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Abstract: In this paper, a novel hyper-rectangle cover theory is developed. Two important concepts,
the cover order and the cover length, are introduced. We construct a specific échelon form of the matrix
in the same manner as that employed to determine the rank of the matrix to obtain the cover order
of any given matrix. Using the properties of the cover order, we obtain the necessary and sufficient
conditions for the existence and uniqueness of the solutions for linear equations system with non-
negativity constraints on variables for both homogeneous and nonhomogeneous cases. In addition, we
apply the cover theory to analyze some typical problems in linear algebra and optimization with
non-negativity constraints on variables, including linear programming (LP) problems and non-negative
least squares (NNLS) problems. For LP problems, the three possible behaviours of the solutions
are studied through cover theory. On the other hand, we develop a method to obtain the cover
length of the covered variable. In this process, we discover the relationship between the cover length
determination problem and the NNLS problem. This enables us to obtain an analytical optimal value
for the NNLS problem.

Keywords: hyper-rectangle cover; cover order; cover length; system of linear equations; non-negativity
constraints; non-negative least squares; linear programming
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1. Introduction

The problems with non-negativity constraints on variables play a prominent role
in engineering, physics, chemistry, computer science, and economics. These problems
with non-negative constraints often appear as (1) finding solutions for systems of linear
equations, (2) solving LP problems, and (3) finding solutions for NNLS problems [1].

The analysis of systems of linear equations is a fundamental part of linear algebra,
and forms the core of mathematical modelling of many different branches of science and
engineering such as, to name but a few, electric circuits, communications, radars, optics,
controls, etc. [2–6]. Lately, it has also been used to model the outbreak of COVID-19 and
calcium diffusion [7–9]. Thus, methods for finding the solutions of linear equations system
also play an important role in various applications [10]. Some mature methods have
been developed to analyze and solve systems of linear equations without non-negativity
constraints on the variables [11–13]. However, with non-negativity constraints added to the
variables, the analysis of the solutions to the linear equations becomes harder [14]. For such
problems, the classical analysis for the existence of non-negative solutions is mainly based
on Farkas’ lemma [15]. In terms of uniqueness, there is no direct characterization in the
general case. It is also noted that the analysis of non-negative solutions to the system of
homogeneous or nonhomogeneous linear equations is mostly concerned with investigating
other associated problems rather than addressing the problem in a direct way. Thus, a new
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approach is needed for the analysis of systems of linear equations with non-negativity
constraints on the variables.

LP problems arise in many applications [16]. Many problems can be reformulated as
linear programs both in theory and in practice so that fast algorithms can be applied [17–20].
Dantzig developed the simplex method in 1947, which was the first efficient method
for solving LP problems and has been widely accepted as a computational tool [21–23].
Geometrically, the procedure of the simplex method involves moving one feasible solution
to another and, for each step, the value of the objective function improves. This continues
until the optimum objective is reached. It would thus be desirable if we can determine the
optimal solution directly rather than moving through the feasible solutions for matrices
with some specific structures. In this paper, we propose a new systematic procedure for
solving the LP problem by applying cover theory using a transformed objective function.

The problem of NNLS is a type of least squares problem with non-negativity con-
straints on variables, which arises in applications throughout science and engineering.
Various methods have been proposed to solve this kind of problems, and they can nor-
mally be divided into three classes: active-set methods [24–26], iterative methods [27,28],
and other methods [29–32]. The first technique to solve the NNLS problem was proposed
by Lawson and Hanson in [33], which is a typical active-set method, and the corresponding
algorithm is named lsqnonneg in Matlab. This commonly used algorithm always converges
and terminates in finite steps; however, there is no upper limit on the possible number of
iterations that the algorithm might need to reach the point of the optimum value. In con-
trast to active-set methods, iterative methods enable one to incorporate multiple active
constraints at each iteration. Since most existing algorithms for solving the NNLS problem
are based on numerical analysis, we are motivated to propose a method to solve it from
the matrix perspective by applying the techniques we developed in cover theory. More
specifically, we solve the problem by investigating the structure of the matrix itself so as to
obtain the analytical optimal value of NNLS problem.

