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On the Duality Between Slepian–Wolf Coding and
Channel Coding Under Mismatched Decoding

Jun Chen, Member, IEEE, Da-ke He, and Ashish Jagmohan

Abstract—In this paper, Slepian–Wolf coding with a mis-
matched decoding metric is studied. Two different dualities
between Slepian–Wolf coding and channel coding under mis-
matched decoding are established. These two dualities provide a
systematic framework for comparing linear Slepian–Wolf codes,
nonlinear Slepian–Wolf codes, and variable-rate Slepian–Wolf
codes. In contrast with the fact that linear codes suffice to achieve
the Slepian–Wolf limit under matched decoding, the minimum
rate achievable with nonlinear Slepian–Wolf codes under mis-
matched decoding can be strictly lower than that achievable with
linear Slepian–Wolf codes.

Index Terms—Belief propagation, channel coding, duality, mis-
matched decoding, Slepian–Wolf coding.

I. INTRODUCTION

C ONSIDER a joint stationary and memoryless process
over finite alphabet with zero-order

probability distribution . Let and be the marginal
distributions induced by . Without loss of generality, we
assume for all .

In its most basic form, Slepian–Wolf coding refers to
the following problem. The encoder compresses

and sends the compressed data to the
decoder so that the decoder, given the side information

, can recover with asymptotically
zero error probability as goes to infinity. Let
be the encoding function. It is clear that given and

, the optimal decoding rule, also known as the matched
decoding rule, is

However, in practice, may not be known perfectly. There-
fore, it is of considerable interest to study the performance of
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Slepian–Wolf coding with a mismatched decoder (i.e., a prob-
ability distribution , different from , is used for de-
coding). In this case, the decoding rule becomes

(1)

A decoding error is declared if the minimizer is not the correct
or the minimizer is not unique. We will refer to as

the decoding metric.1 We assume that only if
for .

An interesting fact about Slepian–Wolf coding under matched
decoding is that the minimum rates achievable with different
types of codes (variable rate or fixed rate, nonlinear or linear)
are the same. Therefore, it is of considerable interest to examine
whether this fact continues to hold in the mismatched decoding
scenario. We will show that under mismatched decoding, the
minimum rate achievable with variable-rate Slepian–Wolf codes
is the same as that achievable with fixed-rate Slepian–Wolf codes
while the minimum rate achievable with nonlinear Slepian–Wolf
codes can be strictly lower than that achievable with linear
Slepian–Wolf codes. Therefore, linear Slepian–Wolf codes
might not be as efficient and robust as nonlinear Slepian–Wolf
codes under mismatched decoding.

It is well known that under matched decoding, Slepian–Wolf
coding for source with decoder side information is related
to channel coding for channel (i.e., the channel from
to induced by the joint distribution ). This connection
was already noticed in the seminal work by Slepian and Wolf
[1] and was later formalized by Csiszár and Körner [2] and by
Ahlswede and Dueck [3].

Wolf pointed out in [4] that their work [1] was inspired by
the following simple example, which will be referred to as the
binary source example. Consider the case where ,
where , and are binary, is independent of , and
is the modulo-2 addition. Assume that has a Bernoulli dis-
tribution with parameter ; therefore, the channel
from to (i.e., ) is a binary symmetric channel with
crossover probability . Note that here and do not need
to be uniformly distributed. Slepian and Wolf observed that for
this example the cosets induced by a good linear code for binary
symmetric channel with crossover probability yield a good
Slepian–Wolf code for source with decoder side information

. This example was later popularized by Wyner [5] (see also
[6] and [7]).

