural features.

• Iterative Reinpainting Component: A progressive
reinpainting component is developed such that it gradu-
ally fills in the corrupted regions of an image. It utilizes
features learned by the GLE modules from different
frequency components to fill in the outer edge of the
corrupted regions iteratively until the region is restored.

• Benchmarking and Evaluation Experiments:Various
experiments are designed to evaluate the performance
of the proposed architecture and show the benefits of
the GLE module and the reinpainting component. The
experiments also compare the proposed inpainting algo-
rithm to some state-of-the-art algorithms to situate its
contribution to the inpainting problem.

C. PAPER ORGANIZATION
The organization of this paper is shown as follows. Section II
reviews works that are related to our method. Section III
details the architecture of the proposed progressive image
inpainting network. Sections IV and V illustrate the exper-
imental setup and the experimental results. Section VI con-
cludes this paper.

II. RELATED WORK
The proposed solution is developed on top of a rich liter-
ature of image inpainting with deep learning. To facilitate
the discussion, the following three subsections will review
some concepts related to the proposed solution and some
relevant inpainting solutions. They should lay the necessary
groundwork for the detailed description in Section III

A. VARIANTS OF TEXTURE AND STRUCTURE INPAINTING
Inpainting based on texture and structure has been attempted
in various forms in the literature. The concepts of style and
content have been introduced in [3], which could be viewed
as derivatives of texture and structures, respectively. They
are used to build a two-stage inpainting DNN. In the first,
two encoders extract style and content latent information
separately, and the second stage synthesize a full image from
that information. Semantic segmentation masks are another
alternative that helps capture structure information. They
have been utilized in [4], [5], and [6] as a way to guide
texture generation. In all those papers, an encoder network
learns to generate a latent representation of the corrupted
image that captures the structure. It does so by pushing the
decoder network to recover not only the inpaintd image but
also its segmentation mask. The three papers differ in the
details of how to encode a corrupted image and generate
a structurally consistent image, but they all match in the
objective, capturing the structure to produce meaningfully
inpainted image.

B. PROGRESSIVE IMAGE INPAINTING
Progressive image inpainting, as the name suggests, aims to
recover images gradually by utilizing features from undam-
aged and recently recovered regions. Overall, algorithms
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following this approach could be grouped in two broad
categories: (i) contextual information-based algorithms, and
(ii) structural constraints-based algorithms. Both are briefly
reviewed below.

Contextual information-based algorithms rely mainly on
CNN features extracted from input images to restore dam-
aged regions. As a pioneer of the contextual features-based
algorithms, Hsu et al. [15] propose using several deep con-
volution networks to learn progressive inpainting from mul-
tiple image scales, from low to high resolution images.
Zhang et al. [16] recognize how inpainting lends itself to
recurrent modelling; they propose to use several generative
networks inter-connected with LSTM module, which pro-
gressively fills in the missing region of an image. More
recently, Li et al. [17] extend that analogy further. They pro-
pose a recurrent feature reasoning module with knowledge-
consistent attention, which can progressively enhance the
details in masked regions.

Compared with their contextual information-based coun-
terparts, the structural constraints-based algorithms take
advantage of additional external structural constraints pro-
vided by edge detection algorithms. The algorithms in [11]
and [18] utilize contour or edge maps as a guide for image
completion. To progressively complete the image, Li et al.
[20] propose a U-net that recovers the edge maps while
inpainting images progressively. These approaches, collec-
tively, seek to tackle image inpainting by introducing struc-
tural constraints, yet their performance remains limited by
a lack of information for recovering deeper pixels in the
missing regions.

C. GAUSSIAN AND LAPLACIAN PYRAMID
A classical approach to image inpainting is centered
around the idea of building multi-scale image pyramids,
in which inpainting is done progressively from one scale to
another—commonly from smallest to largest scale. Those
pyramids are usually called Gaussian or Laplacian pyra-
mids based on the type of filters used to generate them.
Specifically, let G denote the Gaussian smooth operator, Iτ
express the input image to the τth level of Gaussian pyramid.
Q denotes upsmpling operation, D denotes downsampling
operation. The formulas for the output images Gτ , Fτ of τth
Gaussian pyramid and Laplacian pyramid are

Gτ = D(G(Iτ )) (1)

Fτ = Iτ −Q(Gτ ) (2)

Inpainting algorithms using Gaussian and Laplacian pyra-
mids could roughly be clustered into three groups: inpainting
on multiple Gaussian pyramids [21], inpainting on multiple
Laplacian pyramids pyramids [22], [23], and inpainting on
multiple Gaussian and Laplacian [23].

