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Abstract—It is shown that binary low-density generator matrix
codes can achieve the rate-distortion bound of discrete mem-
oryless sources with general distortion measure via multilevel
quantization. A practical encoding scheme based on the survey-
propagation algorithm is proposed. The effectiveness of the
proposed scheme is verified through simulation.

Index Terms—Rate-distortion bound, linear code, low-density
generator matrix, message-passing algorithm.

I. INTRODUCTION

ACHIEVING the rate-distortion bound of discrete mem-
oryless sources has been one of the grand challenges

in information theory. Though Shannon [1] has shown that
the bound can be achieved asymptotically by using random
block codes, the exponential encoding complexity makes such
codes impractical. Coincidentally, another grand challenge in
information theory is to design channel codes for discrete
memoryless channels that have reasonable decoding com-
plexity. To meet this challenge, research in channel coding
has been almost exclusively focused on linear codes whose
linear structure can be utilized to achieve efficient encoding
and decoding. The focus on linear codes is further justified
by the well-known result that linear codes can achieve the
capacity of symmetric discrete memoryless channels under
maximum likelihood decoding [2], [3]. The focused effort
proves to be successful. Recent breakthroughs have shown that
linear codes, e.g., Turbo codes and low-density parity check
(LDPC) codes, used in conjunction with various message-
passing decoding algorithms, can indeed approach the capacity
of discrete memoryless channels.

Recall that in lossy source coding the main design problem
is to reduce the exponential encoding complexity resulting
from the search for a reconstruction sequence in an exponen-
tially large sequence space. Similarly, the main design problem
in channel coding is to reduce the exponential decoding
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complexity resulting from the search for a codeword in an
exponentially large space. The similar nature of the two design
problems implies that the techniques developed for channel
coding might be useful for lossy source coding as well. Indeed,
lossy source codes like tree codes[4] and trellis codes [5]
all have their origins in channel coding. Note that these two
types of codes are known to be capable of achieving the
rate-distortion bound. However, while these codes get the
strengths from their counterparts in channel coding, they also
inherit their counterparts’ drawbacks. For example, saturating
the rate-distortion bound with trellis codes requires taking
the constraint length to infinity, which incurs exponential
complexity.

In view of the recent success of LDPC codes and message-
passing algorithms for channel coding, it is natural to ask
whether similar approaches are also applicable to lossy source
coding. Indeed, motivated by this line of thinking, it has been
proposed to use low-density generator matrix (LDGM) codes
(which can be viewed as the dual of LDPC codes) and various
message-passing algorithms for lossy source coding. As a
consequence, the following questions naturally arise.

Q1: Can LDGM codes achieve the rate-distortion bound
of discrete memoryless sources with general distor-
tion measure?

Q2: If the answer to Q1 is affirmative, can LDGM codes,
used in conjunction with certain message-passing
algorithms, approach the rate-distortion bound of
discrete memoryless sources with general distortion
measure?

For the binary erasure quantization problem, Q1 and Q2
have been successfully answered in [6]. For uniform binary
sources with Hamming distortion measure, Q1 has been ad-
dressed in [7]; it is shown that LDGM codes1 (under optimal
encoding) can saturate the rate-distortion bound in this case.
Moreover, for uniform binary sources with Hamming distor-
tion measure, good empirical answers to Q2 have been given
in [8]–[11], where LDGM codes are used in conjunction with
variants of message-passing algorithms for efficient encoding.
Beyond the aforementioned examples, however, the answers
to Q1 and Q2 are still unknown.

The purpose of this paper is to settle Q1 in the affirma-
tive for general discrete memoryless sources and distortion
measure. Specifically, we show that binary LDGM codes can

1More precisely, a hybrid LDPC-LDGM based construction is used in [7].
Nevertheless, the proof technique developed in [7] works for LDGM codes
as well.
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achieve the rate-distortion bound via multilevel quantization.
Moreover, our simulation results indicate that binary LDGM
codes, used in conjunction with the survey-propagation algo-
rithm [12]–[14], provide a promising answer to Q2.

Note that linear lossy source codes should not be con-
fused with linear lossy source encoding. Indeed, although we
shall use linear codebooks, the encoding operation (i.e., the
mapping from the source sequence to the codeword index)
is intrinsically nonlinear. In fact, it is known that linear
encoding generally cannot achieve the rate-distortion bound
[15], albeit it suffices for lossless data compression [16]. It
should also be emphasized that research on practical lossy
source coding is by no means restricted to the aforementioned
ones. For example, there has been a significant amount of work
devoted to designing lossy source coding schemes based on
the existing lossless data compression algorithms [17]–[19].
Moreover, several promising new directions [20]–[23] have
emerged during the writing of this paper. In particular, it is
shown in [21] that nonlinear sparse-graph codes can achieve
the rate-distortion bound of discrete memoryless sources with
general distortion measure.

The remainder of this paper is organized as follows. In
Section II, we discuss the fundamental limit of linear codes
in channel coding and lossy source coding. In Section III,
we show that binary LDGM codes can saturate the rate-
distortion bound via multilevel quantization. A practical en-
coding scheme based on the survey-propagation algorithm is
proposed in Section IV. The effectiveness of the proposed
scheme is verified through simulation. Finally, we close with
some concluding remarks in Section V.

II. LINEAR CODES FOR CHANNEL CODING AND LOSSY

SOURCE CODING

Consider the lossy source coding problem for an i.i.d.
process {𝑋𝑖}∞𝑖=1 with marginal probability distribution 𝑃𝑋 on
𝒳 . Let 𝑑(⋅, ⋅) : 𝒳 × 𝒳 → [0, 𝑑max] be a distortion measure,
where 𝒳 is the reconstruction alphabet. Throughout this paper,
𝒳 and 𝒳 are assumed to be finite. The rate-distortion function
𝑅(𝐷) for source 𝑋 with distortion measure 𝑑(⋅, ⋅) is given by
[24]

𝑅(𝐷) = min
𝑃�̂�∣𝑋

𝐼(𝑋 ; �̂�), (1)

where the minimization is over all test channels 𝑃�̂�∣𝑋 :

𝒳 → 𝒳 subject to the constraint 𝔼[𝑑(𝑋, �̂�)] ≤ 𝐷. The rate-
distortion bound is known to be achievable with random block
codes. However, the encoding complexity of such codes grows
exponentially with the block length since there is no structure
to exploit. As a consequence, it is of considerable interest to
see whether structured codes, such as linear codes, suffice to
achieve the rate-distortion bound.

First we shall give a definition of linear codes. A binary
linear code 𝒞𝑛 of length 𝑛 and rate 𝑘

𝑛 is a 𝑘-dimensional linear
subspace of the vector space 𝔽

𝑛
2 , where 𝔽2 is the binary field

with elements 0 and 1. Moreover, we can write 𝒞𝑛 = {𝑐𝑛 :
𝑐𝑛 = 𝑢𝑘𝐺, 𝑢𝑘 ∈ 𝔽

𝑘
2}, where 𝐺, referred to as the generator

matrix of 𝒞𝑛, is a 𝑘 × 𝑛 matrix with rows being the basis
codewords of 𝒞𝑛.

To see whether linear codes are capable of achieving the
rate-distortion bound, it is instructive to examine a similar
problem in channel coding. Let 𝑃𝑉 ∣𝑈 : 𝒰 → 𝒱 be a
discrete memoryless channel. For illustrative purpose, we shall
temporarily assume 𝒰 = {0, 1}. It is well known that the
capacity (i.e., the maximum reliable communication rate) of
channel 𝑃𝑉 ∣𝑈 is given by

𝐶 = max
𝑃𝑈

𝐼(𝑈 ;𝑉 ), (2)

where the maximization is over all probability distributions
on 𝒰 . However, the channel capacity is not always directly
achievable using binary linear codes. Specifically, it has been
shown [3] that the maximum reliable communication rate for
binary linear codes over channel 𝑃𝑉 ∣𝑈 is given by

𝐶𝐿 ≜ 𝐼(𝑈 ;𝑉 )∣𝑃𝑈=𝑃∗ , (3)

where 𝑃 ∗ is the uniform distribution on 𝒰 . Since the role of
reconstruction variable �̂� in lossy source coding is similar to
that of channel input 𝑈 in channel coding, while the role of
generic source variable 𝑋 is similar to that of channel output
𝑉 , it is natural to restrict �̂� to be uniformly distributed if linear
codes are used for lossy source coding. Specifically, for 𝒳 =
{0, 1}, one might conjecture that the minimum achievable rate
in lossy source coding using binary linear codes is given by

𝑅𝐿(𝐷) ≜ min
𝑃�̂�∣𝑋

𝐼(𝑋 ; �̂�), (4)

where the minimization is over all test channels 𝑃�̂�∣𝑋 :

𝒳 → 𝒳 subject to the constraints 𝔼[𝑑(𝑋, �̂�)] ≤ 𝐷 and
𝑃�̂�(0) = 𝑃�̂�(1) = 1

2 ; in particular, if there is no test channel
𝑃�̂�∣𝑋 : 𝒳 → 𝒳 satisfying all the constraints, then 𝑅𝐿(𝐷)
is set to be equal to infinity, which essentially asserts that no
binary linear code can meet the distortion constraint 𝐷. This
conjecture turns out to be false as shown by the following
example. Let 𝒳 = 𝒳 = {0, 1}, 𝑃𝑋(0) = 𝑝 with 𝑝 ∈ (0, 12 ),
and 𝑑(⋅, ⋅) be the Hamming distortion measure. It is easy to
verify that 𝑅𝐿(𝐷) = ∞ when 𝐷 < 1

2 (1 − 2𝑝). However,
since the linear span of every binary block code is a binary
linear code, it is always possible to find a binary linear code to
meet the distortion constraint 𝐷 (even when 𝐷 < 1

2 (1− 2𝑝)).
Therefore, this example indicates that in lossy source coding
one might not need to restrict the output of the test channel
to be uniformly distributed when linear codes are used.