Overview of the Paper

In this paper, we establish the novel hyper-rectangle cover theory for which we obtain
the necessary and sufficient conditions that guarantee the existence and the uniqueness of
the solution for a system of linear equations with non-negativity constraints on variables.
A specific échelon form of the matrix is introduced and based on this form, and an efficient
method is developed to determine the cover order for any given matrix. Moreover, we
investigate in detail the structures of the échelon form in various cases leading to the
development of feasible solutions for the system of linear equations with non-negativity
constraints on variables. Parallel investigations are carried out for the LP problems. Based
on the échelon form and the corresponding results on the system of linear equations with
non-negative constraints, we also analyze the various possibilities of the solution for an
LP problem. Finally, we develop a method to determine the cover length of the covered
variables, establishing their strong relationship with the optimal objective value of NNLS
problems. Based on this relationship, a new method is derived to obtain the analytical
optimal value of NNLS problems.

Notation: Most notations used throughout this paper are standard: column vectors
and matrices are denoted by boldface lowercase and uppercase characters, respectively;
the matrix transpose is denoted by (·)T ; RN

+ denotes the set of all the N × 1 vectors with all
entries being non-negative.

2. Concept of Hyper-Rectangle Cover

In this section, we formally give the definition of hyper-rectangle cover [34,35].
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Definition 1. Given a matrix A ∈ RM×N and x ∈ RN
+ , xn is the n-th element in x for index

n ∈ {1, 2, · · · , N}. Let cn(xn) denote the smallest number cn such that{
x ∈ RN

+ : xTATAx ≤ 1
}
⊆
{

x ∈ RN
+ : xn ≤ cn

}
(1)

We say that xn is a covered variable if cn(xn) is finite and we refer to cn(xn) as the cover length
of the covered variable xn. The cover order of A, denoted by Rc(A), is the number of indices
n ∈ {1, 2, · · · , N} for which cn(xn) < ∞. We say that A has full cover if Rc(A) = N and has
zero cover if Rc(A) = 0.

The following nontrivial examples may serve as illustrations of the definitions of cover
order and cover length.

Example 1. Suppose that A =

(
1 2
2 1

)
, and we have ATA =

(
5 4
4 5

)
. For this matrix,{

x ∈ R2
+ : xTATAx ≤ τ2} is an ellipse in the whole plane, which is shown in Figure 1, and the

part which is located in the non-negative domain is fully covered by a rectangle. Thus, x1 and x2 are
both covered in this example.

Figure 1. Example of a 2× 2 full-cover matrix.

Example 2. Consider A =
(
1 −1

)
and ATA =

(
1 −1
−1 1

)
; for this case, the feasible set

determined by xTATAx = (x1 − x2)
2 ≤ τ2 is shown in Figure 2 and is open and unbounded with

respect to both x1 and x2. Hence, Rc(A) = 0.

Figure 2. Example of a zero-cover matrix.
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From the above examples, we can find that the cover order Rc(A) and the cover length
ci(xi) represent the maximal dimension and minimal side lengths of the hyper-rectangle
that covers

{
x : x ∈ RN

+ , xTATAx ≤ τ2} respectively.

3. Systems of Linear Equations with Non-Negativity Constraints on Solutions
3.1. Homogeneous Systems of Linear Equations

In this section, we present an important result in cover theory, allowing us to determine
if a column vector in A or the corresponding variable xi in Ax is covered or not. Further-
more, this result provides us with a method of investigating the non-negative solution to a
system of linear equations. Let us first introduce the definition of a convex cone [36].

Definition 2. A set C ⊆ RM is a convex cone if αx + βy ∈ C for all x, y ∈ C and α, β > 0.

A cone C is polyhedral if it is the conic combination of finitely many vectors, i.e., there
is a set of vectors {a1, · · · , aN}, so that C = {a1u1 + a2u2 + · · · aNuN |ai ∈ RM, ui ∈ R+}.
The polyhedral cone C is a closed convex cone.

With the above definition, we are now able to obtain the following result:

Theorem 1. Let A be an M× N real matrix. Then, the i-th column of A, or the i-th variable xi
associated with the i-th column vector ai in Ax, is covered if and only if Ax 6= 0 for any x ∈ RN

+

with xi > 0.

