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ABSTRACT In this paper, we make an effort to improve the accuracy of small and medium object detections
of SSD (Single Shot Multibox Detector). To this end, we introduce a deconvolutional region magnification
procedure in which the existing layers in SSD play a role in the region proposal network and the proposed
regions are magnified for recognition. Moreover, features are also extracted from a shallow layer and a
new feature pyramid is constructed on top of these structures. Then, features are contacted and fed into
classification and regression modules as in SSD. The weights of the present model are obtained via a pre-
training-re-training strategy. By evaluating the model performance on a test set assembled by the samples
in the PASCAL VOC and MS COCO datasets, the present model shows that the mAPs (mean average
precisions) of small and medium object detections are 42.4% and 74.7% respectively, which are 27.1%
and 15.6% better than SSD. This proves the effectiveness of our proposed method.

INDEX TERMS Deep learning, object detection, SSD, deconvolution.

I. INTRODUCTION
Recognition of objects and regions in images along with their
location and classification is the central topic of computer
vision that has attracted enormous attention for decades.
Recently, significant improvement for object detection arises
due to the emergence of the deep learning techniques [1], [2],
which is a powerful method for learning feature represen-
tations automatically from raw input data. Basing on the
deep convolutional neural networks (CNNs), there is an
increasing number of models and applications devoted to
design the object detection system, the so-called object detec-
tor. The Overfeat Network [3] is the first Deep Learning
object detector which employs CNNs after a sliding win-
dow segmentation. It segments each image into several parts
and does classification on each part using an individual
CNN. Subsequently, the final location and classification pre-
dictions are generated by combining outputs of the previ-
ous two processes. The highly influential successors that
are designed basing on the pipeline of this two steps idea
include the Region Convolutional Network (R-CNN) [4], the
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Fast-RCNN [5], the Faster-RCNN [6], as well as the extended
faster-RCNN with a position-sensitive ROI (region of inter-
est) pooling [7]. Although these models have achieved better
accuracy, there are also certain models in which the predic-
tions of class probabilities and object locations are combined
into a single step. The single-step models have the advantage
of the real-time speed and memory saving while maintaining
competitive accuracy. The most popular single step object
detectors on the market are the Single Shot Multibox Detec-
tor (SSD) [8] and the You Only Look Once (YOLO) [9], [10].
The former is the first model to propose training on a feature
pyramid in which default boxes are generated from each grid
cell on each feature maps, and the later constructed in the
same vein as the former but with only one feature map for
classification and generated two default boxes for each grid
cell directly cropped on the input image. On the PASCAL
VOC2007 test, SSD can achieve 74.3% mAP (mean average
precisions) at 59 FPS (frames per second) on an Nvidia
Titan X for 300 × 300 input, outperforming state-of-the-art
methods [8]. Since there is only one early layer assigned to
collect low-lying features, the semantic information is not
enough resulting in poor performance on small and medium
object detections. A solution to this annoying issue is highly
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desirable. Nowadays, there are many improvements with
many refinements. For example, DSSD (Deconvolutional
SSD) in which the backbone network VGG16 is replaced
by a more powerful one (i.e., ResNet-101) and followed by
an hourglass network structure [11], RSSD (Rainbow SSD)
with a rainbow concatenation module [12], DSOD (Deeply
Supervised Object Detector) which is trained from scratch
and designs aDenseNet architecture to improve the parameter
efficiency [13], and FSSD (Feature Fusion SSD) with an
elaborately designed feature fusion module [14] are proposed
successively. For extensive reviews, see [15], [16].

Inspired by these advances, in this paper, we focus on
improving the performance of the small and medium object
detections of SSD. To achieve this, we propose a new method
in a way that combines the essence of region proposal net-
work (RPN) in faster-RCNN and deconvolution operation
in DSSD. To enhance small and medium object detections,
low-level features are extracted via a deconvolutional region
magnification procedure in which predicted boxes of SSD
layers are regarded as region proposals and a deconvolutional
layer is introduced to magnification. Our intuition is that
larger feature maps can lead to higher classification accu-
racy. On the other hand, the feature extraction is reinforced
with an existing convolutional layer in the backbone network
VGG16. This layer is superficial and more information about
small andmedium objects may be preserved. Features that are
obtained from newly added layers are contacted with features
from a newly created feature pyramid which is inspired by the
feature pyramid network (FPN) [17] and fed to classification
and regression. By a training strategy involving a pre-train
stage followed by a re-train stage, we obtain the weights of
the present model. It is shown that our strategy is an effective
way that makes mAPs of small and medium objects on the
test nearly 27.1% and 15.6% higher than SSD.