The difference between the first and the second group
is in how the inpainting algorithm is applied on different
image pyramids. For instance, Farid et al. [21] first generate
multiple Gaussian pyramids until most missing pixels are

eliminated by the smoothing operation. Then, their algorithm
copies and pastes the missing pixels from the small-scale
image (top of the pyramid) to the large-scale images (bottom
of the pyramid). In contrast, [22] utilizes Laplacian pyramid
with patch search to recover missing pixels from small to
large scale images in the pyramid. Because of the limitation of
exemplar-based methods, both kinds of methods suffer from
unrealistic inpainting results.

Benefiting from the combination of structure and texture,
the third inpainting group (i.e., algorithms relying onmultiple
Gaussian and Laplacian pyramids) usually achieve better
performance than their counterparts relying only on one of the
two pyramids. However, the additional cost from inpainting
both pyramids is relatively high compared to that of the
former two groups.

III. PROPOSED INPAINTING ALGORITHM
Like a person solving a jigsaw puzzle, an inpainting algorithm
should fill in the missing regions by gradually piecing pix-
els together while keeping an eye on context and structure.
Progressive algorithms, as mentioned earlier, restore miss-
ing pixels gradually using undamaged and recently recov-
ered pixels, yet they do not jointly maintain contextual and
structural information. This observation fuels the work in
this paper; a Deep neural Network (DNN) is designed such
that it progressively inpaints with the purpose of maintaining
structure and context information. Hence, it is described as
being progressive with purpose.

The idea behind the proposed algorithm is to break down
the inpainting task into three main stages, namely feature
extraction (first stage), iterative inpainting (second stage),
and enhancing and reconstruction (third stage). The first stage
is aimed to extract multi-level features from the corrupted
image, which mimics, to some extent, feature extraction from
image pyramids used in classical inpainting algorithms such
as [21] and [22]. The multi-level features capture contex-
tual and structural information. They are fed to the iterative
inpainting stage, which attempts to recover some of the miss-
ing information gradually over several iterations. Each one
generates a pair of feature volumes. The pairs are passed
to the enhancement and reconstruction stage to enhance the
recovered information, fuse them into one feature volume,
and reconstruct the complete image. The architecture of the
proposed algorithm is depicted in Figure 1.
The architecture is detailed in the following four subsec-

tions. The first one presents a formal description of how
progressive inpainting restores missing pixels. The following
three are a deep-dive into the three stages of the proposed
architecture, describing the inner workings of each stage.
Finally, the last subsection presents the loss function used to
train the architecture.

A. RATIONALE BEHIND THE PROPOSED ALGORITHM
Let a be the original image, and b be the corrupted image.
We denote the conditional probability distribution of the
original image given the corrupted image by pA|B. Image
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inpainting can be formulated as a maximum a posterior
(MAP) estimation problem:

âmap = argmax
â

pA|B(â|b). (3)

Let m be the ground truth of the corrupted region, n and
c be the valid region and corrupted region of the corrupted
image, then a = m ∪ n, b = c ∪ n. Note that the conditional
distribution of m given n, denoted by pM|N, is a projected
version of pA|B and can be learned from the training dataset.
The MAP estimation of a based on b can be reduced to the
MAP estimation ofm based on n:

m̂map = argmax
m̂

pM|N(m̂|n). (4)

Clearly, we have

âmap = m̂map ∪ n. (5)

Our algorithm aims to produce an approximate version
of m̂map.
We divide the corrupted region into T concentric regions,

and progressively recover the corrupted region in an inward
manner from the 1th to the Tth concentric region.

Let m̃(τ )
r denote the inpainted rth concentric region at the τth

step. The process proceeds as follows. At the τth step (with τ
from 1 to T ), we generate m̃(τ )

τ based on the valid region n and
the τ−1 inpainted concentric regions m̃(τ−1)

r (1 ≤ r ≤ τ−1)
from the τ − 1th step,1 then refine m̃

(τ−1)
r (1 ≤ r ≤ τ − 1) to

m̃(τ )
r (1 ≤ r ≤ τ − 1), respectively.
At the end of the Tth step, we collected m̃(τ )

r (1 ≤ τ ≤ T ,
1 ≤ r ≤ τ ) generated throughout the process and perform an
enhancement. Specifically, for τ from 1 to T −1, we leverage

∪
τ−1
r=1m̃

(τ−1)
r (which is void when τ = 1) and ∪τr=1m̃

(τ+1)
r ,

together with the valid region n, to enhance ∪τr=1m̃
(τ )
r . More

precisely, for each τ , the enhancement is carried out in two
parts separately:∪τ−1r=1m̃

(τ )
r is enhanced based on∪τ−1r=1m̃

(τ−1)
r

and∪τ−1r=1m̃
(τ+1)
r while m̃(τ )

τ is enhanced based on m̃(τ+1)
τ . It is

also worthmentioning that in our implementation, we decom-
pose n into low-level information l and high-level information
h using a feature extraction netwrok. Let m̂τ denote the
enhanced version2 of ∪τr=1m̃

(τ )
r (1 ≤ τ ≤ T ). Our algorithm

produces ∪Tτ=1m̂τ as an approximation of m̂map.