To better understand the subtle difference between channel
coding and lossy source coding in terms of the fundamental
limit of linear codes, we shall have a close look at the
reasoning behind (3). First we need a few definitions. For any
sequence 𝑎𝑛 = (𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑛) with 𝑎𝑖 ∈ 𝒜, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛,
the empirical distribution 𝑃𝑎𝑛 of 𝑎𝑛 is defined as (𝑃𝑎𝑛(𝑎))𝑎∈𝒜
with 𝑃𝑎𝑛(𝑎) = 1

𝑛

∑𝑛
𝑖=1 𝕀(𝑎𝑖 = 𝑎), where 𝕀(⋅) is the indicator

function. We define the empirical distribution of a block code
as the average of the empirical distributions of all its code-
words. In particular, for a binary linear code 𝒞𝑛 of length 𝑛,
the empirical distribution 𝑃𝑐𝑛 of a codeword 𝑐𝑛 ∈ 𝒞𝑛 is given
by 1

𝑛 (𝑛 − 𝑤(𝑐𝑛), 𝑤(𝑐𝑛)), where 𝑤(⋅) is the weight function
that counts the number of 1’s in a sequence; moreover, the
empirical distribution of 𝒞𝑛 is given by 1

∣𝒞𝑛∣
∑

𝑐𝑛∈𝒞𝑛
𝑃𝑐𝑛 . It

is easy to verify that the empirical distribution of an arbitrary
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binary linear code is the uniform distribution on {0, 1} unless
the code contains coordinates in which every codeword is zero
(such coordinates can be deleted as they carry no information).
Now one can readily prove (3) by invoking Fano’s inequality,
the data processing inequality, and a convexity argument (cf.
[25, Problem 5, pp. 112-113]). However, in contrast to the fact
that each codeword in a channel code is transmitted with the
same probability, the codewords in a lossy source code may
not be used with the same frequency2. As a consequence,
the empirical distribution of a code does not play much of
a role in lossy source coding (see [26] for a more in-depth
discussion); indeed, this is the reason why (4) should not be
viewed as the fundamental limit of binary linear lossy source
codes. On the other hand, the rate-distortion function (1)
does impose certain constraints on the empirical distributions
of individual codewords of a good lossy source code. Let
(𝑅,𝐷) be an arbitrary point on the rate-distortion curve. Let
𝑃�̂�∗∣𝑋 be the optimal test channel associated with this rate-
distortion point and 𝑃�̂�∗ be the output distribution induced
by 𝑃𝑋 and 𝑃�̂�∗∣𝑋 . It can be shown using the result in
[27] that a good lossy source code, in the sense that its
rate-distortion performance is very close to the given (𝑅,𝐷)
point, must contain an exponentially non-negligible fraction
of codewords whose empirical distributions are close to 𝑃�̂�∗ .
Note that 𝑃�̂�∗ is in general not a uniform distribution except
for certain special cases such as the uniform binary source
with Hamming distortion measure. However, it is well known
that the codeword empirical distributions of many commonly
used binary random linear code ensembles concentrate (on the
exponential scale) around the uniform distribution (see, e.g.,
[28]). Actually it can be shown under mild conditions that a
binary linear code must have an exponentially non-negligible
fraction of codewords with approximately the uniform empiri-
cal distribution. Although this does not exclude the possibility
that the code also contains an exponentially non-negligible
fraction of codewords with empirical distributions close to
a non-uniform 𝑃�̂�∗ , it does indicate that such linear codes
are difficult, if not impossible, to find3. As a consequence, if
𝑃�̂�∗ associated with the given (𝑅,𝐷) on the rate-distortion
curve is not a uniform distribution, then it is very hard to
use linear codes to directly achieve this rate-distortion point
due to the mismatch between the output distribution of the
optimal test channel and the dominant codeword empirical
distribution of linear codes4. To illustrate this point, we shall
use the binary lossy source coding problem with Hamming
distortion measure as an example. It can be seen from Fig. 1
that the performance of the scheme proposed in [9] (which is
based on linear codes) degrades significantly when applied to
a non-uniform source although it works well for the uniform

2The frequency that a codeword gets used depends on the encoding function
and the source distribution.

3Since it is easy to generate linear codes for which the empirical distribu-
tions of most of the codewords concentrate around the uniform distribution,
one can construct linear codes which contain an exponentially non-negligible
fraction of codewords whose empirical distributions are close to a certain non-
uniform distribution by adding coordinates in which every codeword is zero.
However, the resulting linear codes are not very useful due to the inefficient
use of the available freedom.

4A related discussion of mismatched codebooks in lossy source coding can
be found in [29].

(a) 𝑃𝑋(0) = 0.5

(b) 𝑃𝑋(0) = 0.2

Fig. 1. Performance degradation for non-uniform sources.

source. This is because when the source is not uniform,
the corresponding 𝑃�̂�∗ is also not uniform. Therefore, the
performance degradation is not solely due to the limitation of
the encoding algorithm; it is also a consequence of the intrinsic
property of linear codes.

III. MULTILEVEL QUANTIZATION

We shall show that (4) is actually an upperbound on the
minimum achievable rate of binary linear lossy source codes.
However, in order to prove the sufficiency of binary linear
codes for lossy source coding, one has to deal with the
following scenarios:

1) The output distribution 𝑃�̂�∗ induced by 𝑃𝑋 and the
optimal test channel 𝑃�̂�∗∣𝑋 is non-uniform;

2) The reconstruction alphabet is non-binary.
It turns out that both scenarios can be handled by leverag-

ing a method called multilevel quantization. The multilevel
quantization method has a natural counterpart in channel
coding called multilevel coding, which was first proposed
by Gallager [30]. The idea can be illustrated by a simple
example. Suppose the optimal input distribution 𝑃𝑈 for a
binary-input memoryless channel 𝑃𝑉 ∣𝑈 of capacity 𝐶 is given
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by (𝑃𝑈 (0), 𝑃𝑈 (1)) = (14 ,
3
4 ). Now construct a random variable

�̃� that is uniformly distributed over 𝔽2
2. Define a deterministic

mapping 𝑈 = 𝑓(�̃�) such that 𝑈 = 0 if �̃� = (0, 0) and
𝑈 = 1 otherwise. Clearly, the induced distribution of 𝑈
is exactly the capacity-achieving input distribution, and we
have 𝐼(�̃� ;𝑉 ) = 𝐼(𝑈 ;𝑉 ) = 𝐶. Here the essential idea
is that, by incorporating a deterministic mapping, one can
convert a channel with non-uniform capacity-achieving input
distribution to a channel of the same capacity whose optimal
input distribution is uniform. In general, we can approximate
an arbitrary input distribution by a uniform distribution over
sufficiently large alphabet.

Now we proceed to adopt this idea in lossy source coding.
Specifically, we shall approximate the output distribution 𝑃�̂�∗
by a uniform distribution over 𝔽

𝑚
2 through a deterministic

mapping. The rationale underlying such an approximation
is the following. Loosely speaking, it can be assumed that
the value of a binary linear code at any 𝑚 coordinates is
approximately uniformly distributed over 𝔽𝑚

2 (which will be
justified later). Therefore, by mapping every 𝑚 coordinates
into a reconstruction symbol through a certain function, one
can convert a binary linear code into a lossy source code whose
dominant codeword empirical distribution matches 𝑃�̂�∗ . It is
clear that in order to do so, the length of the binary linear code
should be 𝑚 times that of the length of the source sequence.

In the rest of this section we shall provide a rigorous
treatment of this multilevel quantization method. For each
positive integer 𝑚, we define

𝑅𝐿,𝑚(𝐷) = min
𝑃�̃�∣𝑋

𝐼(𝑋 ; �̃�),

where the minimization is over all 𝑃�̃�∣𝑋 : 𝒳 → 𝔽
𝑚
2 such

that the output distribution 𝑃�̃� induced by 𝑃𝑋 and 𝑃�̃�∣𝑋 is

uniform over 𝔽
𝑚
2 , and there exists a function 𝑓 : 𝔽𝑚

2 → 𝒳
satisfying the distortion constraint 𝔼[𝑑(𝑋, 𝑓(�̃�))] ≤ 𝐷. We
let 𝑅𝐿,𝑚(𝐷) = ∞ if there does not exist any 𝑃�̃�∣𝑋 satisfying
the constraints. Equivalently, we can define

𝑅𝐿,𝑚(𝐷) = min
𝑃�̂�∣𝑋

𝐼(𝑋 ; �̂�),

where the minimization is over all 𝑃�̂�∣𝑋 : 𝒳 → 𝒳 such that
the output distribution 𝑃�̂� induced by 𝑃𝑋 and 𝑃�̂�∣𝑋 is in 𝒫𝑚,

and the distortion constraint 𝔼[𝑑(𝑋, �̂�)] ≤ 𝐷 is satisfied. Here
𝒫𝑚 is the set of probability distributions 𝑃�̂� over 𝒳 satisfying
2𝑚𝑃�̂�(�̂�) ∈ ℤ for all �̂� ∈ 𝒳 .

Theorem 1: lim𝑚→∞𝑅𝐿,𝑚(𝐷) = 𝑅(𝐷) for 𝐷 >∑
𝑥∈𝒳 𝑃𝑋(𝑥)min�̂�∈𝒳 𝑑(𝑥, 𝑥).