Proof. Necessity: Here, by assuming that xi is covered in Ax, we need to show that for any
x ∈ RN

+ with xi > 0, we have Ax 6= 0. Suppose that this statement was not true. Then, there
exists x0 ∈ RN

+ with x0,i > 0 such that Ax0 = 0, where x0,i is the i-th element in x0. As a
consequence, for any positive number p > 0, we would also have A(px0) = 0, implying
that px0,i is not bounded if for any given τ > 0, 0 = (px0)

TATA(px0) ≤ τ. This contradicts
the assumption that xi is covered in Ax. Therefore, the necessary condition is true.

Sufficiency: For xi > 0, the quadratic form xTATAx can be rewritten as: xTATAx =
‖Āix̄i + aixi‖2 = x2

i ‖Āiu + ai‖2, where u = x̄i
xi

, Āi is the M× (N − 1) sub-matrix formed

by deleting the i-th column from A and u ≥ 0. Consider the set
{

Āiu : u ∈ RN−1
+

}
.

It is a closed convex cone according to Definition 2, and the function ‖Āiu + ai‖2 is
convex; thus, the minimum of ‖Āiu + ai‖2 exists, i.e., there exists a u0 ≥ 0 such that
‖Āiu0 + ai‖2 ≤ ‖Āiu + ai‖2, for any u ∈ RN−1

+ . In fact, ‖Āiu0 + ai‖ 6= 0. Otherwise,
if x0,i = 1, x0,k = u0,k, for k = 1, 2, · · · , i− 1, and x0,k = u0,k−1, for k = i + 1, · · · , N, then,
we have Āiu0 + ai = Ax0 = 0, which contradicts the assumption. Now for any given pos-
itive real value τ, if we let xTATAx ≤ τ2, then, we have x2

i ‖Āiu0 + ai‖2 ≤ xTATAx ≤ τ2.
Hence, we obtain 0 < xi <

τ
‖Āiu0+ai‖

, i.e., xi is covered in Ax.

Thus, the proof of Theorem 1 is complete.

From Theorem 1, the following results can be obtained.

Corollary 1. Let A be an M× N real matrix, and let Āj be the M× (N − 1) sub-matrix formed
by deleting the j-th column from A. Then, the following statements are true:

1. A system of homogeneous linear equations, Ax = 0, has a nonzero solution in RN
+ if and only

if A does not have full cover.
2. Let the j-th column of A be covered. Then, any column of Āj is covered in Āj if and only if it,

as a column of A, is also covered in A.
3. If the i-th column of A is covered, then it is also covered in Āj for j 6= i.
4. A full column rank matrix A always has full cover.

For a homogeneous system of linear equations with non-negative constraints on solu-
tions, it is important to determine the necessary and sufficient condition which guarantees



Mathematics 2023, 11, 2338 5 of 25

the existence of nonzero solutions. The direct determination of whether the system has
nonzero solution is not simple [14,37]. Here, Theorem 1 makes a statement paralleled to the
first statement of Corollary 1, providing us with the condition for the existence of nonzero
solutions for the system.

3.2. Nonhomegeneous Systems of Linear Equations with Non-Negativity Constraints on Solutions

Nonhomogeneous systems of linear equations with non-negativity constraints on solu-
tions are frequently encountered in the field of signal and image processing, multispectral
data handling, fibre optics, etc. [38–40]. The classical way for determining the existence
of non-negative solution is based on Farkas’ lemma [15]. According to Farkas’ lemma,
given a problem of linear equations with non-negativity constraints on the variables, there
exists another problem associated with it such that the original problem has a solution
in the required domain if and only if the associated problem has no solution. Thus, this
lemma provides an indirect way to check the existence of non-negative solutions to a
nonhomogeneous system of linear equations.

In the following, based on the cover theory, we will derive the direct necessary and
sufficient conditions for the existence and the uniqueness of non-negative solutions of the
aforementioned system.