The paper is organized as follows. In the subsequent
section, we begin by reviewing the structure of SSD and
then describe the newly added layers with the underlying
motivation. In section 3, training and testing aremade, and the
outputs are provided. The performance of the present model
is compared not only with SSD but also with other state-
of-the-art SSD-based models that are designed for object
detection across different scales on both accuracy and speed.
The conclusion is given in Sec. 4.

II. MODEL
In this section, the architecture and salient properties of SSD
are briefly outlined. Then the main ingredients of our design
strategies are supplied and explained in detail.

A. SSD
In SSD, the idea of anchor boxes such as these in RPN and
multiscale features maps such as in the FPN are combined
to achieve a fast detection speed while still retaining a high
detection quality. The sketch of SSD architecture is shown
in Fig. 1, which includes a feature pyramid placed on top of a
backbone convolutional base (e.g., VGG16) and is followed

FIGURE 1. (Color online) Sketch of SSD. A feature pyramid consisting by
six convolutional layers is placed after a backbone network (VGG16).
Features extracted from this pyramid are fed into classification and
regression modules, and a non-maximum suppression (NMS) is also
applied.

FIGURE 2. (Color online) Visualization of feature maps and detection
results corresponding to layers conv4_3, fc7, and conv8_2 in SSD.

by non-maximum suppression (NMS) to produce the final
detection. In the feature pyramid architecture, each layer
plays a specific role to detect objects in different scales.

SSD generates the detection results directly from feature
maps in different levels. The low-lying featuremapsmay con-
tain essential location information, but the semantic and con-
text information may be insufficient. Besides, small objects
may lose their information when passes through the backbone
network resulting in some missing detections. In SSD, there
is only one low-level layer that is allotted to detect small
objects, i.e. conv4_3 in the existing VGG16. The detailed
information may not enough for correctly recognizing small
objects. However, there are five layers above conv4_3 with
decreasing size and resolution. These layers can give enough
information for large object detection but still insufficient for
medium object detection. For example, in Fig. 2, we visualize
feature maps with detection results from layers conv4_3,
fc7, and conv8_2 in SSD. It is shown that the confidence
for category cat is ranging from 0.1 to 0.36, and in certain
cases, the cat is incorrectly attributed as a person or dog.
The detection results from low-lying feature map conv4_3 are
even worst, where only one cat is correctly recognized with a
small confidence 0.1. If we set a confidence threshold higher
than that value, such as 0.3, there will be no recognition at all.
For other feature maps, the confidences are increased but the
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FIGURE 3. (Color online) Improvements for small and medium object detections. Here,
an enlarged feature map is obtained from the deconvolution layer Deconv2 that follows the
convolutional layer conv4_3, and features are also extracted from an existing layer
conv3_3 which is shallow than conv4_3.

accuracies are still worried. As a result, there is a large room
for improving the small and medium object detection under
the framework of SSD.

B. IMPROVEMENTS FOR SMALL AND MEDIUM OBDECT
DETECTIONS
The strategy to improve the detection of the small and
medium objects is twofold as sketched in Fig. 3. Additional
features are extracted from an existing layer conv3_3 in the
backbone network. The intuition is that small and medium
objects may not even have any information at the very top
layers. A shallow layer may reserve more information about
these objects. If the chosen layer is too shallow, it will be
not enough semantic information. Thus, we choose a lower
layer next to conv4_3 to reconcile this trade-off. Moreover,
the deconvolutional region magnification procedure on fea-
ture maps extracted by the layer conv4_3 is made. The
deconvolutional region magnification procedure includes a
series of operations and we elaborate in the following. The
deconvolution operation is taken to increase the resolution of
the feature maps. After the deconvolution operation, the size
of an output feature map d is increased as

d = s× (i− 1)+ k − 2p (1)