Proof: See Appendix A.
Now we proceed to show that 𝑅𝐿,𝑚(𝐷) is achievable using

binary LDGM codes. A binary LDGM code is a binary linear
code associated with a sparse generator matrix (i.e, a generator
matrix in which the number of 1’s is significantly less than
the number of 0’s). We shall construct a binary random
LDGM code ensemble by specifying a random generator
matrix G. Let G be a 𝑘 × 𝑚𝑛 matrix with entries selected
independently from 𝔽2 using a Bernoulli distribution with
parameter 𝑝𝑛 (i.e., Ber(𝑝𝑛)). We shall choose 𝑝𝑛 such that
𝑝𝑛 → 0 and 𝑛𝑝𝑛 → ∞ as 𝑛 → ∞. Note that for such 𝑝𝑛,
the realization of G is a sparse generator matrix with high

probability as 𝑛 → ∞. Define 𝑌𝑖(𝑢
𝑘) = 𝑢𝑘g𝑖, 𝑢𝑘 ∈ 𝔽

𝑘
2 ,

where g𝑖 is the 𝑖-th column of G, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚𝑛. Partition
{1, 2, ⋅ ⋅ ⋅ ,𝑚𝑛} into 𝑛 subsets 𝒩1,𝒩2, ⋅ ⋅ ⋅ ,𝒩𝑛, each of size
𝑚. We assume the elements in 𝒩𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, are
ordered. For each 𝒩𝑖 (say, 𝒩𝑖 = (𝑛1, ⋅ ⋅ ⋅ , 𝑛𝑚)), we define
�̃�𝑖(𝑢

𝑘) = (𝑌𝑛1(𝑢
𝑘), ⋅ ⋅ ⋅ , 𝑌𝑛𝑚(𝑢𝑘)). For any deterministic

mapping 𝑓 : 𝔽𝑚
2 → 𝒳 , let 𝒞(G, 𝑓) = {�̂�𝑛(𝑢𝑘) : 𝑢𝑘 ∈ 𝔽

𝑘
2},

where �̂�𝑛(𝑢𝑘) = (𝑓(�̃�1(𝑢
𝑘)), 𝑓(�̃�2(𝑢

𝑘)), ⋅ ⋅ ⋅ , 𝑓(�̃�𝑛(𝑢
𝑘))).

Define

𝑅(𝑛, 𝑘) =
𝑘

𝑛
,

𝐷(𝑛, 𝑘,𝑚, 𝑓) = 𝔼[𝑑𝑛(𝑋
𝑛, 𝒞(G, 𝑓))],

where

𝑑𝑛(𝑥
𝑛, 𝒞(G, 𝑓)) = min

𝑢𝑘∈𝔽
𝑘
2

1

𝑛

𝑛∑
𝑖=1

𝑑(𝑥𝑖, �̂�𝑖(𝑢
𝑘)), 𝑥𝑛 ∈ 𝒳𝑛.

Note that 𝑅(𝑛, 𝑘) is not the rate of the linear code generated
by G; instead, it should be interpreted as the rate5 of the lossy
source code 𝒞(G, 𝑓) induced by G and 𝑓(⋅).

Now we are ready to state the main result of this section.
Theorem 2: Let 𝑃�̃�∣𝑋 : 𝒳 → 𝔽

𝑚
2 be a transition probabil-

ity distribution such that the output distribution 𝑃�̃� induced by
𝑃𝑋 and 𝑃�̃�∣𝑋 is uniform over 𝔽𝑚

2 . Let 𝑓(⋅) be a deterministic

mapping from 𝔽
𝑚
2 to 𝒳 . For any 𝜖 > 0, we have

𝑅(𝑛, 𝑘) ≤ 𝐼(𝑋 ; �̃�) + 𝜖,

𝐷(𝑛, 𝑘,𝑚, 𝑓) ≤ 𝔼[𝑑(𝑋, 𝑓(�̃�))] + 𝜖

for some sufficiently large 𝑛 and 𝑘.
Remark: In view of the definition of 𝑅𝐿,𝑚(𝐷) and Theorem 1,
one can readily show that binary LDGM codes can achieve the
rate-distortion bound via multilevel quantization by optimizing
(𝑃�̃�∣𝑋 , 𝑓(⋅)) and letting 𝑚 → ∞.

Proof: See Appendix B.
It has been shown recently [31] that for uniform binary

sources with Hamming distortion measure, a necessary con-
dition for achieving the rate-distortion bound using LDGM
codes is that the generator matrix contains rows with the
number of 1’s growing unboundedly as 𝑛 → ∞ (see [32] for a
weak version of this result). Note that in our construction, the
condition 𝑛𝑝𝑛 → ∞ can be interpreted as the requirement that
the number of 1’s in each row of the generator matrix grows
unboundedly with 𝑛; therefore, our result indicates that the
aforementioned necessary condition is essentially sufficient.

IV. A PRACTICAL ENCODING SCHEME

In this section, we shall propose a low-complexity encoding
scheme based on the survey-propagation algorithm.

Let 𝐺 be a 𝑘 × 𝑚𝑛 low-density generator matrix. It is
well known that one can represent 𝐺 by a factor graph with
𝑘 variable nodes and 𝑚𝑛 check nodes (see Fig. 2). Label
these variable nodes and check nodes by {𝑉1, 𝑉2, ⋅ ⋅ ⋅ , 𝑉𝑘}
and {𝐶1, 𝐶2, ⋅ ⋅ ⋅ , 𝐶𝑚𝑛}, respectively. Let there be an edge
connecting 𝑉𝑖 and 𝐶𝑗 if and only if the (𝑖, 𝑗)-entry of 𝐺 is
one. Let 𝒜𝑘 be the set of indices of check nodes connected to

5Strictly speaking, 𝑅(𝑛, 𝑘) is an upper bound on the rate of 𝒞(G, 𝑓) since
it is possible that �̂�𝑛(𝑢𝑘) = �̂�𝑛(𝑣𝑘) for some 𝑢𝑘 ∕= 𝑣𝑘 .
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Fig. 2. Factor graph of an LDGM code.

𝑉𝑖 and ℬ𝑗 be the set of indices of variable nodes connected to
𝐶𝑗 . Each variable node 𝑉𝑖 is associated with its corresponding
information bit 𝑢𝑖. The value of 𝐶𝑗 can be computed using
the values of variable nodes in ℬ𝑗 through modulo-2 addition.

We further introduce 𝑛 source nodes and 𝑛 network nodes,
denoted by {𝑆1, 𝑆2, ⋅ ⋅ ⋅ , 𝑆𝑛} and {𝑁1, 𝑁2, ⋅ ⋅ ⋅ , 𝑁𝑛}, respec-
tively. Each source node 𝑆𝑙 is connected with its corresponding
network node 𝑁𝑙; moreover, we let 𝑆𝑙 and 𝑁𝑙 be associated
with source symbol 𝑥𝑙 and its corresponding reconstruction
symbol �̂�𝑙, respectively.

We partition {𝐶1, 𝐶2, ⋅ ⋅ ⋅ , 𝐶𝑚𝑛} into 𝑛 disjoint subsets,
each containing 𝑚 check nodes. Each subset is connected to a
unique network node. Specifically, we denote the index of the
network node connected with 𝐶𝑗 as 𝜇(𝑗) and denote the set
of indices of check nodes connected to 𝑁𝑙 as 𝒩𝑙. Label each
element in 𝒩𝑙 with a unique number in {1, ⋅ ⋅ ⋅ ,𝑚}. Note that
such a labeling induces a mapping 𝜈(⋅) from {1, 2, ⋅ ⋅ ⋅ ,𝑚𝑛}
to {1, ⋅ ⋅ ⋅ ,𝑚}. The value of 𝑁𝑙 (i.e., �̂�𝑙) is determined by the
check nodes in 𝒩𝑙 through a mapping 𝑓 : 𝔽𝑚

2 → 𝒳 .
Our goal is to find an efficient way to determine the

values of the variable nodes so that the distortion between
the resulting reconstruction sequence �̂�𝑛 and the given source
sequence 𝑥𝑛 is made reasonably small.

To this end, we propose a message-passing algorithm tai-
lored to the aforementioned factor graph. Specifically, mes-
sages are passed among different types of nodes with each
message representing a probability distribution. They are spec-
ified as follows.

∙ From 𝑉𝑖 to 𝐶𝑗 , 𝑗 ∈ 𝒜𝑖: 𝑀0
𝑉𝑖→𝐶𝑗

, 𝑀1
𝑉𝑖→𝐶𝑗

, and 𝑀∗
𝑉𝑖→𝐶𝑗

.
∙ From 𝐶𝑗 to 𝑉𝑖, 𝑖 ∈ ℬ𝑗 : 𝑀0

𝐶𝑗→𝑉𝑖
, 𝑀1

𝐶𝑗→𝑉𝑖
, and 𝑀∗

𝐶𝑗→𝑉𝑖
.

∙ From 𝐶𝑗 to 𝑁𝑙, 𝑙 = 𝜇(𝑗): 𝑀0
𝐶𝑗→𝑁𝑙

, 𝑀1
𝐶𝑗→𝑁𝑙

, and
𝑀∗

𝐶𝑗→𝑁𝑙
.

∙ From 𝑆𝑙 to 𝑁𝑙: 𝑀𝑥
𝑆𝑙→𝑁𝑙

, 𝑥 ∈ 𝒳 .
∙ From 𝑁𝑙 to 𝐶𝑗 , 𝑗 ∈ 𝒩𝑙: 𝑀0

𝑁𝑙→𝐶𝑗
and 𝑀1

𝑁𝑙→𝐶𝑗
.