Existence of non-negative solutions:

Theorem 2. Let A ∈ RM×N and b ∈ RM. Then, there exists an x ∈ RN
+ such that Ax = b if and

only if the cover order of the augmented matrix Ã = (A,−b) is less than or equal to that of A.

Proof. Let us rewrite the linear equations Ax = b as Ãx̃ = 0, where Ã = (A,−b) and
x̃ = (x, x̃N+1). First we prove the sufficiency: Under the assumption Rc(Ã) ≤ Rc(A),
by Statement 2 of Corollary 1, we can claim that x̃N+1 is not covered in Ãx̃. Since Ã does
not have full cover, then by Theorem 1, there exists an x̃0 = (x0, x̃0,N+1) ∈ RN+1

+ with
x̃0,N+1 > 0, where x̃0,N+1 is the (N + 1)-th element of x̃0, such that Ãx̃0 = 0. Hence,
we have Ax0 = bx̃0,N+1, implying that x0/x̃0,N+1 is a solution of Ax = b. Therefore,
the sufficient condition is true.

To prove the necessary condition, we assume that the system of linear equations
Ax = b has a solution in RN

+ , i.e., there exists an x0 ∈ RN
+ such that Ax0 = b. Then,

by Theorem 1, the (N + 1)-th column vector of Ã is not covered. In addition, by Statement 3)
of Corollary 1, we know that if ãi, the i-th column vector of Ã, i ∈ {1, · · · , N}, is covered
in Ã, then ãi, being a column vector of A, is also covered in A. Therefore, the inequality
Rc(Ã) ≤ Rc(A) holds. This completes the proof of Theorem 2.

Theorem 2 provides us with the regularization condition for non-negative solutions for
a systems of linear algebraic equations. It is interesting to point out that in some application
of systems of ordinary differential equations, there are parallel regularizations that provide
non-negative solutions [41,42].

Uniqueness of non-negative solutions:
With the definition of convex cone in Definition 2, let us first introduce Carathéordory’s

theorem [15]:

Lemma 1 (Carathéordory’s theorem). Let S ⊆ RM be a finite set, and let y ∈ RM. If y ∈ cone S ,
then there exists a linearly independent set T such that y ∈ cone T .

By applying Carathéordory’s theorem, we are able to show the necessary and sufficient
condition for the uniqueness of non-negative solution to a nonhomogeneous system of linear
equations. This is stated in the following theorem:

Theorem 3. Let A ∈ RM×N and b ∈ RM. Then, Ax = b has a unique solution x in RN
+ ,

if and only if Rc(Ã) ≤ Rc(A) and Rc(Ã) + Rr(Ā) = N, where Rr(Ā) is the rank of Ā, and
Ā = {ai}i∈N̄ , with N̄ being a set consisting of all the column indices of A not covered in Ã.
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Proof. Sufficiency: Let R̄c(Ã) be the number of uncovered column vectors in Ã. Thus, we
have Rc(Ã) + R̄c(Ã) = N + 1, and under the assumption Rc(Ã) + Rr(Ā) = N, we have
R̄c(Ã) = Rr(Ā) + 1. In addition, since Rc(Ã) ≤ Rc(A), we can obtain R̄c(Ã) = |N̄ |+ 1
and, as a result, Rr(Ā) = |N̄ |. Therefore, all the column vectors {ai}i∈N̄ are linearly
independent in RM. As a consequence, Ax = b has a unique solution in RN

+ .
Necessity: According to the property of Rc(Ã) and the definition of Ā, we have Rc(Ã) +

Rr(Ā) ≤ N. Considering Rc(Ã) + Rr(Ā) < N, in this case, we have Rr(Ā) < |N̄ |. Then,
for all i ∈ N̄ , there are µi ∈ R (not all 0) such that ∑i∈N̄ µiai = 0 and there are λi ≥ 0
such that ∑i∈N̄ λiai = b. In addition, there is a real number α such that λi + αµi > 0
for all i ∈ N̄ . Let us assume that x0 ∈ RN