where s is the number of strides; k is the size of the deconvo-
lution filter; i is the size of the input feature map; p is the
number of zero padding. Since the original size of feature
maps corresponding to conv4_3 are 38 × 38, we introduce a
deconvolutional layer Deconv2 with s = 8, k = 6, and p = 1
giving rise to output feature maps of size 300×300. This size
is equal to the input image and features of small and medium
objects may be easily captured. The size of the low-lying
feature map is large, which may contain essential location
information, but the semantic and context informationmay be
insufficient. Therefore, the small objects are mainly detected

by the low-lying feature map, and the medium objects are
detected by the high-lying feature map. Same as the RPN in
Faster-RCNN, we introduce the concept of region proposal
which is just predicted boxes by SSD architecture remained
in our model. Then, the region proposals are mapped to the
enlarged feature maps according to the following formulae

rw = dw ×
fw
imgw

,

rh = dh ×
fh
imgh

(2)

where rw/h is the width/height of the region proposal on the
enlarged feature map; dw/h is the width/height of the region
proposal on the input feature map; fw/h is the width/height
of the input feature map; imgw/h denotes the size of the
input image. The proposed regions are cropped from the
enlarged feature map when all region proposals are mapped.
Amaximum pooling is applied to resize each proposed region
to 38× 38. Feature maps in other channels are all processed
by the same procedure. Although the final output of the
deconvolutional region magnification procedure has the same
size as the original conv4_3, it may contain more information
of the target object and makes the detection of small and
medium objects easier.

An example is shown in Fig. 4. After the backbone net-
work, an input image of size 300 × 300 turns out to be a set
of feature maps. We visualize one of them that associate with
conv4_3 as shown in Fig. 4(b). The deconvolutional layer
Deconv2 deconvolutes this feature map to the size 300×300.
After cropping and maximum pooling, the proposed region
returns to the size of 38×38. Notice that the activated region
in feature maps Fig. 4(b) and Fig. 4(d) have the same shape,
but feature map Fig. 4(d) contains more information that
makes the detection easy. In fact, the deconvolutional region
magnification procedure can be regarded as a ‘‘zoom in’’
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FIGURE 4. (Color online) Visualization of feature maps in the deconvolutional region
magnification procedure. Here, (a) is the input image of resolution 300 × 300, (b) is the feature
map corresponding to convolutional layer conv4 3, (c) is the deconvoluted feature map, and (d) is
the final output of the procedure.

operation. In the detection pipeline, feature maps correspond-
ing to conv4_3 are all replaced by those zoomed featuremaps.

C. ARCHITECTURE
The higher-level layers may contain more semantic informa-
tion and correspond to larger receptive field. Therefore, it is
responsible for the detection of large objects. However, in the
present model layers in SSD only plays a role of RPN such
that we need to design a new feature pyramid. To this end,
we gather all feature maps from existing layers Fc7, conv8_2,
conv9_2, conv10_2, and conv11_2 assembling a new feature
pyramid. To distinguish with SSD, layers in this new feature
pyramid are labeled as conv3, conv4, conv5, conv6, and conv7.
As shown in Fig. 5, these newly added layers not only have the
same hyper-parameters such as kernel size of filters but also
share the same weight and feature map as their counterparts
in existing SSD. For each grid on each feature map, default
boxes are generated in the same way as in SSD, and scores for
each category and offsets for bounding boxes are predicted.

The feature maps corresponding to the deconvolutional
layer Deconv2 should also be assigned with default boxes.
Since these feature maps are cropped from an enlarged one,
the mapping between the default box on a feature map and
the bounding box on an input image should be modified. This
mapping in SSD is expressed as

imgcx =
cx
fw
imgw, imgcy =

cy
fh
imgh,

xmin = imgcx −
wk
2
, xmax = imgcx +

wk
2
,

ymin = imgcy −
hk
2
, ymax = imgcy +

hk
2

(3)

where cx/y is the center coordinate of the default box on
the feature map; imgcx/cy is the center coordinate of the
bounding box; wk/hk is the width/height of the bounding
box with (xmin, ymin, xmax , ymax) being its top left and bottom
right coordinates. For a feature map after the deconvolutional
region magnification procedure, Eq. 3 should be modified as

f centerx = cx ×
x̄max − x̄min

fw
+ x̄min,

f centery = cy ×
ȳmax − ȳmin

fh
+ ȳmin (4)