B. FEATURE EXTRACTION STAGE
The feature extraction stage is inspired by Gaussian and
Laplacian pyramids. The main component of this stage is a
sequence of convolution, Gaussian smoothing, upsampling,
another convolution, and subtraction. This sequence will be
henceforth referred to as the GLE module. As shown in the
first column of Figure 1, the input is first passed through
a convolutional layer with 64 kernels, and a ReLU activa-
tion function. Next, the generated feature continue passing

1when τ = 1, there is no inpainted region available, but only the valid
region n.

2Note that m̂T = ∪
T
r=1m̃

(T )
r since no enhancement is performed when

τ = T .

through a convolutional layer with a number of kernels that
is double the number of input channels. Each kernel has a
7×7 height andwidth, 2×2 stride, and 3×3 padding. It results
in a reduced size feature that is then blurred using a 3 × 3
Gaussian kernel moving with a stride of 1 and implementing
a padding of 1 to maintain the spatial dimensions fixed. The
smoothed feature is passed to the next feature module and to
the upsampling layer, as well. It is upsampled using nearest
neighbor to recover the original input size before it is passed
through the second convolutional layer. This convolution is
characterized with the same hyper-parameters as those of the
first one, but it has half the number of kernels recovering the
same number of channels as that of the input tensor. The out-
put feature map is produced by subtracting the original input
from the feature map coming from the second convolutional
layer. Let Iτ−1 denotes the input feature maps of τth GLE
module, G denotes the gaussian smoothing operation, Up
denotes the upsample operation, 3Gs denotes the weights of
the convolutional layer before the gaussian smoothing opera-
tion, and 3Up denotes the weights of convolution layer after
the upsample operation. The GLE module can be expressed
as

Fτ = Iτ−1 −3Q(Q(G(3G(Iτ−1)))), (6)

where τ ∈ {1, 2, . . . , 5}.Fτ denotes output featuremaps from
τth GLE module. The F6 is generated right after the gaussian
smooth layer of 5th GLE module.
To produce various levels of features, this stage is designed

to have 5 GLEmodules stacked consecutively, each one feeds
into the next. A corrupted image, one with missing pixels
and denoted by Iin in Figure 1, a corrupted structural image
Istruc used in [10] and a binary mask Min are the input to the
first module, and the output is the blurred feature volume I1
as well as the difference feature volume F1. I1 has half the
height and width of the input image and double the number of
channels, and it is passed to the next GLE module. F1, on the
other hand, is buffered to construct the feature pyramid output
that represents the output of the feature extraction stage. The
pyramid is formed by stacking the difference-feature volumes
generated by each GLE module, namely F1, . . . ,F6.

C. ITERATIVE INPAINTING STAGE
This is the second stage of the proposed solution, which is
based on the concept of progressive inpainting. The main
elements of this stage are partial convolution, regular con-
volution, and feature attention. These elements make up two
parallel branches, in which features are processed iteratively.
The following three subsections detail the inner workings of
this stage.

1) PARTIAL CONVOLUTION
Partial convolution is a fundamental tool to fill the irregular
holes in deep learning-based image inpainting and keep track
of the unfilled regions of the image. To see how a partial
convolution layer accomplishes this, let Wk ∈ RC×H ′×W ′
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FIGURE 1. A graphical description of the proposed solution. It shows all three stages and details their main components and elements. In feature
extraction stage, all input images are converted into 6 feature volumes: F1, F2, F3, F4, F5, F6 which are classified as low and high-frequency feature
volumes: Flow(0) and Fhigh(0). In iterative inpainting stage, these feature volumes ( Flow(τ ) and Fhigh(τ ) (0 ≤ τ ≤ 6)) are utilized to recover the
missing region progressively and generate inpainted features from each iteration, namely Fint(τ ). Furthermore, the re-inpainting component
enhances each inpainted feature by leveraging features from neighboring iterations, and it stores enhanced features as Freinp(τ ). In the end, the
reconstruction component uses all enhanced features to produce the fully recovered image.