+ is the unique solution of Ax = b, where
x0,i = λi + αµi, for i ∈ N̄ and x0,i = 0, for i ∈ {1, 2, · · · , N} \ N̄ , then we have Ax0 = b.
As Carathéordory’s theorem states, we are able to find a linearly independent subset
{ai}i∈Ñ of {ai}i∈N̄ . Let Ñ be the set consisting of the linearly independent column indices
of {ai}i∈N̄ , and |Ñ | < |N̄ |. Then there is another solution x1 ∈ RN

+ such that Ax1 = b and
x1,i = 0, for i ∈ {1, 2, · · · , N} \ Ñ , where the number of zero element in x1 is larger than that
in x0. This contradicts the assumption that x0 is the unique solution of Ax = b. Therefore,
Rc(Ã) + Rr(Ā) = N must be satisfied to guarantee the uniqueness of the solution. Thus,
the proof of Theorem 3 is complete.

4. Cover Order

In this section, we develop a specific échelon form of a matrix that can be used to
determine the cover order of any given matrix. Some special properties of cover order are
also explored.

4.1. Cover Order Determination

Let RN
++ denote the set of N × 1 vectors with all entries being positive. The vector

x, of which the elements are all positive, is called a positive vector. Similarly, let RN
+ , RN

−−,
and RN

− , respectively, denote a non-negative, a negative, and a nonpositive set of N× 1 vectors.
We first present some related results in the following lemmas which are useful for our
derivation of the cover order of a real matrix.

Lemma 2 ([13]). Let S be a subspace of RN and S⊥ be the orthogonal complementary subspace of
S. Then,

1. S∩RN
+ = ∅ if and only if S⊥ ∩RN

++ 6= ∅.
2. S∩RN

++ = ∅ if and only if S⊥ ∩RN
+ 6= ∅.

Denoting the row space of A by SA and the orthogonal complement to this row space
by S⊥A , and using Lemma 2, we have the following [34]:

Lemma 3. Let RN
+(K) denote the set of all the non-negative vectors with K positive entries.

Specifically, RN
+(0) denotes the set {0N×1}. For any A ∈ RM×N , the cover order of A is equal to

maxSA∩RN
+(K) 6=∅ K.

Lemma 3 shows us the necessary and sufficient condition for determining the cover
order of a matrix. Now, we show an important property of cover order in the following:

Theorem 4. Given an M× N real matrix A and given an invertible M×M real matrix T, let
B = TA, then we have Rc(B) = Rc(A).

Proof. Let us consider xTBTBx, which is equivalent to xT(ATTTTA)x according to the
assumption. Suppose that λmin and λmax are the minimum eigenvalue and the maximum
eigenvalue of TTT, respectively, since TTT is a real symmetric matrix, then by Rayleigh–Ritz
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theorem [43], we have ∀x ∈ Rn, and the inequalities λmin · xTx ≤ xTTTTx ≤ λmax · xTx
hold. Letting y = Ax, we have λmin · yTy ≤ yTTTTy ≤ λmax · yTy, i.e.,

λmin · xTATAx ≤ xTATTTTAx ≤ λmax · xTATAx (2)

Then, using the left-hand side inequality λmin · xTATAx ≤ xTBTBx in Equation (2) and the
definition of cover order in Definition 1, we have:{

x ∈ RN
+ : xTBTBx ≤ 1

}
⊆

{
x ∈ RN

+ : xTATAx ≤ 1
λmin

}
(3)

⊆
{

x ∈ RN
+ : xki

≤
cki

λmin
, i = 1, · · · , Rc(A)

}
where ki ∈ {1, 2, · · · , N} and cki

are positive real numbers. Then, by the definition of cover
order in Definition 1, we know that at least Rc(A) variables in x associated with the column
vectors in Bx are covered. Thus, we have Rc(A) ≤ Rc(B).

According to the right-hand side inequality in Equation (2), we have:{
x ∈ RN

+ : xTATAx ≤ 1
λmax

}
⊆

{
x ∈ RN

+ : xTBTBx ≤ 1
}

(4)

⊆
{

x : 0 ≤ xki
≤ cki

, i = 1, · · · , Rc(B)
}

Similarly, at least Rc(B) variables in x associated with the column vectors in Ax are covered.
Thus, we have Rc(A) ≥ Rc(B).