Remark: The introduction of the free state ∗ is one of the main
features of the survey-propagation algorithm.

Here is a description of the message-passing routine (also
see Fig. 3).

1) Each check node sends messages to the adjacent variable
nodes (cf. (6)) and network node (cf. (7) and (8)). The
initial message is set to be (0.5, 0.5, 0).

2) Each variable node computes the new messages based
on those from the adjacent check nodes, then sends
the messages back to the adjacent check nodes (cf.
(5)). Similarly, each network node computes the new
messages based on those from the adjacent check nodes

and source node (cf. (9)), then sends the messages back
to the adjacent check nodes (cf. (10)).

3) Each check node computes the new messages based
on those from the adjacent variable nodes and network
node. If the messages converge at all check nodes or the
maximum number of iterations (e.g., 100) is reached,
then go to 4), otherwise go to 1).

4) Each variable node (say, 𝑉𝑖) computes
(𝑀0

𝑉𝑖
,𝑀1

𝑉𝑖
,𝑀∗

𝑉𝑖
), where

𝑀0
𝑉𝑖

=
∏
𝑗∈𝒜𝑖

(1−𝑀1
𝐶𝑗→𝑉𝑖

)

−
∏
𝑗∈𝒜𝑖

(1−𝑀1
𝐶𝑗→𝑉𝑖

−𝑀0
𝐶𝑗→𝑉𝑖

),

𝑀1
𝑉𝑖

=
∏
𝑗∈𝒜𝑖

(1−𝑀0
𝐶𝑗→𝑉𝑖

)

−
∏
𝑗∈𝒜𝑖

(1−𝑀1
𝐶𝑗→𝑉𝑖

−𝑀0
𝐶𝑗→𝑉𝑖

),

𝑀∗
𝑉𝑖

=
∏
𝑗∈𝒜𝑖

(1−𝑀1
𝐶𝑗→𝑉𝑖

−𝑀0
𝐶𝑗→𝑉𝑖

).

Find those variable nodes whose bias value (i.e., ∣𝑀0
𝑉𝑘

−
𝑀1

𝑉𝑘
∣) is greater than a certain threshold and fix those

variables accordingly. If there is no variable node whose
bias value is greater than the threshold, then we fix the
value of the variable node with the maximum bias value.

5) Remove those fixed variable nodes from the factor
graph. If all the variable nodes are fixed, then go to
6), otherwise go to 1).

6) Calculate the value of each check node through modulo-
2 addition of the values of its adjacent variable nodes.
Determine the value of each network node using the val-
ues of its adjacent check nodes through the deterministic
mapping 𝑓(⋅).

Remark: All the messages need to be normalized.

Now we proceed to apply the proposed message-passing
algorithm to various sources and distortion measures to verify
its effectiveness.

A. Non-Uniform Binary Source With Hamming Distortion
Measure

Let 𝒳 = 𝒳 = {0, 1} and 𝑑(⋅, ⋅) be the Hamming distortion
measure, i.e., 𝑑(𝑥, 𝑥) = 0 if 𝑥 = �̂� and 𝑑(𝑥, 𝑥) = 1 otherwise.
Consider a binary source 𝑋 with 𝑃𝑋(0) = 0.25. Let 𝑃�̂�∗ be
the output distribution induced by 𝑃𝑋 and the optimal test
channel 𝑃�̂�∗∣𝑋 . Note that 𝑃�̂�∗ is rate-dependent. Let 𝑚 =

4 and �̃� be uniformly distributed over 𝔽
4
2. A deterministic

mapping 𝑓 : 𝔽
4
2 → 𝒳 is chosen so that 𝑃𝑓(�̃�) is a good

approximation of 𝑃�̂�∗ . Table I lists the optimal 𝑃𝑓(�̃�) for
different rates. Note that although the optimal 𝑃𝑓(�̃�) for a
given rate is in general unique, the deterministic mapping 𝑓(⋅)
that induces this distribution is clearly not unique.

The message-passing equations are given in Fig. 3. In (9),
we choose 𝛼𝑥𝑙,𝑥′ = 1 if 𝑥′ = 𝑥𝑙 and 𝛼𝑥𝑙,𝑥′ = 𝛼 otherwise.
This choice is tailored to the Hamming distortion measure.
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Variable node to check node

𝑀0
𝑉𝑖→𝐶𝑗

=
∏

𝑞∈𝒜𝑖∖{𝑗}
(1−𝑀1

𝐶𝑞→𝑉𝑖
)−

∏

𝑞∈𝒜𝑖∖{𝑗}
(1 −𝑀1

𝐶𝑞→𝑉𝑖
−𝑀0

𝐶𝑞→𝑉𝑖
)

𝑀1
𝑉𝑖→𝐶𝑗

=
∏

𝑞∈𝒜𝑖∖{𝑗}
(1−𝑀0

𝐶𝑞→𝑉𝑖
)−

∏

𝑞∈𝒜𝑖∖{𝑗}
(1 −𝑀1

𝐶𝑞→𝑉𝑖
−𝑀0

𝐶𝑞→𝑉𝑖
)

𝑀∗
𝑉𝑖→𝐶𝑗

=
∏

𝑞∈𝒜𝑖∖{𝑗}
(1−𝑀1

𝐶𝑞→𝑉𝑖
−𝑀0

𝐶𝑞→𝑉𝑖
)

(5)

Check node to variable node

𝑀0
𝐶𝑗→𝑉𝑖

=
1

2
(𝑀0

𝑁𝜇(𝑗)→𝐶𝑗
+𝑀1

𝑁𝜇(𝑗)→𝐶𝑗
)

∏

𝑞∈ℬ𝑗∖{𝑖}
(𝑀0

𝑉𝑞→𝐶𝑗
+𝑀1

𝑉𝑞→𝐶𝑗
)

+
1

2
(𝑀0

𝑁𝜇(𝑗)→𝐶𝑗
−𝑀1

𝑁𝜇(𝑗)→𝐶𝑗
)

∏

𝑞∈ℬ𝑗∖{𝑖}
(𝑀0

𝑉𝑞→𝐶𝑗
−𝑀1

𝑉𝑞→𝐶𝑗
)

𝑀1
𝐶𝑗→𝑉𝑖

=
1

2
(𝑀0

𝑁𝜇(𝑗)→𝐶𝑗
+𝑀1

𝑁𝜇(𝑗)→𝐶𝑗
)

∏

𝑞∈ℬ𝑗∖{𝑖}
(𝑀0

𝑉𝑞→𝐶𝑗
+𝑀1

𝑉𝑞→𝐶𝑗
)

− 1

2
(𝑀0

𝑁𝜇(𝑗)→𝐶𝑗
−𝑀1

𝑁𝜇(𝑗)→𝐶𝑗
)

∏

𝑞∈ℬ𝑗∖{𝑖}
(𝑀0

𝑉𝑞→𝐶𝑗
−𝑀1

𝑉𝑞→𝐶𝑗
)

𝑀∗
𝐶𝑗→𝑉𝑖

= 1−𝑀0
𝐶𝑗→𝑉𝑖

−𝑀1
𝐶𝑗→𝑉𝑖

(6)

Check node to network node

𝑀0
𝐶𝑗→𝑁𝑙

=
1

2

∏

𝑞∈ℬ𝑗

(𝑀0
𝑉𝑞→𝐶𝑗

+𝑀1
𝑉𝑞→𝐶𝑗

) +
1

2

∏

𝑞∈ℬ𝑗

(𝑀0
𝑉𝑞→𝐶𝑗

−𝑀1
𝑉𝑞→𝐶𝑗

)

𝑀1
𝐶𝑗→𝑁𝑙

=
1

2

∏

𝑞∈ℬ𝑗

(𝑀0
𝑉𝑞→𝐶𝑗

+𝑀1
𝑉𝑞→𝐶𝑗

)− 1

2

∏

𝑞∈ℬ𝑗

(𝑀0
𝑉𝑞→𝐶𝑗

−𝑀1
𝑉𝑞→𝐶𝑗

)

𝑀∗
𝐶𝑗→𝑁𝑙

= 1−𝑀0
𝐶𝑗→𝑁𝑙

−𝑀1
𝐶𝑗→𝑁𝑙

(7)

*If all 𝑉𝑞 ∈ ℬ𝑗 are fixed, then

𝑀0
𝐶𝑗→𝑁𝑙

=
(1− 𝑐𝑗) exp(𝛿) + 𝑐𝑗 exp(−𝛿)

exp(𝛿) + exp(−𝛿) +𝑊𝑠𝑜𝑢

𝑀1
𝐶𝑗→𝑁𝑙

=
𝑐𝑗 exp(𝛿) + (1− 𝑐𝑗) exp(−𝛿)

exp(𝛿) + exp(−𝛿) +𝑊𝑠𝑜𝑢

𝑀∗
𝐶𝑗→𝑁𝑙

=
𝑊𝑠𝑜𝑢

exp(𝛿) + exp(−𝛿) +𝑊𝑠𝑜𝑢

(8)

Source node to network node

𝑀𝑥
𝑆𝑙→𝑁𝑙

=
𝛼𝑥𝑙,𝑥𝑙 exp(𝛾)

𝛼𝑥𝑙,𝑥𝑙 exp(𝛾) +
∑

𝑥′∈𝒳 :𝑥′ ∕=𝑥𝑙
𝛼𝑥𝑙,𝑥

′ exp(−𝛾)
𝑥 = 𝑥𝑙

𝑀𝑥
𝑆𝑙→𝑁𝑙

=
𝛼𝑥𝑙,𝑥 exp(−𝛾)