denote the weight tensor of the k-th kernel in a partial convo-
lution layer, Xi,j ∈ RC×H ′×W ′ denote the input feature patch
extracted from the input tensor Xin ∈ RC×H×W centered
around (i, j)-th pixels, where C , H ′ and W ′ are, respectively,
the number of channels, height, and width of the patch andC ,
H and W are, respectively, the number of channels, height,
and width of the input tensor. Also, let H̃i,j denote a H ′×W ′

binary patch centered around the (i, j)-th pixel, and Hi,j is a
C×H ′×W ′ binary tensor formed by stackingC copies of the
matrix H̃i,j. Then, the (i, j)-th value of the k-th output feature
map, i.e., yi,j,k , produced by a partial convolution layer—
before activation—is given by

yi,j,k =

{
g(Wk ,Xi,j,Hi,j)+ b,

∑
C,H ′,W ′ Hi,j > 0,

0, otherwise,
(7)

where g(Wk ,Xi,j,Hi,j) is defined as

∑
C,H ′,W ′

Wk � (Xi,j �Hi,j)

∑
C,H ′,W ′ (1)∑
C,H ′,W ′ Hi,j

, (8)

1 is a C × H ′ × W ′ tensor of all ones, and b ∈ R is
the bias associated with the k-th kernel. Following a partial
convolution is a mask update to make sure that the mask is
keeping up with the updated feature map coming out of the
partial convolution. Let the full mask be given by

H̃ =

 h11 . . . h1W
...

. . .
...

hH1 . . . hHW

 , (9)

where H andW are, respectively, the height and width of the
mask such that H � H ′ and W � W ′, and H̃i,j is a sub-
matrix forming a block in H̃ centered around (i, j)-th pixel.
This mask is updated by convolving an all one kernel with
the mask. Let U be a H ′ × W ′ kernel of all ones. Then, the
updated mask is given by

H̃new = H̃previous ∗ U, (10)

where ∗ is the convolution operation with a stride equal to
that of the partial convolution kernel. More about partial
convolution could be found in [24].

2) FEATURE ATTENTION
For any feature volume F ∈ RC×H×W , an attention tensor
could be generated using cosine similarity and softmax. Let
fi,j and fi′,j′ denote pair of feature values at location i, j and
i′,j′. Then, their cosine similarity is computed as follows:

zi,j,i′,j′ = 〈
fi,j
‖fi,j‖

,
fi′,j′

‖fi′,j′‖
〉, (11)

where zi,j,i′,j′ denotes the cosine similarity score between the
fi,j and fi′,j′ .3 Let Zi,j ∈ RH×W denotes the score matrix of
a feature vector at location i, j and all C-dimensional feature
vectors inF. The softmax function is applied across the height
and width to generate the attention score of location i, j in F.
Formally, this is expressed as follows:

Ẑi,j = sfm(Zi,j), (12)

3fi,j is a feature vector with size 1 × 1 × C at position i, j from a feature
volume with sizeH ×W ×C . fi,j and fi′,j′ have the same size, and ‖fi,j‖ and
‖fi′,j′‖ are the second norms of those vectors.
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where Ẑi,j ∈ RH×W . The final feature volume F has an
attention tensor Ẑ ∈ RHW×H×W formed by stacking HW
score maps Ẑi,j. Based on the calculated score map, we reuse
the feature patches from the input of feature attention module
as de-convolutional filters to reconstruct the new feature map.

3) PUTTING IT ALL TOGETHER
Iterative inpainting is built on top of the feature extraction
stage with the feature pyramid as its input. This is illustrated
in the middle column of Figure 1. The pyramid is first split
into two halves; feature maps coming from the first three
feature modules (i.e., the first three from the input side) are
concatenated to form the feature volume Flow ∈ RCin×Hin×Win

with Cin channels, Hin height, and Win width. Feature maps
coming from the last three feature modules form another
feature volume denoted Fhigh ∈ RCin×Hin×Win . Those two
volumes are sent down two different but parallel iterative
branches that have the same composition of layers. Both start
with two partial convolutions with leaky ReLU activations,
followed by a feature attention module. The specifications of
each layer are detailed at the bottom of the middle column of
Figure 1.
Each branch processes the input volume iteratively, which

is done as follows. Let τ represent a time index for the itera-
tive process. Both Flow(0) or Fhigh(0) goes through the partial
convolutions and the attention module, making up the first
iteration (τ = 1). The outputs, denoted Flow(τ + 1) and
Fhigh(τ + 1), are used to initialize the next iteration as well
as construct a new feature volume. A copy of Flow(τ + 1)
and Fhigh(τ + 1) is sent back to the input to undergo the next
iteration. Another copy is sent forward to a concatenation
operation to form part of a new feature volume denoted Fcat.
This keeps on going for T iterations (τ ∈ {1, 2, . . . ,T }) until
Fcat is complete, i.e., a tensor of dimensionsCcat×Hcat×Wcat
where Ccat = 2TCin is formed. This tensor is, finally, passed
to a convolution layer with leaky ReLU activation, which
generates the intermediate feature volume Fint.
Remark: Please note that the Fint feature volume comprises

Cint = Ccat = 2TCin feature maps, which could be split into
T sub-volumes. This is important for the sake of the third and
final stage of the proposed architecture.