Hence, we can conclude that, if det(T) 6= 0 and B = TA, then Rc(A) = Rc(B).

Theorem 4 carries important implications. It states that the cover order of a matrix is
invariant under any row transformation. From Lemma 3, we know that if we are able to
find non-negative vectors in SA, then the cover order of A is equal to the largest number of
the positive entries of these vectors. Thus, Theorem 4 together with Lemma 3 implicitly
suggests that we can perform a series of linear elementary row transformations and column
permutations to determine the cover order of the matrix. This indeed leads us to the
development of a straightforward procedure transforming A into an échelon form for the
evaluation of its cover order.

4.2. Procedure of the Échelon Transformation

An échelon form of a rectangular matrix [1] has the following structures:

Definition 3 (échelon form). A rectangular matrix is in échelon form (or row échelon form) if it
has the following three properties:

(a) All nonzero rows are above any rows of all zeros.
(b) Each leading entry of a row is in a column to the right of the leading entry of the row above it.
(c) All entries in a column below a leading entry are zeros.

Our procedure of échelon transformation can now be laid out as follows:

1. The Échelon Form of A. Given an M× N real matrix A, we can find matrices E0 and P0
such that [1]:

E0AP0 =

(
I B0
0 0

)
(5)

where I ∈ RRr×Rr and B0 ∈ RRr×(N−Rr) with Rr being the rank of the matrix A.
Here, E0 and P0 are, respectively, the elementary transformation and the permutation
matrices, either of which may be made up of a product of simpler elementary and
permutation matrices. The right side of Equation (5) conforms with the description of
échelon form; thus, Equation (5) is an échelon transformation of A. Note that the échelon
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transformation of A is not unique; we can choose different E0 and P0, arriving at
different values of B0.

2. The Cover Order. Without loss of generality, we can assume that A has full rank.
In particular, from Theorem 1 and Lemma 3, if the initial échelon transformation
of A in Equation (5) results in every entry in some row of B0 being positive, then
Rc(A) = N, i.e., A, has full cover. On the other hand, if every entry in some column of
B0 is negative, then Rc(A) = 0. However, if the cover order of A is not immediately
obvious from the structure of B0 resulted from the initial échelon transformation, we
need the following steps of structural arrangement to determine the cover order.

(1) Structure Arrangement. Search for all non-negative rows in B0 and select the one which
has the greatest number of positive elements. Move this selected row to the first row
and assume that it contains N1 positive entries. By performing the row and column
permutation, we can always ensure the identity matrix structure ahead and let the
following statements hold:

b11, b12, · · · , b1N1 > 0, b1(N1+1), · · · , b1(N−M) = 0 (6)

where b1i, i = 1, · · · , N−M are the elements in the first row of the new structure of B0.
Ignoring the above first N1 columns in new B0, we find all non-negative rows in the
remaining part of it and choose the row with the largest number of positive elements.
Moving this row to the second row and assuming that it contains N2 positive entries
in the remaining N −M− N1 columns, we have:

b2(N1+1), b2(N1+2), · · · , b2(N1+N2)
> 0, b2(N1+N2+1), · · · , b2(N−M) = 0 (7)

where b2i, i = N1 + 1, · · · , N −M, are the elements in the second row of the new
form of B0 after the above steps. By arranging the following rows similarly, after s
times, we obtain:

b11, b12, · · · , b1N1 > 0, b1(N1+1), · · · , b1(N−M) = 0

b2(N1+1), b2(N1+2), · · · , b2(N1+N2)
> 0, b2(N1+N2+1), · · · , b2(N−M) = 0 (8)

...

bs(N1+N2+···+Ns−1+1), · · · , bs(N1+···+Ns) > 0, bs(N1+N2+···+Ns+1), · · · , bs(N−M) = 0

where bij in Equation (8), i = 1, 2, · · · , s, j = 1, 2, · · · , N − M, and s ≤ M, are
the elements in the first s rows of the structure of B0 after s times transformation.
The procedure ends when one of the following two cases happens:

(a) ∑s
i=1 Ni = N −M, in which case A has full cover.