where f centerx/y is the center coordinate of the bounding box
with (x̄min, ȳmin, x̄max , ȳmax) being its top left and bottom
right coordinates. Since additional layers are stacked on the
building block of SSD, we add seven convolutional layers
for classification and other seven convolutional layers for
bounding box regression. In each of these layers, we use 3×3
filter with Ln = k×4 andCn = k×c channels for location and
classification predictions, where c is the number of classes
and k is the number of default boxes on each grid. The default
boxes predicted scores and offsets for bounding boxes for
each layer are contacted and fed into a combined loss function
in the same way as SSD. With those improvements, we plot
the overall architecture of our model in Fig. 6. Here, layers
in SSD are depicted in the blue box, layers that improve
small and medium object detections are depicted in green
boxes, the new feature pyramid is depicted in the red box,
and classification and regression modules are depicted in the
yellow box.

D. LOSS FUNCTION
In this paper, amulti-task loss function is used [8]. The overall
loss function is the weighted sum of the confidence loss
(conf ) and the localization loss (loc):

L (x, c, l, g) =
1
N

(
Lconf (x, c)+ αLloc (x, l, g)

)
(5)

where N is the number of matched default boxes, if N = 0,
we set the loss to 0; α is the weight term of localization loss
which is set to 1.

The confidence loss is the softmax loss over multiple
classes confidences (c).

Lconf (x, c) = −
N∑

i∈Pos

xpij log
(
ĉpi
)
−

∑
i∈Neg

log
(
ĉoi
)

(6)

where ĉpi = exp (cpi )/
∑

p exp (c
p
i ); x

p
ij = {1, 0} is an indicator

for matching the i-th default box to the j-th ground truth box
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FIGURE 5. (Color online) A new feature pyramid on top of existing SSD. Here, new layers are
labeled as conv3, conv4, conv5, conv6, and conv7. Each of these layer plays the same role as its
counterpart in SSD.

FIGURE 6. (Color online) Sketch of present model. Here, we plot every component in
specific dashed boxes: (a) layers in SSD; (b) and (c) layers that improve small and medium
object detections; (d) the new feature pyramid; (e) classification and regression modules.

(g) of category p. cpi is the output value corresponding to the
i-th predicted box (l) of category p.

The localization loss is a Smooth L1 loss.

Lloc = (x, l, g) =
N∑

i∈Pos

∑
m∈{ cx,cy,w,h}

xkij smoothL1
(
lmi − ĝ

m
j

)
ĝcxj =

(
gcxj − d

cx
i

)
/dwi , ĝ

cy
j =

(
gcyj − d

cy
i

)
/dhi

ĝwj = log

(
gwj
dwi

)
, ĝhj = log

(
ghj
dhi

)
(7)

where Pos is the set of positive samples; ĝmj is the coordinates
of the corrected ground truth box;N is the number of matched

default boxes, if N = 0, we set the loss to 0. (cx, cy) is the
center of the default bounding box (d); w and h are the width
and height of the default box.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, we are in a position to perform the training
and examine the performance of the present model.

A. EXPERIMENTAL SETTING AND TRAINING STRATEGY
The code is built on Caffe [18]. We train the present model
on a computer with ubuntu16.04, Intel Xeon E5-2640 v4
CPU, and eight Nvidia Titan Xp GPUs with graphic mem-
ory of 12GB. To verify the efficiency of our model for the
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TABLE 1. Ablation experiment of medium object detection.

TABLE 2. Ablation experiment of small object detection.

experiments, the MS COCO evaluation metrics [19] are
adopted, which divide the objects into three scales accord-
ing to their areas: small (area < 322), medium (322 <