A careful reader might have noticed that in the binary source
example the linear code is designed for channel , not

1Through this paper, the term “metric” is used in a broad sense as any non-
negative-valued function on � � � .
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. Indeed, is not a binary symmetric channel if (and
consequently, ) is not uniformly distributed; furthermore, in
this example, a good linear code for channel , in general,
does not yield a good linear Slepian–Wolf code for source
with decoder side information . Therefore, it seems that there
is an inconsistency with the aforementioned connection between
Slepian–Wolf coding and channel coding. However, it should
be noted that the connection between Slepian–Wolf coding for
source with decoder side information and channel coding
for channel is established [2], [3] using nonlinear codes.
Therefore, there is no essential inconsistency; rather, it suggests
that the connection between Slepian–Wolf coding and channel
coding is quite subtle, depending on the type of codes used.

We will clarify this subtle issue in the general setting of mis-
matched decoding. To this end, it is worthwhile to first have a
review of previous work on channel coding with a mismatched
decodingmetric.Notableresults in thisarea includevarious lower
bounds on the mismatch capacity, such as the Csiszár–Körner–
Hui lower bound [8], [9] and the generalized mutual information
[10]. In a remarkable paper [11], Balakirsky proved that the
Csiszár–Körner–Hui lower bound is tight for binary-input chan-
nels. However, a computable characterization of the mismatch
capacity is still unknown in general. Indeed, it was shown in
[12] that a complete solution to this problem would resolve the
long-standing problem of computing the zero-error capacity.

It will be seen that Slepian–Wolf coding under mismatched
decoding is closely related to its counterpart in channel coding.
However, the connection between these two coding problems
depends critically on the type of codes used. Specifically, we
will establish two different dualities between Slepian–Wolf
coding and channel coding under mismatched decoding,
namely, the type-level duality and the linear codebook-level
duality. The type-level duality is relevant for variable-rate codes
and fixed-rate nonlinear codes while the linear codebook-level
duality is tailored for linear codes. The type-level duality
strengthens and extends the duality results in [2] and [3]. The
linear codebook-level duality generalizes the insight obtained
from the binary source example by Slepian and Wolf as well
as the related results in the case where the side information

is absent [13], [14]. These two dualities together provide
a systematic framework for comparing the performance of
linear Slepian–Wolf codes, nonlinear Slepian–Wolf codes, and
variable-rate Slepian–Wolf codes.

Although we mainly focus on obtaining a fundamental under-
standing of Slepian–Wolf coding under mismatched decoding
by leveraging its duality with channel coding, our results also
provide a new perspective on the existing results in channel
coding. For example, 1) we show that the Csiszár–Körner–Hui
lower bound and the generalized mutual information for a class
of channels and decoding metrics can be naturally interpreted
as the achievable rate of linear codes; and 2) a result by Csiszár
and Narayan [12] regarding the equivalence between the posi-
tivity of the Csiszár–Körner–Hui lower bound and that of the
mismatch capacity finds an interesting application to linear
Slepian–Wolf codes.

The rest of the paper is divided into four sections. We intro-
duce a few basic definitions in Section II. In Section III, we es-
tablish the type-level duality between Slepian–Wolf coding and

channel coding, which is then leveraged to characterize the min-
imum rate achievable with fixed-rate Slepian–Wolf codes and
variable-rate Slepian–Wolf codes under mismatched decoding.
The linear codebook-level duality is established in Section IV.
It is revealed that the minimum rate achievable with nonlinear
Slepian–Wolf codes under mismatched decoding can be strictly
lower than that achievable with linear Slepian–Wolf codes. It
is also shown that the linear codebook-level duality continues
to hold under mismatched belief propagation (BP) decoding.
We conclude the paper in Section V. Throughout this paper, the
logarithm function is to the base two unless specified otherwise.