D. ENHANCEMENT AND RECONSTRUCTION STAGE
1) REINPAINTING COMPONENT
The main idea behind the reinpainting component is to re-
enhance the fused feature sub-volumes in Fint. This is done
along two branches that process two different concatenations
of feature sub-volumes from Fint. See Figure 1. Let Fint(τ )
represent the τ -th sub-volume in Fint, where τ ∈ {1, . . . ,
T − 1}. The first branch concatenates Fint(τ − 1), Fint(τ ),
and Fint(τ + 1) and passes them into three convolutional
layers with ReLU activations. The result is multiplied with
the updated mask of iteration τ − 1 from the second stage,
i.e., H̃(τ − 1), to eliminate the negative effect of the unfilled
region in each iteration.

The second branch is symmetric with the first, but
focuses on different sub-volumes. It concatenates Fint(τ )
and Fint(τ + 1) and passes them through three convolu-
tional layers with ReLU activations. The result here is
multiplied with the difference of two updated masks from
iterations τ and τ − 1, i.e., H̃(τ ) − H̃(τ − 1), which only
contains information from the intersection region between
Fint(τ ) and Fint(τ − 1). The results of the two branches
are combined with the sub-volume Fint(τ ) to produce a new
sub-volume Freinp(τ ).

2) RECONSTRUCTION COMPONENT
The reinpainting model outputs a feature volume Freinp
that is fed to the reconstruction component. This is the
final component of the proposed architecture, responsible
for producing the complete image. A visualization of the
reconstruction component is illustrated in the left panel of
Fig. 1. This component adopts the feature merging module
from [17] which fuses the feature group based on the filled
locations in each iteration. The merge module feeds into
three upsampling layers followed by a partial convolution
layer, three residual blocks, and a sequence of three convo-
lutional layers. The complete architecture is summarized in
Algorithm 1.4

Algorithm 1 The Proposed Inpainting Network
Input Input image Iin,

Input structural Istruc, Input maskMin,
Total number of iteration T

Output Recovered image Iout
1: Fhigh(0),Flow(0), H̃(0)← GLE(Iin, Istruc,Min)
2: FeaturePool ← {Fhigh(0),Flow(0)}
3: τ ← 0
4: if τ ≤ T then
5: Flow(τ + 1), H̃(τ + 1)← I(Flow(τ ), H̃(τ ))
6: Fhigh(τ + 1), H̃(τ + 1)← I(Fhigh(τ ), H̃(τ ))
7: Fint(τ + 1)← FeatureFuse(Fhigh(τ + 1),Flow(τ + 1))

8: τ ← τ + 1
9: end if
10: τ ← 1
11: if τ ≤ T − 1 then
12: F = {Fint(τ − 1),Fint(τ ),Fint(τ + 1)
13: H = {H̃(τ − 1), H̃(τ ), H̃(τ + 1)}
14: Freinp(τ )← RI(F,H )+ Fint(τ )
15: FeaturePool ← FeaturePool + {Freinp(τ )}
16: τ ← τ + 1
17: end if
18: Fmerged ← FeatureMerge(FeaturePool)
19: Iout ← Reconstruction(Fmerged )
20: return Iout

4To simplify the notation in Algorithm 1, We use I to express Iterative
Inpainting Module, use RI to express Re-Inpainting Module.

2028 VOLUME 11, 2023



K. Shi et al.: Progressive With Purpose: Guiding Progressive Inpainting DNNs Through Context and Structure

E. LOSS FUNCTIONS
This section describes the loss functions for training the pro-
posed inpainting network. It is a composite loss with multiple
terms accounting for different aspects that the proposed algo-
rithm needs to maintain. Perceptual loss and style loss are two
of those terms that are popular for solving image generation
problems. They are calculated using groundtruth and output
feature maps obtained from a pretrained VGG model [25].
Groundtruth features are those produced by the max-pooling
layers of the VGG network when the input is the complete
groundtruth imagewhereas output features are those obtained
from the same pooling layers but with the restored image as
an input. Formally, the perceptual loss is given by

Lperc =
N∑
θ=1

1
HθWθCθ

|φ
gt
θ − φ

out
θ |1, (13)

and the style loss is given by

Lsty =
N∑
θ=1

1
Cθ × Cθ

∣∣∣∣ 1
HθWθCθ

(φgtθ (φ
gt
θ )

T

−φoutθ (φoutθ )T )

∣∣∣∣
1
, (14)

where φgtθ denotes the vectorized groundtruth feature map
from the θth pooling layer of VGG-16, φoutθ denotes the
vectorized output feature map from the θth pooling layer of
pretrained VGG-16, and Cθ , Hθ , and Wθ are, respectively,
the number of channels, height, and width of the θth feature
map.