area < 962), large (area > 962). According to these eval-
uation metrics, we select seven classes (i.e., bicycle, bus,
car, cat, dog, motorbike, and person) from PASCAL VOC
and MS COCO datasets, which all meet the definition of
the small and medium objects. Moreover, the number of
small and medium objects within these classes is larger than
other classes. By these pictures, we assemble a pre-training
dataset on which layers within SSD is pre-trained using the
same training policy as in Literature [8]. In the following,
the pre-trained SSD is also called SSD although its weights
are different from that in Ref. [8]. Then, we pick up 3376 pic-
tures from PASCAL VOC and MS COCO assembling a
re-training dataset. The present model with weights from
pre-training is re-trained on this dataset. The parameters for
all the newly added convolutional layers are initialized with
the xavier method [20]. During the pre-training, we mini-
mize the joint localization and confidence loss. We apply
the same matching strategy, hard negative mining strategy,
and data augmentation as described in Ref. [8]. Using the
SGD (stochastic gradient descent) with initial learning rate
10−4, 0.9 momentum, 0.0005 weight decay, and batch size
20, the optimization is done after 120000 iterations. During
the re-training, no data augmentation is involved, and the
optimization is achieved after 47600 iterations. We select
423 images with small objects and 456 images with medium
objects for testing from the PASCAL VOC and the MS
COCO. The present model is evaluated on a computer with
ubuntu16.04, Intel Core i5-7400 CPU, and Nvidia GeForce
GTX1060 GPU with graphic memory of 6GB. In the rest of
this section, we visualize the detection results of our model
for small and medium objects and compare the results with
SSD. Furthermore, comparisons of overall performance on
timing and accuracy between the present model, SSD, and
other methods are made.

B. ABLATION STUDY
We investigate the effectiveness of different components
of our model by the ablation study. The experimental

results are shown in Table 1 and Table 2. ‘‘Deconvolu-
tion’’ refers to introduce a deconvolutional layer to magnify
the low-resolution feature map. The deconvolution helps to
improve the mAP of the small and medium object detec-
tion of SSD for 14.4% and 6.6%, respectively, because the
larger feature mapsmay lead to higher classification accuracy
for small and medium object detection. ‘‘Region proposal’’
means that we select the exiting layers in SSD that play
a role of the region proposal network and the proposed
regions aremagnified for recognition. By adding the ‘‘Decon-
volution’’ and ‘‘Region proposal’’, the model performance
increase from 15.3%mAP to 34.2%mAP for small objects as
shown in Table 2. Moreover, our model increases the perfor-
mance by 8.2% for the medium objects as shown in Table 1.
‘‘Feature pyramid’’ represents a new feature pyramid that
is constructed by the shallow layers. Since the feature map
generated by the newly created feature pyramid not only
preserves the features of small objects but also improves the
accuracy of the object classification, the mAP is improved
by 20.8% and 10.4% for the small and medium objects,
respectively.

C. RESULTS AND DISCUSSIONS
We illustrate some detection examples of specific layers
in Fig. 7 and Fig. 8. For a covered object car in Fig. 7,
the detection result corresponding to layer conv4_3 in SSD
is plotted in the right panel, and the left panel shows
the detection result corresponding to layer Deconv2 in the
present model. It is shown that the bounding box given by
SSD does not match the object size exactly, and the cor-
responding confidence is 0.02. However, the output of the
present model not only matches the correct object size but
also gives a confidence increasing nearly 6×. For dense
objects in Fig. 8, i.e. peoples in the picture, the detection
results of SSD are compared with the present model. Here,
panels (a), (b), and (c) correspond to layers Fc7, conv8_2,
and conv9_2 in SSD, and panels (d), (e), and (f ) correspond
to layers conv3, conv4, and conv5 in the present model. Notice
that the dense medium object detection due to the layers Fc7,
conv8_2, and conv9_2 is not satisfactory. There are numerous
people that are not recognized by the detector. As can be
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FIGURE 7. (Color online) Detection results for a covered object generated by low-level feature
maps. Here, the left panel shows the result corresponding to layer conv4_3 in SSD, and result
corresponding to layer Deconv2 in the present model is provided in the right panel.

FIGURE 8. (Color online) Detection results for dense objects generated by high-level feature
maps. Here, panels (a), (b), and (c) correspond to layers Fc7, conv8_2, and conv9_2 in SSD,
and panels (d), (e), and (f) correspond to layers conv3, conv4, and conv5 in the present
model.

seen in panels (d), (e), and (f ), the present model works
remarkably well for recognizing those objects especially
when peoples are shaded from others or far away from the
camera.

Examples of detecting output of SSD and present model
with scores higher than 0.3 are demonstrated in Fig. 9. Here,
green bounding boxes represent the objects that are recog-
nized by the present model but missed by SSD, yellow bound-
ing boxes represent fault recognition by SSD, and purple
bounding boxes represent the recognitions of the present
model that have higher confidence than SSD. Fig.9 nicely
proves the effectiveness of improvements we made that
indeed result in better discrimination of the detector.