(b) There is no non-negative row vector in the row space of the B0 after s times of
transformation.

Let:

B̄ =

bs+1,N1+···+Ns+1 · · · bs+1,N−M
...

. . .
...

bM,N1+···+Ns+1 · · · bM,N−M

 (9)

(2) Cover Order. At the end of the above structural arrangement, we arrive at the conclu-
sion that the cover order of A is Rc(A) = ∑s

i=1 Ni + s and s ≤ M.
The next theorem states the property of the final échelon form of the matrix from
which the cover order of A can be deduced.

Theorem 5. For any M× N real matrix A, there exists an elementary matrix E and a permutation
matrix P such that EAP = (I, B), where I ∈ RRr×Rr , B ∈ RRr×(N−Rr), and Rr is the rank of the
matrix A. Then B either:
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1. Contains at least one non-negative row;
2. Contains at least one negative column vector, or there exists one nonpositive column vector,

but the same row position where the zero lies will be negative in some other columns of B.

Proof. We shall prove the result by induction. Without loss of generality, we can assume
that the matrix A has full rank. Indeed, the proof is based on the following steps: (i) Iteration
N −M = 1, i.e., EAP = (I, b), where b ∈ RM. If b contains at least one positive element,
then A has full cover. If b is a negative vector, then A has zero cover. If b is a nonpositive
vector, then the cover order of A equals the number of zero terms. (ii) The result holds true
for iteration N −M = K + 1 given that it holds true for iteration N −M = K. We prove
the desired result in the following:

Suppose that for N −M = K, the above conclusion holds, i.e., if Rc(A) > 0, then A can
be transformed into (I, B). Let bij be the ij-th element in B, for i = 1, 2, · · · , M, j = 1, · · · , K.
We have Equation (8) hold and Rc(A) = ∑s

i=1 Ni + s. In addition, let B̄ be the form in
Equation (9) with K = N −M, and B̄ either contains at least one negative column or has
one nonpositive column, but the position where the zero lies will be negative in some
other column of B̄. In the following, we will prove that if the above conclusion holds for
N −M = K, then this conclusion will also hold when N −M = K + 1.

When N −M = K + 1, we can assume that A = (I, b1, · · · , bK, bK+1), where I ∈ RM×M

and bi ∈ RM, for i = 1, · · · , K + 1. Without considering the bK+1, we denote the remaining
part in A as Ā, which equals (I, b1, · · · , bK). According to the assumption for N −M = K,
Ā can be transformed into échelon form and we let Rc(Ā) = ∑s

i=1 Ni + s. By considering
the corresponding bK+1 with the échelon form of Ā (apply the same row permutation to
bK+1 as Ā permutes in the échelon transformation and we still use bK+1 to denote it after
the permutation), we can notice that if b1,K+1 > 0, Rc(A) = ∑s

i=1 Ni + s + 1. If b1,K+1 = 0,
we can perform the following process from the second row. Therefore, in the following,
we will consider the case when b1,K+1 < 0. According to Theorem 4 and Lemma 3, the fol-
lowing steps can be taken to make the first row nonpositive and move it to the last row
without affecting the cover order of A.

Step 1 Let m = max
{
− bj1

b11
, · · · ,− bj,K+1

b1,K+1

}
, where bj1b11 < 0 ,· · · , bj,K+1b1,K+1 < 0. Multiply

the first row of A with m, and add the product to i-th row, for i = 2, 3, · · · , M. We
will have A(1).

Step 2 Use (-1) times the first row of A(1) to obtain A(2).

Step 3 Let t2 =
b2,K+1
b1,K+1

+ m, t3 =
b3,K+1
b1,K+1

+ m, · · · , tM =
bM,K+1
b1,K+1

+ m and let aT
j be the j-th row

of A(2). Then by adding aT
1 tj to the j-the row in A(2), where j = 2, 3, · · · , M. We will

have A(3).
Step 4 Multiplying the first row of A(3) with − 1

b1,K+1
and exchanging the position of the

first column with the last column, we will obtain A(4).
Step 5 Permuting the rows and columns so that the first row in the right-hand side of

A(4) is moved to the last row, as well as securing the left-hand side identity matrix
structure. After this, we will have A(5).