II. DEFINITIONS

A fixed-rate Slepian–Wolf code is a mapping from
to a set . The rate of is defined as

Let denote the decoding error probability
of Slepian–Wolf code under decoding metric . A
variable-rate Slepian–Wolf code is a mapping from
to a binary prefix code . Let denote the length of
binary string . The rate of variable-rate Slepian–Wolf
code is defined as

The decoding error probability of variable-rate Slepian–Wolf
code under decoding metric is denoted as

.
We say rate is achievable with fixed-rate Slepian–Wolf

codes under decoding metric if for any , there exists
a sequence of fixed-rate Slepian–Wolf codes such that

The minimum rate achievable with fixed-rate Slepian–Wolf
codes under decoding metric is denoted as

. The minimum rate achievable with
variable-rate Slepian–Wolf codes under decoding metric ,
denoted as , is similarly defined (with
replaced by in the above definition). It should be obvious
from the definition that

It turns out that a good way to understand Slepian–Wolf
coding with a mismatched decoding metric is to study the
connection with its counterpart in channel coding. The method
of types will be needed to establish such a connection. To set
up the necessary background, we will introduce a few basic
definitions from [2] and [15]. Let denote the set of all
probability distributions on . For any , define

. The type of a sequence
, denoted as , is the empirical probability distribu-

tion of . Let denote the set consisting of the possible
types of sequences . For any , the type
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class is the set of sequences (in ) of type . We will
frequently use the elementary results listed below

In channel coding, given channel , code-
book , and channel output , the optimal de-
coding rule is

In channel coding, mismatched decoding refers to the scenario
in which the decoder uses a decoding metric that is dif-
ferent from . In this case, the decoding rule becomes

(2)

A decoding error is declared if the minimizer is not the trans-
mitted codeword or the minimizer is not unique. We will as-
sume that only if for

. The rate of block channel code is defined
as

Let denote the maximum decoding error
probability of block channel code under decoding metric

. We say rate is achievable with block channel codes
under decoding metric if for any , there exists a
sequence of block channel codes such that

The maximum rate achievable with block channel codes under
decoding metric , denoted as , is re-
ferred to as the mismatch capacity.

For any , we say rate is achievable with constant
composition codes of type approximately under decoding
metric if for any , there exists a sequence of channel
codes with for some such that

where is the norm. The maximum rate achievable with
constant composition codes of type approximately under de-
coding metric is denoted as .

Proposition 1:
.

Remark: This result is a simple consequence of the well-
known fact that a block code can be reduced to a constant com-

position code with negligible loss of rate when the block length
is long enough.

Proposition 2: The function is
continuous with respect to in the sense that for any

and , there exists a such
that
for all with .

Proof: Define . For any
and , we can find a such that

for all with .
Let be an arbitrary probability distribu-

tion satisfying . By the definition of
, there exists a sequence of channel

codes with for some such that

Given each , we can construct a constant composition code
of length and type for some

by appending a fixed string in to each code-
word in such that

It is easy to see that
for all . Moreover

Now by the definition of , we must have

It follows by symmetry that

Since is arbitrary, the proof is complete.

III. TYPE-LEVEL DUALITY

The key result of this section is Theorem 1, which reveals
an intimate formula-level connection between Slepian–Wolf
coding and channel coding under mismatched decoding. It will
be clear from the proof that the formula-level connection can be
viewed as a manifestation of the more fundamental type-level
duality between Slepian–Wolf coding and channel coding.
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Let and be the conditional probability distri-
butions of given induced by and , respectively.
Roughly speaking, the type-level duality stands for the fol-
lowing connection between Slepian–Wolf coding and channel
coding.

1) Given a sequence of constant composition codes of rate
approximately and type approximately with dimin-
ishing maximum decoding error probability for channel

under decoding metric , one can construct
a sequence of Slepian–Wolf codes of rate approximately

with diminishing decoding error probability
for source distribution under decoding metric .

2) Given a sequence of Slepian–Wolf codes of rate approxi-
mately with diminishing decoding error probability for
source distribution under decoding metric , one
can lift out a sequence of constant composition codes of
rate approximately and type approximately

with diminishing maximum decoding error probability
for channel under decoding metric .