𝛼𝑥𝑙,𝑥𝑙 exp(𝛾) +
∑

𝑥′∈𝒳 :𝑥′ ∕=𝑥𝑙
𝛼𝑥𝑙,𝑥

′ exp(−𝛾)
𝑥 ∕= 𝑥𝑙

(9)

Network node to check node

𝑀0
𝑁𝑙→𝐶𝑗

=
∑

(𝑘1,⋅⋅⋅ ,𝑘𝑚):𝑘𝜈(𝑗)=0

(𝑀𝑟
𝑆𝑙→𝑁𝑙

∏

𝑞∈𝒩𝑙∖{𝑗}
𝑀

𝑘𝜈(𝑞)

𝐶𝑞→𝑁𝑙
) 𝑟 = 𝑓(𝑘1, ⋅ ⋅ ⋅ , 𝑘𝑚)

𝑀1
𝑁𝑙→𝐶𝑗

=
∑

(𝑘1,⋅⋅⋅ ,𝑘𝑚):𝑘𝜈(𝑗)=1

(𝑀𝑟
𝑆𝑙→𝑁𝑙

∏

𝑞∈𝒩𝑙∖{𝑗}
𝑀

𝑘𝜈(𝑞)

𝐶𝑞→𝑁𝑙
) 𝑟 = 𝑓(𝑘1, ⋅ ⋅ ⋅ , 𝑘𝑚)

(10)

Fig. 3. Message-passing equations. Here 𝑐𝑗 is the modulo-2 addition of the values of the variable nodes in ℬ𝑗 while 𝛿, 𝑊𝑠𝑜𝑢, 𝛼𝑥𝑙,𝑥
′ , and 𝛾 are the

parameters that can be adjusted.

B. Uniform Ternary Source With Hamming Distortion Mea-
sure

Let 𝒳 = 𝒳 = {0, 1, 2} and 𝑑(⋅, ⋅) be the Hamming distor-
tion measure. Consider a ternary source 𝑋 with 𝑃𝑋(0) =
𝑃𝑋(1) = 𝑃𝑋(2) = 1

3 . Let 𝑚 = 4. It is easy to verify
that we have 𝑃�̂�∗(0) = 𝑃�̂�∗(1) = 𝑃�̂�∗(2) = 1

3 for all
rates. Correspondingly, we choose 𝑓 : 𝔽

4
2 → 𝒳 such that

(𝑃𝑓(�̃�)(0), 𝑃𝑓(�̃�)(1), 𝑃𝑓(�̃�)(2)) = ( 5
16 ,

5
16 ,

6
16 ) for all rates.

C. Uniform Ternary Source With ℓ1 Distortion Measure

Let 𝒳 = 𝒳 = {0, 1, 2} and 𝑑(⋅, ⋅) be the ℓ1 distortion
measure, i.e., 𝑑(𝑥, 𝑥) = ∣𝑥− �̂�∣. Consider a ternary source 𝑋
with 𝑃𝑋(0) = 𝑃𝑋(1) = 𝑃𝑋(2) = 1

3 . Let 𝑚 = 4. Table II
lists the optimal 𝑃𝑓(�̃�) for different rates.

The message-passing equations are given in Fig. 3. In (9),
we choose 𝛼𝑥𝑙,𝑥′ = 1 if 𝑥′ = 𝑥𝑙, 𝛼𝑥𝑙,𝑥′ = 𝛼 if ∣𝑥𝑙 − 𝑥′∣ = 1,
and 𝛼𝑥𝑙,𝑥′ = 𝛽 if ∣𝑥𝑙 − 𝑥′∣ = 2. This choice is tailored to the
ℓ1 distortion measure. Since smaller distortion is preferable,
we always set 𝛼 to be larger than 𝛽.
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TABLE I
THE OPTIMAL 𝑃𝑓(�̃�) FOR DIFFERENT RATES.

𝑅 (𝑃𝑓(�̃�)(0), 𝑃𝑓(�̃�)(1))

0.479 - 1.000 ( 4
16 ,

12
16 )

0.228 - 0.478 ( 3
16 ,

13
16 )

0.096 - 0.227 ( 2
16 ,

14
16 )

0.000 - 0.095 ( 1
16 ,

15
16 )

TABLE II
THE OPTIMAL 𝑃𝑓(�̃�) FOR DIFFERENT RATES.

𝑅 (𝑃𝑓(�̃�)(0), 𝑃𝑓(�̃�)(1), 𝑃𝑓(�̃�)(2))

0.43 - 1.58 ( 5
16 ,

6
16 ,

5
16 )

0.22 - 0.43 ( 4
16 ,

8
16 ,

4
16 )

0.13 - 0.22 ( 3
16 ,

10
16 ,

3
16 )

0 - 0.13 ( 2
16 ,

12
16 ,

2
16 )

TABLE III
THE OPTIMAL 𝑃𝑓(�̃�) FOR DIFFERENT RATES.

D. Simulation Results

Now we examine the performance of the proposed scheme
for the aforementioned three cases. The algorithm is imple-
mented using C. The degree distributions of the LDGM codes
are obtained from [33], which are optimized for the AWGN
channel.

The simulation results are shown in Fig. 4, Fig. 5, and Fig.
6, respectively. Source sequences of length 1000 and 10000
are tested. Since 𝑚 = 4, the corresponding LDGM codes are
of length 4000 and 40000, respectively. The damping method
[11] is used in the message-passing algorithm if the messages
do not converge after 30 iterations. The decimation threshold
is set to be 0.9 and the maximum number of iterations is set to
be 100. Each plotted point is obtained by averaging over 1000
source sequences. It can be seen that the resulting distortions
are close to the theoretical lower bound in all these three cases.

Note that although the degrees of variable nodes need to
grow unboundedly in 𝑛 to achieve the rate-distortion bound,
simulation results indicate that relatively small degrees suffice
for practical purposes. Moreover, it is worth mentioning that
for a fixed 𝑛, the performance of the proposed message-
passing algorithm may not improve with increasing degrees,
and may even degrade.

V. CONCLUSION

We have shown that binary LDGM codes can achieve the
rate-distortion bound of discrete memoryless sources with gen-
eral distortion measure via multilevel quantization. Moreover,
a practical encoding scheme based on the survey-propagation
algorithm has been proposed. The simulation results validate
the effectiveness of the proposed scheme. It is of considerable
interest to generalize the results in the present work to the
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Fig. 4. Non-uniform binary source with Hamming distortion measure.
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Fig. 5. Uniform ternary source with Hamming distortion measure.

multi-user scenarios such as distributed source coding and
multiple description coding.

APPENDIX A
PROOF OF THEOREM 1

It is clear that 𝑅𝐿,𝑚(𝐷) is lower-bounded by
𝑅(𝐷) for all 𝑚. Therefore, it suffices to show that
lim sup𝑚→∞𝑅𝐿,𝑚(𝐷) ≤ 𝑅(𝐷).

Let 𝑃�̂�∗∣𝑋 be the optimal test channel associated with
the rate-distortion pair (𝑅(𝐷), 𝐷) and 𝑃�̂�∗ be the output
distribution induced by 𝑃𝑋 and 𝑃�̂�∗∣𝑋 . We shall construct a

random variable �̃� over 𝔽
𝑚
2 such that 𝑋 − �̂�∗ − �̃� form

a Markov chain. Let 𝑘�̂� be the greatest integer satisfying
𝑘�̂�

2𝑚 ≤ 𝑃�̂�∗(�̂�), �̂� ∈ 𝒳 . Let 𝒦�̂�, �̂� ∈ 𝒳 , be disjoint subsets of
𝔽
𝑚
2 with ∣𝒦�̂�∣ = 𝑘�̂�. Let 𝒦∗ = 𝔽

𝑚
2 ∖∪�̂�∈𝒳𝒦�̂�. Now construct

the transition probability distribution 𝑃�̃�∣�̂�∗ as follows:

𝑃�̃�∣�̂�∗(�̃�∣�̂�) =

⎧⎨
⎩

1
2𝑚𝑃�̂�∗ (�̂�) , 𝑥 ∈ 𝒦�̂�

1
∣𝒦∗∣

(
1− 𝑘�̂�

2𝑚𝑃�̂�∗ (�̂�)

)
, 𝑥 ∈ 𝒦∗

0, otherwise

.
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Fig. 6. Uniform ternary source with ℓ1 distortion measure.