The average precision (AP) for a specific category and
the mAP for all categories are effective metrics to evaluate

object recognition models. We calculate the AP and mAP
of the present model and other models, and the results are
shown in Table 3 and Table 4. According to the code in
literature [14], we reproduce a very recently developed ver-
sion of SSD, i.e. FSSD. This model introduces an elaborately
designed feature fusion module in which features from differ-
ent layers in the feature pyramid are concentrated. A new fea-
ture pyramid is then established by pooling the concentrated
feature maps to various sizes. Each of these feature maps may
include vital location and semantic information. Using the
same training strategy and testing data, we obtain the detec-
tion results of several other state-of-the-art SSD-based object
detectors that are for object detection across different scales
are also provided in Table 3 and Table 4. Here, outputs for
medium objects are provided in Table 1 with the confidence
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FIGURE 9. (Color online) Detection examples in our testing dataset with SSD and present
model. Here, bounding boxes of different colors correspond to various detection outputs:
green for missing recognitions by SSD, yellow for fault recognitions by SSD, and purple for
recognitions that have higher confidence than SSD.

TABLE 3. Average precision of medium object detection for every category and mean average precision (mAP) for all categories. Here, the confidence
threshold is taken as 0.3.

TABLE 4. Average precision of small object detection for every category and mean average precision (mAP) for all categories. Here, the confidence
threshold is taken as 0.1.
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TABLE 5. Comparison of true positive rate (TPR) for class person between different models.

TABLE 6. Comparison of detection speed (measured in FPS) between different models.

higher than 0.3, and Table 4 displays small object detection
with the confidence higher than 0.1. From Table 3 we note the
obvious increase in the values of mAP. Particularly, the mAP
for medium object detection of the present model increases
by 15.6% compared to SSD. In addition, the results of our
model are also higher than other methods. A similar tendency
can also be found in the small object detections as shown
in Table 4, where the mAP increases by 27.1% compared to
SSD. Even though compared with the recent state-of-the-art
model TDFSSD, our model’s mAP exceeds the TDFSSD
by 3.1%.

To examine the sensitivity for a specific category such
as pedestrians, from MS COCO we pick up 1100 pictures
including persons in various sizes and positions. Using these
pictures, we calculate the true positive rate (TPR) which is
defined as

TPR =
TP

TP+ FN
(8)

where TP is the number of true positive recognitions and
FN is the number of false negative recognitions. The result
is listed in Table 5. Notice that the TPR of our model has
increased by 10.0% compared to SSD. Our model takes the
first place in the state-of-the-art methods except AugFPN.

The detection speed is another critical criterion for
an object detector that may have potential application in
a real-time system, and it is often measured in FPS.
Table 6 shows the comparison of detection speed between
SSD, our model, and the other models on our testing environ-
ment. It is shown that FSSD can run at 48 FPS little slower
than SSD that can run at 55 FPS. However, our model has
a speed drop relative to previous models. The FPS of the
present model is 24. For a single image, our model con-
sumes more time twice than the previous models. As a matter
of fact, speed vs. accuracy is the main trade-off of object
detectors. The newly added layers that help to improve the
performance on accuracy also deepen the network.With these
layers, the model needs more calculation during forward and
backward propagations, resulting in poor performance on
training and inference speed. Since a typical video frame
stream is usually 25 FPS, the present model could still satisfy
the requirement of real-time detection.

IV. CONCLUSION
In summary, we have added a series of improvements
on the existing SSD architecture. These improvements

manage to increase the accuracy on small and medium object
detections significantly over previous attempts. Our improve-
ments include using an extra shallow layer in the backbone
network, using a deconvolutional region magnification pro-
cedure to magnify low-level feature maps, and constructing
a new feature pyramid on top of the existing SSD structure.
With these modifications, we can achieve a dramatically
improved performancemuch better than SSD even training on
a dataset with a small number of samples. However, the newly
added layers consume a lot of time resulting in the speed
dropped by half, whereas it is still fast enough for real-time
applications. In the future, it is worth to enhance our model
with much stronger backbone networks such as ResNet [23]
and DenseNet [24], and design a lightweight version of the
model that is more appropriate for embedded systems.
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