Under matched decoding, the duality between Slepian–Wolf
coding and channel coding is well known (e.g., see [2, Th. 1.2,
p. 238], [2, Problem 2, p. 262], and [3, Th. 1]). In particular,
a strong connection between Slepian–Wolf coding and channel
coding was established in [3] using the covering lemma [16].
Here, we will also make use of the covering lemma to estab-
lish the type-level duality between Slepian–Wolf coding and
channel coding in the context of mismatched decoding. How-
ever, our proof has several noteworthy differences from that in
[3] even when specialized to the matched decoding scenario.

1) For the direct part (i.e., from channel code to Slepian–Wolf
code) in [3], the Slepian–Wolf code is constructed using a
polynomial number of channel codes (one for each type
class) that have no explicit relationship. In contrast, the
channel codes we use are lengthened versions of a single
constant composition code.

2) The converse part (i.e., from Slepian–Wolf code to channel
code) in [3] is for fixed-rate Slepian–Wolf codes while our
converse part holds for variable-rate Slepian–Wolf codes
(and consequently, holds for fixed-rate Slepian–Wolf codes
as well).

Theorem 1:
.

Proof: We will first show that
. By the definition of

, for any , there exists a se-
quence of channel codes with for some

such that

Define

Since and for all ,
there exists an such that

for all , which further implies

for all . Let . For any and
, we can construct a constant composition code

of length and type by appending a fixed string in
to each codeword in . Since the appended fixed string

does not affect the decoding rule (2), it follows that

(3)

for all . By the covering lemma [16], for each
, there exist permutations of the

integers such that

where

Note that

(4)
for all , which is due to the fact that the decoding
rule (2) is invariant under permutation. Intuitively, we
can view as a partition2

of . Now construct fixed-rate Slepian–Wolf code
as follows.

1) The encoder sends the type of (i.e., ) to the de-
coder.

2) If , the encoder sends an arbitrary symbol (say,
1) to the decoder.

3) If for some , the encoder finds the
set that contains and sends the index
to the decoder.

Since the decoder knows type of , the decoding rule
(1) depends on only through . Now it is
easy to see that conditioned on ,
the decoding error probability is bounded from above by

. Therefore, in view of (3) and
(4), we have

2The overlapped part between � �� �� �� and � �� �� �� for different �
and � can be split in an arbitrary manner.
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Now it can be readily shown by invoking the weak law of large
numbers that

Since and for
, it follows that

By the definition of , we must have

Since can be arbitrarily close to zero, we obtain the desired
result.

Now we proceed to show that
. By the definition of

, for any , there exists a sequence of
variable-rate Slepian–Wolf codes such that

(5)

(6)

For each , suppose partitions
into disjoint subsets .
Since is a prefix code, it follows that conditioned on

, the expected length of is bounded from
below by the entropy of the partition of induced by

, i.e.,

Therefore, we have

It is also easy to see that

Define

Note that

where
. In view of (5), we have

(7)

Similarly
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where
. Therefore, for , we have

(8)

It is also easy to show by the weak law of large numbers that

(9)

Choose a positive number such that

Define
. By (7)–(9), it is easy to see that is nonempty

for all sufficiently large . Let . For each
sufficiently large and an arbitrary from ,
we can construct a constant composition code of length

and type for some by appending a
fixed string in to each sequence in such that

We retain the best half of the codewords in and denote the
resulting codebook by . Note that

Therefore, we have

Moreover, it is easy to see that

Now by the definition of , we must
have

Since is arbitrary, this completes the proof.

Remark: Although the minimum rate achievable with fixed-
rate Slepian–Wolf codes is the same as that with variable-rate
Slepian–Wolf codes, it does not mean that the attention can be
restricted to fixed-rate codes with no loss of optimality. In fact, it
has been shown [17] that variable-rate Slepian–Wolf codes can
significantly outperform fixed-rate Slepian–Wolf codes in terms
of rate-error tradeoff under matched decoding.

Theorem 1 implies that and
depend on only through .