Without loss of generality, here we only define 𝑃�̃�∣�̂�∗(⋅∣�̂�)
for �̂� ∈ 𝒳+, where 𝒳+ = {�̂� ∈ 𝒳 : 𝑃�̂�∗(�̂�) > 0}. It can be
verified that

𝑃�̃�(�̃�) =
∑

�̂�∈𝒳+

𝑃�̂�∗(�̂�)𝑃�̃�∣�̂�∗(�̃�∣�̂�) = 1

2𝑚

if �̃� ∈ 𝒦�̂� for some �̂� ∈ 𝒳 , and

𝑃�̃�(�̃�) =
∑

�̂�∈𝒳+

𝑃�̂�∗(�̂�)𝑃�̃�∣�̂�∗(�̃�∣�̂�)

=
1

∣𝒦∗∣
∑

�̂�∈𝒳+

(
𝑃�̂�∗(�̂�)− 𝑘�̂�

2𝑚

)
=

1

2𝑚

if 𝑥 ∈ 𝒦∗. Therefore, the constructed �̃� is uniformly dis-
tributed over 𝔽𝑚

2 .
Define a deterministic mapping 𝑓 : 𝔽

𝑚
2 → 𝒳 such that

𝑓(�̃�) = 𝑥 if 𝑥 ∈ 𝒦�̂� for some 𝑥 ∈ 𝒳 , and 𝑓(�̃�) is set to
be an arbitrary reconstruction symbol if �̃� ∈ 𝒦∗. By the data
processing inequality, we have

𝑅(𝐷) = 𝐼(𝑋 ; �̂�∗) ≥ 𝐼(𝑋 ; �̃�) ≥ 𝐼(𝑋 ; 𝑓(�̃�)). (11)

Moreover, it is easy to verify that lim𝑚→∞ 𝑃𝑋,𝑓(�̃�)(𝑥, 𝑥) =

𝑃𝑋,�̂�∗(𝑥, 𝑥) for all 𝑥 ∈ 𝒳 and �̂� ∈ 𝒳 . Therefore, we have

lim
𝑚→∞𝔼[𝑑(𝑋, 𝑓(�̃�))] = 𝔼[𝑑(𝑋, �̂�∗)] ≤ 𝐷. (12)

By (11), (12), and the continuity of the rate-distortion function,
it can be readily shown that lim sup𝑚→∞𝑅𝐿,𝑚(𝐷) ≤ 𝑅(𝐷).
The proof is complete.

APPENDIX B
PROOF OF THEOREM 2

Let 𝒯 𝛿,𝑛
𝑃𝑋

denote the 𝛿-strongly typical set of sequences 𝑥𝑛

with respect to the probability distribution 𝑃𝑋 . Similarly, let
𝒯 𝛿,𝑛
𝑃𝑋,�̃�

denote the 𝛿-strongly typical set of sequences (𝑥𝑛, �̃�𝑛)
with respect to 𝑃𝑋,�̃� , where 𝑃𝑋,�̃� is the probability distribu-

tion induced by 𝑃𝑋 and 𝑃�̃�∣𝑋 . Note that if (𝑥𝑛, �̃�𝑛) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

,

then 𝑥𝑛 ∈ 𝒯 𝛿,𝑛
𝑃𝑋

. The definition of strongly typical set and its
properties can be found in [24].

For each 𝑥𝑛 ∈ 𝒳𝑛, define

𝜙𝑛(𝑥
𝑛,G) =

∑
𝑢𝑘∈𝔽

𝑘
2

𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

),

𝜓𝑛(𝑥
𝑛,G)

=
∑

𝑢𝑘∈𝔽
𝑘
2

𝕀

( 1

𝑛

𝑛∑
𝑖=1

𝑑(𝑥𝑖, �̂�𝑖(𝑢
𝑘)) ≤ 𝔼[𝑑(𝑋, 𝑓(�̃�))] +

𝜖

2

)
.

Let 𝛿 be small enough so that 1
𝑛

∑𝑛
𝑖=1 𝑑(𝑥𝑖, 𝑓(�̃�𝑖)) ≤

𝔼[𝑑(𝑋, 𝑓(�̃�))] + 𝜖
2 whenever (𝑥𝑛, �̃�𝑛) ∈ 𝒯 𝛿,𝑛

𝑃𝑋,�̃�
. As a con-

sequence, we have

𝜙𝑛(𝑥
𝑛,G) ≤ 𝜓𝑛(𝑥

𝑛,G) (13)

for all 𝑥𝑛 ∈ 𝒳𝑛.

Let {𝑤𝑛} be a sequence such that 𝑤𝑛𝑝𝑛 → ∞ and 𝑤𝑛

𝑛 → 0
as 𝑛 → ∞. Since 𝑌𝑖(𝑢𝑘) = 𝑢𝑘g𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚𝑛, it is easy
to see that 𝑌1(𝑢𝑘), 𝑌2(𝑢𝑘), ⋅ ⋅ ⋅ , 𝑌𝑚𝑛(𝑢

𝑘) are independent for
any fixed 𝑢𝑘 ∈ 𝔽

𝑘
2 . Moreover, in view of the fact that

Pr{𝑢𝑘g𝑖 = 0} =
1 + (1− 2𝑝𝑛)

𝑤(𝑢𝑘)

2
,

we have

Pr{𝑌𝑖(𝑢𝑘) = 0} → 1

2
(14)

as 𝑛 → ∞, where the convergence in (14) is uniform for
all 𝑖 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑚𝑛} and 𝑢𝑘 ∈ 𝔽

𝑘
2 with 𝑤(𝑢𝑘) ≥ 𝑤𝑛.

Therefore, it can be shown using [24, Lemma 13.6.2, p. 359]
and a continuity argument that for any 𝛿′ > 0, one can choose
a sufficiently small 𝛿 such that

2−𝑛(𝐼(𝑋;𝑓(�̃�))−𝛿′) ≥ 𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]

≥ 2−𝑛(𝐼(𝑋;𝑓(�̃�))+𝛿′) (15)

for all 𝑥𝑛 ∈ 𝒯 𝛿,𝑛
𝑃𝑋

and 𝑢𝑘 ∈ 𝔽
𝑘
2 with 𝑤(𝑢𝑘) ≥ 𝑤𝑛 when 𝑛 is

sufficiently large. Note that
∑

𝑢𝑘∈𝔽
𝑘
2

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]

=
∑

𝑤(𝑢𝑘)≥𝑤𝑛

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]

+
∑

𝑤(𝑢𝑘)<𝑤𝑛

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)].

Let 𝑅 ≜ 𝑅(𝑛, 𝑘) = 𝑘
𝑛 . In view of (15) and the fact that

2𝑛𝑅 ≥ ∣{𝑢𝑘 ∈ 𝔽
𝑘
2 : 𝑤(𝑢𝑘) ≥ 𝑤𝑛}∣ ≥ 2𝑛(𝑅−𝛿′) and ∣{𝑢𝑘 ∈

𝔽
𝑘
2 : 𝑤(𝑢𝑘) < 𝑤𝑛}∣ ≤ 2𝑛𝛿

′
for sufficiently large 𝑛, we have

2𝑛(𝑅−𝐼(𝑋;𝑓(�̃�))+𝛿′) + 2𝑛𝛿
′

≥
∑

𝑢𝑘∈𝔽
𝑘
2

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]

≥ 2𝑛(𝑅−𝐼(𝑋;𝑓(�̃�))−2𝛿′) (16)

for all 𝑥𝑛 ∈ 𝒯 𝛿,𝑛
𝑃𝑋

when 𝑛 is sufficiently large.

Now we shall derive a lower bound on 𝔼[𝜙𝑛(𝑋
𝑛,G)]. Note

that

𝔼[𝜙𝑛(𝑋
𝑛,G)]
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=
∑

𝑥𝑛∈𝒯 𝛿,𝑛
𝑃𝑋

Pr{𝑋𝑛 = 𝑥𝑛}
∑

𝑢𝑘∈𝔽
𝑘
2

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]

+
∑

𝑥𝑛 /∈𝒯 𝛿,𝑛
𝑃𝑋

Pr{𝑋𝑛 = 𝑥𝑛}
∑

𝑢𝑘∈𝔽
𝑘
2

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]

=
∑

𝑥𝑛∈𝒯 𝛿,𝑛
𝑃𝑋

Pr{𝑋𝑛 = 𝑥𝑛}
∑

𝑢𝑘∈𝔽
𝑘
2

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)],

where the last equality is because 𝕀((𝑥𝑛, �̃�𝑛) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

) = 0

for all �̃�𝑛 if 𝑥𝑛 /∈ 𝒯 𝛿,𝑛
𝑃𝑋

. In view of (16) and the fact that
Pr{𝑋𝑛 ∈ 𝒯 𝛿,𝑛

𝑃𝑋
} ≥ 1− 𝛿′ for all sufficiently large 𝑛, we have

𝔼[𝜙𝑛(𝑋
𝑛,G)] ≥ (1− 𝛿′)2𝑛(𝑅−𝐼(𝑋;𝑓(�̃�))−2𝛿′) (17)

when 𝑛 is sufficiently large.

Now we proceed to derive an upper bound on
𝔼[(𝜙𝑛(𝑋

𝑛,G))2]. Note that

𝔼[(𝜙𝑛(𝑋
𝑛,G))2]

= 𝔼

[ ∑
𝑢𝑘,𝑣𝑘∈𝔽

𝑘
2

𝕀((𝑋𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)𝕀((𝑋𝑛, �̃�𝑛(𝑣𝑘))

∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)
]

=
∑

𝑥𝑛∈𝒯 𝛿,𝑛
𝑃𝑋

Pr{𝑋𝑛 = 𝑥𝑛}𝔼
[ ∑
𝑢𝑘,𝑣𝑘∈𝔽

𝑘
2

𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘))

∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)𝕀((𝑥𝑛, �̃�𝑛(𝑣𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)
]

=
∑

𝑥𝑛∈𝒯 𝛿,𝑛
𝑃𝑋

Pr{𝑋𝑛 = 𝑥𝑛}𝔼
[ ∑
𝑤(𝑢𝑘⊕𝑣𝑘)≥2𝑤𝑛

𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘))

∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)𝕀((𝑥𝑛, �̃�𝑛(𝑣𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)

+
∑

𝑤(𝑢𝑘⊕𝑣𝑘)<2𝑤𝑛

𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)𝕀((𝑥𝑛, �̃�𝑛(𝑣𝑘))

∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)
]
, (18)

where ⊕ is the modulo-2 addition. Define (𝑢 ∧ 𝑣)𝑘 = ((𝑢 ∧
𝑣)1, (𝑢∧ 𝑣)2, ⋅ ⋅ ⋅ , (𝑢∧ 𝑣)𝑘) with (𝑢∧ 𝑣)𝑖 = 1 if 𝑢𝑖 = 𝑣𝑖 = 1
and (𝑢 ∧ 𝑣)𝑖 = 0 otherwise. Define (𝑢∖𝑣)𝑘 = 𝑢𝑘 ⊕ (𝑢 ∧ 𝑣)𝑘

and (𝑣∖𝑢)𝑘 = 𝑣𝑘 ⊕ (𝑢 ∧ 𝑣)𝑘. Note that 𝑤(𝑢𝑘 ⊕ 𝑣𝑘) ≥ 2𝑤𝑛

implies 𝑤((𝑢∖𝑣)𝑘) ≥ 𝑤𝑛 or 𝑤((𝑣∖𝑢)𝑘) ≥ 𝑤𝑛. Without loss of
generality, we shall assume 𝑤((𝑣∖𝑢)𝑘) ≥ 𝑤𝑛, which further
implies 𝑤(𝑣𝑘) ≥ 𝑤𝑛. In view of (14), we have

Pr{�̃�𝑛(𝑣𝑘) = �̃�𝑛} ≥ 2−𝑚𝑛2−
𝑛𝛿′
2 ,

Pr{�̃�𝑛((𝑣∖𝑢)𝑘) = 𝑥𝑛} ≤ 2−𝑚𝑛2
𝑛𝛿′
2

for all 𝑥𝑛 when 𝑛 is sufficiently large. Therefore, if 𝑤(𝑢𝑘 ⊕
𝑣𝑘) ≥ 2𝑤𝑛, then

Pr{�̃�𝑛(𝑢𝑘) = �̃�𝑛, �̃�𝑛(𝑣𝑘) = �̃�𝑛}
=

∑
𝑐𝑛

Pr{�̃�𝑛((𝑢∖𝑣)𝑘) = �̃�𝑛 ⊕ 𝑐𝑛,

�̃�𝑛((𝑣∖𝑢)𝑘) = �̃�𝑛 ⊕ 𝑐𝑛, �̃�𝑛((𝑢 ∧ 𝑣)𝑘) = 𝑐𝑛}
=

∑
𝑐𝑛

Pr{�̃�𝑛((𝑢∖𝑣)𝑘) = �̃�𝑛 ⊕ 𝑐𝑛, �̃�𝑛((𝑢 ∧ 𝑣)𝑘) = 𝑐𝑛}

× Pr{�̃�𝑛((𝑣∖𝑢)𝑘) = �̃�𝑛 ⊕ 𝑐𝑛}

≤ 2−𝑚𝑛2
𝑛𝛿′
2

∑
𝑐𝑛

Pr{�̃�𝑛((𝑢∖𝑣)𝑘) = �̃�𝑛 ⊕ 𝑐𝑛,

�̃�𝑛((𝑢 ∧ 𝑣)𝑘) = 𝑐𝑛}
= 2−𝑚𝑛2

𝑛𝛿′
2 Pr{�̃�𝑛(𝑢𝑘) = �̃�𝑛}

≤ 2𝑛𝛿
′
Pr{�̃�𝑛(𝑢𝑘) = �̃�𝑛}Pr{�̃�𝑛(𝑣𝑘) = �̃�𝑛} (19)

uniformly for all �̃�𝑛 and �̃�𝑛 when 𝑛 is sufficiently large.
Continuing from (18),

𝔼[(𝜙𝑛(𝑋
𝑛,G))2]

≤
∑

𝑥𝑛∈𝒯 𝛿,𝑛
𝑃𝑋

Pr{𝑋𝑛 = 𝑥𝑛}
[ ∑
𝑤(𝑢𝑘⊕𝑣𝑘)≥2𝑤𝑛

2𝑛𝛿
′

× 𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑣𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]

+
∑

𝑤(𝑢𝑘⊕𝑣𝑘)<2𝑤𝑛

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]

× 𝕀((𝑥𝑛, �̃�𝑛(𝑣𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]
]

(20)

≤
∑

𝑥𝑛∈𝒯 𝛿,𝑛
𝑃𝑋

Pr{𝑋𝑛 = 𝑥𝑛}
[ ∑
𝑢𝑘,𝑣𝑘∈𝔽

𝑘
2

2𝑛𝛿
′
𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘))

∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑣𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]

+
∑

𝑤(𝑢𝑘⊕𝑣𝑘)<2𝑤𝑛

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]
]

≤
∑

𝑥𝑛∈𝒯 𝛿,𝑛
𝑃𝑋

Pr{𝑋𝑛 = 𝑥𝑛}
[ ∑
𝑢𝑘,𝑣𝑘∈𝔽

𝑘
2

2𝑛𝛿
′
𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘))

∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑣𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]

+ 2𝑛𝛿
′ ∑
𝑢𝑘∈𝔽

𝑘
2

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]
]

(21)

=
∑

𝑥𝑛∈𝒯 𝛿,𝑛
𝑃𝑋

Pr{𝑋𝑛 = 𝑥𝑛}
[
2𝑛𝛿

′( ∑
𝑢𝑘∈𝔽

𝑘
2

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘))

∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]
)2

+ 2𝑛𝛿
′ ∑
𝑢𝑘∈𝔽

𝑘
2

𝔼[𝕀((𝑥𝑛, �̃�𝑛(𝑢𝑘)) ∈ 𝒯 𝛿,𝑛
𝑃𝑋,�̃�

)]
]

≤ 2𝑛𝛿
′
(2𝑛(𝑅−𝐼(𝑋;𝑓(�̃�))+𝛿′) + 2𝑛𝛿

′
)2

+ 2𝑛𝛿
′
(2𝑛(𝑅−𝐼(𝑋;𝑓(�̃�))+𝛿′) + 2𝑛𝛿

′
), (22)

where (20) and (22) follow from (19) and (16), respectively,
while (21) is due to the fact that for any 𝑢𝑘 ∈ 𝔽

𝑘
2 , ∣{𝑣𝑘 ∈ 𝔽

𝑘
2 :

𝑤(𝑢𝑘 ⊕ 𝑣𝑘) < 2𝑤𝑛}∣ ≤ 2𝑛𝛿
′

when 𝑛 is sufficiently large.

By [7, Lemma 2],

Pr{𝜙𝑛(𝑋
𝑛,G) > 0} ≥ (𝔼[𝜙𝑛(𝑋

𝑛,G)])2

𝔼[(𝜙𝑛(𝑋𝑛,G))2]
.

Set 𝑅 = 𝐼(𝑋 ; 𝑓(�̃�)) + 𝜖. In view of (13), (17), and (22), we
have

lim inf
𝑛→∞

1

𝑛
log Pr{𝜓𝑛(𝑋

𝑛,G) > 0}

≥ lim inf
𝑛→∞

1

𝑛
log Pr{𝜙𝑛(𝑋

𝑛,G) > 0}

≥ lim inf
𝑛→∞

1

𝑛
log

(𝔼[𝜙𝑛(𝑋
𝑛,G)])2

𝔼[(𝜙𝑛(𝑋𝑛,G))2]

≥ −7𝛿′.
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Since 𝛿′ > 0 is arbitrary, it follows that

lim inf
𝑛→∞

1

𝑛
log Pr{𝜓𝑛(𝑋

𝑛,G) > 0} ≥ 0.

Now invoking [7, Lemma 1], one can readily show that

𝐷(𝑛, 𝑘,𝑚, 𝑓) ≤ 𝔼[𝑑(𝑋, 𝑓(�̃�))] +
𝜖

2
+
𝜖

2
= 𝔼[𝑑(𝑋, 𝑓(�̃�))] + 𝜖

for some sufficiently large 𝑛. The proof is complete.

ACKNOWLEDGMENT

The authors would like to thank Dr. Da-ke He and Dr.
Ashish Jagmohan for their contribution in the early stages
of this work. They also wish to thank Prof. Alexander Barg
and Prof. Prakash Narayan of the University of Maryland for
helpful discussions.

REFERENCES

[1] C. E. Shannon, “Coding theorems for a discrete source with a fidelity
criterion," IRE Nat. Conv. Rec., Part 4, pp. 142-163, 1959.

[2] P. Elias, “Coding for noisy channels," IRE Conv. Rec., Part 4, pp. 37-46,
1955.

[3] E. M. Gabidulin, “Limits for the decoding error probability when linear
codes are used in memoryless channel," Probl. Inf. Transm., pp. 43-48,
1967, translated from Probl. Pered. Inform..

[4] F. Jelinek, “Tree encoding of memoryless time-discrete sources with a
fidelity criterion," IEEE Trans. Inf. Theory, vol. IT-15, no. 5 pp. 584-590,
Sep. 1969.

[5] A. Viterbi and J. Omura, “Trellis encoding of memoryless discrete-time
sources with a fidelity criterion," IEEE Trans. Inf. Theory, vol. IT-20,
no. 3, pp. 325-332, May 1974.

[6] E. Martinian and J. S. Yedidia, “Iterative quantization using codes
on graphs," 41th Annual Allerton Conf. Commun., Control, Comput.,
Monticello, IL, Oct. 2003.

[7] M. J. Wainwright and E. Martinian, “Low-density graph codes that are
optimal for binning and coding with side information," IEEE Trans. Inf.
Theory, vol. 55, no. 3, pp. 1061-1079, Mar. 2009.

[8] T. Murayama, “Thouless-Anderson-Palmer approach for lossy compres-
sion," Physical Review E, vol. 69, no. 035105, pp. 1-4, 2004.