The third term of the composite loss is the total variation
loss, which enforces smoothness in the region of predicted
pixels (i.e., the holes) [24], [26]. Formally, this term is for-
mulated as follows. Let Ii,jout denote the pixel value of output
image at location i, j, N denote the total number of elements
in the output image,R denote the set of pixels surrounding a
corrupted pixel Ii,jout. The total variation loss is given by

Ltv =
∑

(i,j)∈R,(i,j+1)∈R

|I i,j+1 − I i,j|1
N

+

∑
(i,j)∈R,(i+1,j)∈R

|I i+1,j − I i,j|1
N

. (15)

The last two terms in the composite loss are first norms of
the difference between the output and groundtruth images.
Let Iout denote the output image from the proposed algo-
rithm, Igt denote the ground truth image, and H̃gt denote the
groundtruthmask of the image. The two terms are, then, given
by

Lvalid = |Iout � H̃gt − Igt � H̃gt|1, (16)

Lhole = |Iout � (1− H̃gt)− Igt � (1− H̃gt)|1, (17)

where Lvalid expresses the first norm loss between undamaged
region of the output image and the ground truth image, and
Lhole expresses the first norm loss between filled region of

FIGURE 2. The history graph of Smoothed training loss and testing
performance vs. number of steps on Celeba dataset.

the output image and the ground truth image. The composite
loss, as the name suggests, is a weighted sum of all the above
terms

L = λvalidLvalid + λholeLhole + λpercLperc
+ λstyleLstyle + λtvLtv, (18)

where λvalid, λhole, λperc, λstyle, and λtv are all hyper-
parameters scaling the contribution of each of their respective
terms to the composite loss.

IV. EXPERIMENTAL SETUP
The proposed algorithm needs to be put to test in order
to demonstrate its performance. This section presents the
experimental setup adopted to evaluate its performance.
It describes the development datasets, the implementation
details, and the benchmark algorithms.

A. DATASETS
Four development datasets are adopted here:

• Paris Streetview Dataset [27] is collected from Google
StreetView, a large-scale dataset that includes street
images for 12 cities across the world. This dataset con-
tains 15000 images, 14900 images for training, and
100 for testing.
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TABLE 1. Numerical comparisons on three datasets.

• Large-scale CelebFaces Attributes (CelebA) Dataset
[28] is a well-known and publicly available face recog-
nition dataset. It includes around 200K celebrity images
representing 10000 different identities, all of which
have a wide range of posture variations. This dataset
contains 202599 images, 162770 images for training,
19867 images for validation, and 19962 images for
testing.

• Place2 Dataset [28] This dataset contains 8 million
images which are collected from 365 scene categories,
like streets, indoor rooms and so on.

• NVIDIA Irregular Mask Dataset Dataset [29] is a
popular irregular mask dataset. This dataset contains
12000 irregular masks which are randomly drawn by
individuals. The mask ratio of the dataset is uniformly
distributed on 0.0∼0.1, 0.1∼0.2, 0.2∼0.3, 0.3∼0.4,
0.4∼0.5, and 0.5∼0.6. Each mask ratio class has
1000 masks with and without border.

B. IMPLEMENTATION DETAILS
The proposed algorithm is trained with batch size of 4 on two
NVIDIA 1080 TITANs. We use corrupted images, structural
maps, and irregular holes as inputs, which are resized to
256× 256. Adam [30] optimizer is used to train the network.
The training is conducted with a learning rate of 10−4, and
the network is fine-tuned with a learning rate of 10−5. The
network is trained on Paris and CelebA Dataset for 40 epochs
and fine-tuned for 20 epochs. On Place2 Dataset, the network
is trained for 200 epochs and fine-tuned for 100 epochs.
During the fine-tuning, only the weights of batch normaliza-
tion layers are frozen while the rest are adjusted. The hyper-
parameters of the loss function are set to λvalid = 1, λhole = 6,
λperc = 0.05, λstyle = 120, and λtv = 0.1. History graphs of
smoothed training loss and testing performance vs. number of
steps on Celeba dataset are shown in Fig.2. The total number
of parameters of the proposed network is 82 million. This

means its memory footprint assuming float-32 representation
is roughly 312 MB and its inference time averages 0.147 ms
per image.