Moreover, it is easy to see from the decoding rule (1) that
and depend on

only through , where is the conditional
probability distribution of given induced by .
Therefore, for any probability distributions
with the property that only if
for and , we have

if or , where and
are the conditional probability distributions induced by

.
Define ,

where the minimization is over the probability distributions
satisfying:

1) for all ;
2) for all ;
3)

.
Note that is often referred to as the
Csiszár–Körner–Hui lower bound on the mismatch capacity.
Specifically, it was shown [8], [9] (cf., [12, Proposition 1]) that

Moreover, for , we have
[11]. Therefore, it is straightforward

to obtain the following result.
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Corollary 1:
, where the inequality can

be replaced by equality if .

Remark: It is easy to verify that

where is the joint probability distribution of , and the
maximization is over satisfying:

1) for all ;
2) for all ;
3)

.

IV. LINEAR CODEBOOK-LEVEL DUALITY

It is worth noting that the channel codes we used to construct
Slepian–Wolf codes in the proof of Theorem 1 are constant com-
position codes, which are nonlinear; consequently, the resulting
Slepian–Wolf codes are also nonlinear. Due to the wide appli-
cability of linear codes in Slepian–Wolf coding and channel
coding, it is natural to ask whether the duality established in the
previous section continues to hold in the linear coding frame-
work. The answer turns out to be negative. Indeed, even under
matched decoding, the cosets induced by a good linear code for
channel may not be a good Slepian–Wolf code for source

with decoder side information ; see [18] for a detailed dis-
cussion. It will be shown that in the linear coding framework,
the type-level duality is replaced by a fundamentally different
linear codebook-level duality.

Without loss of generality, we henceforth assume that
. A linear channel code of length

over is a subgroup of , where is the group of -tuples
of elements of with componentwise modulo- addition.
Moreover, for any linear code over , we have

for some parity check matrix . We
will denote modulo- addition, subtraction, and multiplication
by , and , respectively.

A channel with input alphabet and output alphabet
is cyclic symmetric if it can be written as

, where the channel input is independent of . De-
fine two cyclic–symmetric channels and by set-
ting the joint probability of to be and , re-
spectively. Given a linear channel code with parity check
matrix , the induced linear Slepian–Wolf code is specified
by the mapping with for
all . Let denote the minimum rate
achievable with linear Slepian–Wolf codes over for source
distribution under decoding metric . Similarly, let

denote the maximum rate achievable with
linear channel codes over for channel under decoding
metric . Note that in the type-level duality, the channels of
intrinsic importance are and ; in contrast, the role
of and , in a certain sense, is replaced by
and in the linear coding framework as shown by the fol-
lowing result.

Theorem 2:
.

Proof: Given a linear channel code over with parity
check matrix , the rate of the induced Slepian–Wolf code

is related to the rate of by

(10)

For any , and , we have

where the last equality follows from the fact that
. It is easy to see that a

decoding error in Slepian–Wolf coding leads to a decoding error
in channel coding, and vice versa; moreover, in this channel
coding problem, the decoding error probability does not depend
on the transmitted codeword. Therefore, we have

(11)

The proof is complete by combining (10) and (11).

Remark: For the binary source example considered by
Slepian and Wolf (see Section I), it can be verified that under
matched decoding, both and degenerate to
(i.e., a binary symmetric channel with crossover probability ).
Theorem 2 can also be viewed as a generalization of the duality
results in [13] and [14] for the case where the side information

is absent.

The purpose of introducing this linear codebook-level duality
is twofold.

1) The linear codebook-level duality can be used as a tech-
nical tool. Specifically, it allows us to show that under mis-
matched decoding, the minimum rate achievable with non-
linear Slepian–Wolf codes can be strictly lower than that
achievable with linear Slepian–Wolf codes.

2) The linear codebook-level duality can also be used as a
design tool. It will be seen that under mismatched BP
decoding, we can convert the Slepian–Wolf code design
problem to the well-investigated channel code design
problem by leveraging the linear codebook-level duality.