[9] M. J. Wainwright and E. Maneva, “Lossy source coding via message-
passing and decimation over generalized codewords of LDGM codes,"
IEEE International Symp. Inf. Theory, Adelaide, Australia, Sept. 2005.

[10] S. Cilibertia, M. Mézard, and R. Zecchina, “Lossy data compression
with random gates," Phys. Rev. Lett., vol. 95, no. 038701, 2005.

[11] T. Filler and J. Fridrich, “Binary quantization using belief propagation
with decimation over factor graphs of LDGM codes," in Proc. Allerton
Conf. Commun., Control, Comput., Monticello, IL, Sep. 2007.

[12] M. Mézard, G. Parisi, and R. Zecchina, “Analytic and algorithmic
solution of random satisfiability problems," Science, vol. 297, pp. 812-
815, June 2002.

[13] E. Maneva, E. Mossel, and M. J. Wainwright, “A new look at survey
propagation and its generalizations," in Proc. 16th Annual Symp. Discrete
Algorithms (SODA), pp. 1089-1098, Jan. 2005.

[14] A. Braunstein, M. Mézard, and R. Zecchina, “Survey propagation: an
algorithm for satisfiability," Random Structures Algorithms, vol. 27, no. 2,
pp. 201-226, Mar. 2005.

[15] J. L. Massey, “Joint source and channel coding," Commun. Syst. Random
Process Theory, vol. 11, pp. 279-293, 1978.

[16] T. C. Ancheta, Jr., “Syndrome-source-coding and its universal general-
izations," IEEE Trans. Inf. Theory, vol. IT-22, no. 4, pp. 432-436, July
1976.

[17] E.-H. Yang and J. Kieffer, “Simple universal lossy data compression
schemes derived from the Lempel-Ziv algorithm," IEEE Trans. Inf.
Theory, vol. 42, no. 1, pp. 239-245, Jan. 1996.

[18] E.-H. Yang, Z. Zhang, and T. Berger, “Fixed-slope universal lossy data
compression," IEEE Trans. Inf. Theory, vol. 43, no. 5, pp. 1465-1479,
Sep. 1996.

[19] I. Kontoyiannis, “An implementable lossy version of the Lempel-Ziv
algorithm—part I: optimality for memoryless sources," IEEE Trans. Inf.
Theory, vol. 45, no. 7, pp. 2293-2305, Nov. 1999.

[20] A. Gupta, S. Verdù, and T. Weissman, “Rate-distortion in near-linear
time," IEEE International Symp. Inf. Theory, Toronto, Canada, July 2008.

[21] A. Gupta and S. Verdú, “Nonlinear sparse-graph codes for lossy com-
pression," IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 1961-1975, May
2009.

[22] S. Jalali and T. Weissman, “Rate-distortion via Markov chain Monte
Carlo," IEEE Trans. Inf. Theory, submitted for publication. [Online].
Available: http://arxiv.org/abs/0808.4156.

[23] S. B. Korada and R. Urbanke, “Polar codes are optimal for lossy source
coding," IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1751-1768, Apr.
2010.

[24] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[25] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. New York: Academic, 1981.

[26] T. Weissman and E. Ordentlich, “The empirical distribution of rate-
constrained source codes," IEEE Trans. Inf. Theory, vol. 51, no. 11, pp.
3718-3733, Nov. 2005.

[27] A. Kanlis, S. Khudanpur, and P. Narayan, “Typicality of a good rate-
distortion code" (in Russian), Probl. Pered. Inform. (Probl. Inf. Transm.),
vol. 32, no. 1, pp. 96-103, 1996.

[28] A. Barg and G. D. Forney, Jr., “Random codes: minimum distances and
error exponents," IEEE Trans. Inf. Theory, vol. 48, no. 9, pp. 2568-2573,
Sep. 2002.

[29] A. Dembo and I. Kontoyiannis, “Source coding, large deviations, and
approximate pattern matching," IEEE Trans. Inf. Theory, vol. 48, no. 6,
pp. 1590-1615, June 2002.

[30] R. Gallager, Information Theory and Reliable Communication. New
York: Wiley, 1968.

[31] S. Kudekar and R. Urbanke, “Lower bounds on the rate-distortion
function of individual LDGM codes," 5th International Symp. Turbo
Codes Related Topics, Lausanne, Switzerland, pp. 379-384, Sep. 2008.

[32] A. G. Dimakis, M. J. Wainwright, and K. Ramchandran, “Lower bounds
on the rate-distortion function of LDGM codes," IEEE Inf. Theory
Workshop, Lake Tahoe, CA, Sep. 2007.

[33] [Online]. Available: http://lthcwww.epfl.ch.research/ldpcopt

Zhibin Sun received the B.Eng. and M.A.Sc. de-
grees in electrical engineering from McMaster Uni-
versity, Hamilton, ON, Canada, in 2007 and 2009,
respectively. He joined the Department of Standards
and New Technology Engineering at Hydro One
Networks Inc., Toronto, ON, Canada, in 2009, where
he is now an Engineering Trainee.

Mingkai Shao received the B.Eng. degree in com-
puter engineering from Huazhong University of Sci-
ence and Technology, China, in 2004, and the M.Sc.
degree in computer science from Wuhan Univer-
sity, China, in 2006. He is currently pursuing the
Ph.D. degree in computer engineering at McMaster
University, Hamilton, ON, Canada. His research
interests include information theory and multimedia
communications.

Jun Chen (S’03-M’06) received the B.E. degree
with honors in communication engineering from
Shanghai Jiao Tong University, Shanghai, China, in
2001 and the M.S. and Ph.D. degrees in electrical
and computer engineering from Cornell University,
Ithaca, NY, in 2004 and 2006, respectively.

He was a Postdoctoral Research Associate in the
Coordinated Science Laboratory at the University
of Illinois at Urbana-Champaign, Urbana, IL, from
2005 to 2006, and a Josef Raviv Memorial Postdoc-
toral Fellow at the IBM Thomas J. Watson Research

Center, Yorktown Heights, NY, from 2006 to 2007. He is currently an
Assistant Professor of Electrical and Computer Engineering at McMaster
University, Hamilton, ON, Canada. He holds the Barber-Gennum Chair in
Information Technology. His research interests include information theory,
wireless communications, and signal processing.



SUN et al.: ACHIEVING THE RATE-DISTORTION BOUND WITH LOW-DENSITY GENERATOR MATRIX CODES 1653

Kon Max Wong (SM’81-F’02) received his
BSc(Eng), DIC, Ph.D., and DSc(Eng) degrees, all
in electrical engineering, from the University of
London, England, in 1969, 1972, 1974 and 1995,
respectively. He started working at the Transmission
Division of Plessey Telecommunications Research
Ltd., England, in 1969. In October 1970 he was
on leave from Plessey pursuing postgraduate studies
and research at Imperial College of Science and
Technology, London. In 1972, he rejoined Plessey
as a research engineer and worked on digital signal

processing and signal transmission. In 1976, he joined the Department of
Electrical Engineering at the Technical University of Nova Scotia, Canada,
and in 1981, moved to McMaster University, Hamilton, Canada, where he
has been a Professor since 1985 and served as Chairman of the Department
of Electrical and Computer Engineering in 1986-87, 1988-94 and 2003-08.
Professor Wong was on leave as Visiting Professor at the Department of
Electronic Engineering of the Chinese University of Hong Kong from 1997
to 1999. At present, he holds the Canada Research Chair in Signal Processing
at McMaster University. His research interest is in signal processing and
communication theory and has published over 250 papers in the area.

Professor Wong was the recipient of the IEE Overseas Premium for the best
paper in 1989, and is also the co-author of the papers that received the IEEE
Signal Processing Society “Best Young Author" awards of 2006 and 2008.
In 2009, he was awarded the Royal Academy of Engineering Distinguished
Visiting Fellowship, and he has also been named a recipient of the Alexander
von Humboldt Research Award for 2010. He is a Fellow of IEEE, a Fellow
of the Institution of Electrical Engineers, a Fellow of the Royal Statistical
Society, and a Fellow of the Institute of Physics. More recently, he has also

been elected as Fellow of the Canadian Academy of Engineering as well
as Fellow of the Royal Society of Canada. He was an Associate Editor of
the IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996-98 and served as
Chair of the Sensor Array and Multi-channel Signal Processing Technical
Committee of the IEEE Signal Processing Society in 2002-04. Professor
Wong was the recipient of a medal presented by the International Biographical
Centre, Cambridge, England, for his “outstanding contributions to the research
and education in signal processing" in May 2000, and was honoured with the
inclusion of his biography in the two books: Outstanding People of the 20th
Century and 2000 Outstanding Intellectuals of the 20th Century, published
by IBC to celebrate the arrival of the new millennium.

Xiaolin Wu (M’89-SM’96) got his B.Sc. from
Wuhan University, China in 1982, and Ph.D. from
the University of Calgary, Canada, in 1988, both
in computer science. Dr. Wu started his academic
career in 1988, and has since been on the faculty of
the University of Western Ontario, New York Poly-
technic University, and currently McMaster Univer-
sity, where he is a professor at the Department of
Electrical and Computer Engineering and holds the
NSERC-DALSA industrial research chair in Digital
Cinema. His research interests include multimedia

signal compression, joint source-channel coding, multiple description coding,
network-aware visual communication and image processing. He has published
over two hundred research papers and holds two patents in these fields. Dr.
Wu is an associate editor of IEEE TRANSACTIONS ON MULTIMEDIA and an
associate editor of IEEE TRANSACTIONS ON IMAGE PROCESSING.