C. BENCHMARK ALGORITHMS AND EVALUATION
METRICS
The proposed algorithm is compared to five state-of-the-art
methods, namely PIC [31], PC [24], PRVS [20], EC [11],
RFR [17] and MDEFE [32]. We use PIC as baseline which is
a probabilistically principled framework in image inpainting.
PC is a fundamental technique that can be considered as
another baseline in image inpainting. EC is a two-stage image
inpainting method based on the edge recovering method.
PRVS and RFR belong to the family of progressively image
inpainting. The PRVS progressively recover the image struc-
tural information while RFR recover the image contextual
information. Those five algorithms are henceforth referred
to as the benchmark algorithms. The proposed algorithm is
compared to all five using three metrics, which are Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM) and mean first norm loss (L1).

V. EVALUATION RESULTS
The performance of the proposed algorithm is evaluated in
this section using the setup described in Section IV. The
evaluation starts with quantitative analysis where the pro-
posed algorithm is benchmarked to others. Then, a qualitative
analysis follows. It presents a comparison of the quality of
inpainted images between the proposed algorithm and the
benchmark algorithms. Finally, this section is concluded with
an ablation analysis illustrating the value of each novel com-
ponent in the proposed network.

A. QUANTITATIVE ANALYSIS
The proposed algorithm is compared to the benchmark algo-
rithms on the basis of PSNR, SSIM, and L1 loss. Table 1
presents the comparison results on the Paris StreetView,
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FIGURE 3. Visual results on Paris StreetView.

FIGURE 4. Visual results on CelebA.

FIGURE 5. Visual results on Place2.

CelebA, and Place2 datasets. It presents the results for dif-
ferent choices of masking percentage (i.e., mask ratio). The
performance of the proposed algorithm stands out throughout
the table; despite the slim margin in some cases, its perfor-
mance could be argued to best all other competing algorithms
on all three datasets.

B. QUALITATIVE ANALYSIS
The above quantitative results are translated into visual
analysis to demonstrate the inpainting quality of the pro-
posed algorithm. This is done through a few examples from
three datasets, namely Paris StreetView, CelebA, and Place2
datasets. Fig. 3, 4 and 5 show three corrupted images, their

groundtruth, the inpainted images by the proposed and bench-
mark algorithms. The proposed algorithm can generate real-
istic details and structures. Specifically, in the top row of
Fig. 3, the window produced by the proposed algorithm
is clearer than those produced by other methods. Further
evidence could be seen in the top row of Fig. 4 and both
rows of Fig. 5. In the former, the hair strands atop the
man’s forehead are better defined and clearer in the image
produced by the proposed algorithm compared to those pro-
duced by the benchmark algorithms; they look similar to
those strands depicted in the groundtruth image. Both rows
of Fig.5 show artifacts in the inpainted region by benchmark
algorithms while the proposed algorithm does not suffer

VOLUME 11, 2023 2031



K. Shi et al.: Progressive With Purpose: Guiding Progressive Inpainting DNNs Through Context and Structure

from such artifacts, producing a more pleasing image to
the eye.

C. ABLATION ANALYSIS ON PROPOSED ARCHITECTURE
The proposed architecture is closely examined to get a better
understanding of the role of the novel components. More to
the point, the GLE module and the reinpainting component
are novel parts that set the proposed architecture apart form
the other inpainting algorithms. Therefore, this section will
focus on shedding some light on their roles in the inpainting
process. The objective is to address the question: how much
of an impact do the GLE module and the reinpainting compo-
nent have on the performance of the algorithm? This is going
to be done in three experiments. The first has the two parts
removed and the performance of the remaining architecture
is evaluated. This helps establish the baseline results. The
other two experiments examine the impact of adding each of
the two parts, i.e., GLE and reinpainting, separately on the
inpainting performance. The results of the five experiments
are shown below.

1) REMOVING THE GLE MODULE AND REINPAINTING
COMPONENT
The GLE module and reinpainting component are both
removed from the proposed architecture. To avoid jeopar-
dizing the capacity of the proposed model, the GLE module
is removed by stripping away the Gaussian smoothing and
upsampling layers making a direct path from the first to the
second convolution layers of the module.

Removing both parts chips away from the inpainting per-
formance of the architecture. This is evident in Table 2;
with all three metrics, the table shows a clear degradation
in performance on the Paris StreetView dataset when the
architecture is trained and tested without the GLEmodule and
the reinpainting component.