Now we proceed to derive the first main result of this section,
namely, the suboptimality of linear Slepian–Wolf codes under
mismatched decoding. Along the way, we will establish lower
and upper bounds on , which are of interest
by themselves.

Since , it follows
from Theorem 2 that

(12)

which yields a lower bound on .
We will derive a computable upper bound on

. For any , let be
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the probability distribution of induced by and ,
i.e., for all . Define

, where
the minimization is over the distributions
satisfying:

1) for all ;
2)

.
Note that is known as the general-
ized mutual information. Moreover, we have [10]

Theorem 3: Let be the uniform distribution over .
1) .
2) ,

where is the joint probability distribution of , and
the maximization is over satisfying:

a) for all ;
b)

;
specifically, if and only if

if , then

where

and is determined by the constraint

Proof: See the Appendix.

To derive an upper bound on , we need the
following fundamental lemma from [14].

Lemma 1: Let denote for each joint
type the number of pairs

such that for some with
the relation holds.

If is a prime number, then for arbitrary positive integers
and , there exists a linear Slepian–Wolf code
such that for every joint type

if , where and .

Theorem 4: If is a prime number, then

Remark: It follows from Theorem 3 that
, where

is the joint probability distribution of , and the maxi-
mization is over satisfying:

1) for all ;
2)

.
In view of the remark after Corollary 1, we have

Proof: By Theorem 2, it suffices to show that
.

Note that

where is the set of joint types
satisfying

. Using the linear
Slepian–Wolf code as specified in Lemma 1, we
have

Now it can be readily seen that for any , if
for all sufficiently large

, then . The proof is com-
plete.
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By the definition of and
, it is obvious that

Note that under matched decoding, linear codes suffice to
achieve the Slepian–Wolf limit, i.e.,

Therefore, it is natural to ask whether the equality continues to
hold under mismatched decoding. The answer turns out to be
negative as shown below.

It is known [12] that if and only if
for some such that

for some . Note that by (12),
implies .

On the other hand, we have
, where the second inequality is strict unless is the

uniform distribution over . Therefore, the following result fol-
lows immediately.

Corollary 2: We have
under the conditions:

1)

for all such that
for some ;

2) .

It is worth emphasizing that different from
and

does depend on . Note that for
the case , we have

(13)

(14)

(15)

where (13) is due to (12), (14) is due to Theorem 4, and
(15) is due to Theorem 3. Since
if and only if [12], it
follows that if and only if

. In view of Theorem 3, we
have the following result.

Corollary 3: For the case , given , we have
if

and if

The reason why can be greater than
is that linear Slepian–Wolf codes do not carry the type

information of . This problem can be remedied by adding an
overhead that indicates the type of to linear Slepian–Wolf
codes. Since , the impact of this
overhead on the code rate is negligible as . We will refer
to the resulting codes as pseudolinear Slepian–Wolf codes.

Theorem 5: The rate
is achievable with pseudolinear Slepian–Wolf codes under de-
coding metric if is a prime number.

Proof: Let be a pseudolinear Slepian–Wolf code
consisting of a linear Slepian–Wolf code as specified in
Lemma 1 and an overhead that indicates the type of . By the
argument similar to that in the proof of Theorem 4, we get

where is the set of joint types
satisfying

and .

Note that . Now it
can be readily seen that for any , if

for all sufficiently
large , then . The proof is
complete.

Now we proceed to show that the linear codebook-level du-
ality between Slepian–Wolf coding for source distribution
under decoding metric and channel coding for channel

under decoding metric continues to hold in the
scenario where the belief propagation algorithm is used for de-
coding. A weaker version of this result under matched BP de-
coding was established in [18] for the special case using
density evolution.