2) REMOVING THE GLE MODULE
Using the same removal strategy in the above section
(Section V-C1), the GLE module is removed in this experi-
ment while keeping the reinpainting component. The result
of doing so is a slight improvement in the performance com-
pared to the baseline case, i.e., no GLE and reinpainting,
as Table 2 shows. However, the performance is still worse
compared to having both parts plugged in. The results of this
experiment could be used to argue for the value of the GLE
module; it helps the proposed architecture extract expressive
features from different frequency components of the image.

3) REMOVING THE REINPAINTING COMPONENT
Using the same removing strategy once again, the reinpaint-
ing component is removed while keeping the GLE mod-
ule. This setting is labelled as Reinpainting-1 in Table 2.
It is hypothesized that reinpainting has the ability to fill
large holes by accessing features from neighboring itera-
tions. The results in Table 2 verify that hypothesis to some
extent; removing the reinpainting component degrades the

performance of the architecture despite the presence of the
GLE module.

4) VALUE OF PROGRESSION FOR REINPAINTING
The hypothesis about the reinpainting component being able
to fill large holes is further examined here. More to the point,
it will be argued that accessing sub-volumes from different
iterations (i.e., Fint(τ − 1) and Fint(τ + 1)) has added value
to the inpainting process. This is first done by restricting
the input to the re-inpainting component to only the τ -th
feature sub-volume, i.e., Fint(τ ). Then, two experiments are
conducted with and without the GLE components.

• The GLE modules are removed as described in
Section V-C1. The performance in this case is very close
to that of removing the whole reinpainting component.
This is indicated in Table 2 under Reinpainting-2. This
verifies that the Fint(τ ) and H̃(τ ) can not provide more
useful information for the reinpainting process. The
redundant information even sightly causes the perfor-
mance to degrade.

• The GLE modules are put back and the experiment is
repeated again. Again, the results, shown in Table 2,
further verify that the input features from neighbour-
ing iterations are useful for enhancing the re-inpainting
results.

D. ABLATION ANALYSIS ON LOSS FUNCTION
The performance of the proposed method is further inves-
tigated based on each component of the loss function. The
ablation analysis is done in three steps, each of which is
illustrating the incremental value of certain terms in the loss
function. The three steps are discussed below:

• Using Lvalid and Lhole:Using Lvalid and Lhole as the only
terms of the loss functions, we observe that themean l1 is
slightly better compared to the final results; however, the
PSNR and SSIM are not satisfactory especially for the
case of corrupted images with large holes. The undesir-
able performance indicates that the loss has to account
for the semantic information in the inpainted image.

• Using Lperc and Lstyle: Constructing the loss function
using Lperc and Lstyle alone, we observe an improvement
in the PSNR and SSIM for large holes. The performance
shows the role and effectiveness of Lperc and Lstyle in
discovering semantic information in the valid region;
however, the mean l1 loss increases significantly due to
the lack of Lvalid and Lhole.

• Using Lvalid , Lhole, Lperc and Lstyle: After using the
Lvalid , Lhole, Lperc and Lstyle as the terms of the loss
function, the PSNR, SSIM and mean l1 all improve but
for the case of low mask ratio. However, for the case
of high mask ratio, the PSNR and SSIM resulting from
using Lperc and Lstyle alone are slightly better than the
case of combining all four Lvalid , Lhole, Lperc and Lstyle.
It is hypothesized that the noise may be generated from
the pixel and feature levels. To eliminate such noise, the
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TABLE 2. Ablation study results on the paris streetview dataset based on network structure.

TABLE 3. Ablation study results on the paris streetview dataset based on loss function.

Ltv is added to the loss function, which improves the
overall performance.

VI. CONCLUSION
This paper introduces a three-stage neural network architec-
ture that is able to progressively inpaint corrupted images
while maintaining their structural and contextual integrity.
In its core is a novel Gaussian-Laplacian feature Extraction
(GLE) module. Stacking GLE modules constructs the first
stage of the architecture and enables the network to build
a feature pyramid of different frequency components, dis-
integrating structural (high frequency) and contextual (low
frequency) information. The feature pyramid is the key for
structurally- and contextually-aware progressive inpainting;
low- and high-frequency components are iteratively but sep-
arately inpainted and fused in the second stage. The third, and
final, stage enhances the fused features before it reconstructs
the inpainted image. Experimental results and benchmarking
show that the three-stage architecture is able to restore fine
details in the corrupted region, outperforming the state-of-
the-art algorithms. Ablation experiments reveal that the GLE
module and the reinpainting component are responsible for
the superior performance of the proposed architecture.
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