It is well known that each parity check matrix can be
represented by a Tanner graph with variable nodes and check
nodes. Let denote the set of check nodes that are connected to
variable node , and denote the set of variable nodes that are
connected to check node . We use , the entry of , to
label the edge connecting variable node and check node . Let

be the realization of , and define . Also, let
be the transmitted codeword, and be the realization of .

In Slepian–Wolf coding, the initial message at variable node
, denoted as , is given by

where for all . In channel
coding, the initial message at variable node , denoted as ,
is given by
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where for all . It is
easy to see that

for all .
Now consider the message from check node to variable

node in the first iteration. In Slepian–Wolf coding, the mes-
sage, denoted as , is given by

where

In channel coding, the message, denoted as , is given
by

where

Note that

Then, consider the message from variable node to check
node in the first iteration. In Slepian–Wolf coding, the mes-
sage, denoted as , is given by

where

In channel coding, the message, denoted as , is given
by

where

Clearly, we have

By induction, for any iteration number , variable node , and
check node , we have

for all .
Suppose at the th iteration, a decision is to be made at

variable node by forming a decision vector. In Slepian–Wolf
coding, the decision vector, denoted as , is given by

where

In channel coding, the decision vector, denoted as , is given
by

where

It is easy to see that

Note that if is maximized at , then
is maximized at , and vice versa, which implies that the
decoding error probabilities in these two problems must be the
same. One can readily develop the density evolution algorithm
for the channel coding problem,3 which, by the linear code-
book-level duality, yields the density evolution algorithm for
Slepian–Wolf coding under mismatched BP decoding. More-
over, it can be verified that the decoding metric determines the
set of possible values of the initial message while the source

3Note that the all-zero codeword assumption is valid in the current setting.
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distribution or the channel transition probability distribution de-
termines the distribution of the initial message over that set
of possible values. In view of the fact that channel code de-
sign using density evolution is a well-studied subject, the linear
codebook-level duality effectively provides a tool for designing
Slepian–Wolf codes.

V. CONCLUSION

Two different dualities between Slepian–Wolf coding and
channel coding under mismatched decoding are established. It
is shown that under mismatched decoding, the minimum rate
achievable with variable-rate Slepian–Wolf codes is the same
as that achievable with fixed-rate Slepian–Wolf codes while
the minimum rate achievable with nonlinear Slepian–Wolf
codes can be strictly lower than that achievable with linear
Slepian–Wolf codes.

APPENDIX

PROOF OF THEOREM 3

Let be the probability distribution of induced by
and . For any , we can write with

and . Recall that is the uniform distribution
over . Therefore, we have

1) Consider the optimization problem

(16)

where the minimization is over the distributions
satisfying:

a) for all ;
b)

.
Suppose the minimum in (16) is achieved at . Define

for all , and . It is easy to
verify that

for all . Moreover, we have

and

In view of the fact that is a convex function
of , the minimum in (16) is attained at . Since

by the definition of and
, we must have

2) For any conditional probability distribution , let
be the joint probability distribution over

induced by and . Consider the optimization
problem

(17)

where the minimization is over subject to the con-
straints:

a) for all ;
b)

.
Suppose the minimizer to (17) is given by . Define
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for all , and . It is easy to
verify that

for all . Moreover, we have the equation shown at
the bottom of the page. Since is
a convex function of , it follows that the minimum
in (17) is achieved at . Note that is a cyclic
symmetric channel; therefore, it can be written as

with specified by some probability
distribution . It is easy to verify that

Therefore, we can rewrite the minimization problem (17)
in the following equivalent form:

(18)

where is the joint probability distribution of ,
and the minimization is over with the
constraints:

a) for all ;
b)

.
It can be seen that the minimum in (18) is attained at .
Introducing Lagrangian multipliers and

, we define

The Karush–Kuhn–Tucker conditions yield

Therefore

If , then we must have

If , then for all and
, which implies .

Conversely, if , then
for all and .

and
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Therefore, the necessary and sufficient condition for
is

The proof is complete.
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