Step 6 Without considering the last column of A(5), rearranging the rows and columns of
the first (M + K) columns of it, we will obtain a new échelon form matrix Ā(5) and

Rc(Ā(5)) = ∑s(2)
i=1 N(2)

i + s(2). By considering the corresponding b̄K+1 with the échelon

form of Ā(5), we can notice that if b̄1,K+1 > 0, then Rc(A) = ∑s(2)
i=1 N(2)

i + s(2) + 1.
If b̄1,K+1 < 0, we can repeat the above steps.

Finally, after either t times transformation, there exists one b1,K+1 > 0, such that the

first row of the new matrix is non-negative and Rc(A) = ∑s(t)
i=1 N(t)

i + s(t) + 1, or Rc(A) = 0
and there exists at least one column ((K + 1)-th column of A) which is negative.
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An important indication given by Theorem 5 is that when the first scenario occurs,
then the cover order of A can be determined by the steps as shown in the above échelon
transformation; otherwise, Rc(A) = 0.

4.3. Some Properties of the Échelon Form

We observe from the results of échelon transformation that the final échelon form of a
matrix is not unique, and under different circumstances, different forms may be required.
It is thus interesting to investigate the specific échelon form for special cases, especially for
a low-rank matrix A.

1. Let A ∈ RM×N and Rr(A) = 2. If A has full cover, then A can be transformed into:

A→
(

I2 B2×(N−2)
0(M−2)×2 0(M−2)×(N−2)

)
(10)

where B is a non-negative matrix.

Proof. Without loss of generality, suppose that M = Rr(A) = 2. If A has full cover, then
by Theorem 5, A can be transformed into:(

1 0 b11 b12 · · · b1,(N−2)
0 1 b21 b22 · · · b2,(N−2)

)
where b11, b12, · · · , b1,(N−2) > 0. If b2i < 0, where i ∈ {1, · · · , N − 2}, let:

t = max
i∈{1,··· ,N−2}

{
− b2i

b1i
, b2i < 0

}
= −

b2j

b1j

Using t times the first row of A and adding the product to the second row of it, in the next
step, multiply the first row of the above matrix with 1

b1j
and exchange the first column

with the j-th column so that the identity matrix structure in the left-hand side part can
be guaranteed. After these steps, we obtain a matrix B which has two non-negative
row vectors.

2. For a rank-2 matrix A, we also have the following property:

Theorem 6. Let A ∈ RM×N and Rr(A) = 2. Then A has zero cover if and only if it can be
transformed into the form:

EAP =

(
I2 B+ B−

0(N−2)×2 0 0

)
(11)

where all the elements in B+ are non-negative, while the elements in B− are all nonpositive.
Specifically, B− contains at least one column which is a negative vector, or two non-negative vectors
with their negative terms lie in different rows.

Proof. Without loss of generality, we can assume that A has full rank.
Sufficiency: Given a zero-cover matrix A, then by Theorem 5, it can be transformed

into (I, B), with bij being the ij-th element in B, where i ∈ {1, 2}, j ∈ {1, · · · , N − 2}.
Let t = maxi∈{1,··· ,N−2}{−

b2i
b1i

, b1ib2i < 0} = − b2j
b1j

. We multiply the first row of the above
transformed matrix with t, and add the product to the second row. Then, we multiply the
first row of the resulting matrix with 1

b1j
and exchange the first column with the j-th column

to ensure that the left-hand side part remains an identity matrix. This results in a matrix of
the form:
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1 0 b11
b1j

· · · 1
b1j

· · · b1,N−2
b1j

0 1 b21 − b11
b2j
b1j

· · · − b2j
b1j
· · · b2,N−2 − b1,N−2

b2j
b1j


If b1i > 0 and i ∈ {1, · · · , N− 2}, then b2i − b1i

b2j
b1j

= b1i

(
b2i
b1i
− b2j

b1j

)
> 0. If b1i < 0, then for

those b2i < 0, we have b2i − b1i
b2j
b1j

< 0, and if b2i > 0, the sign of
(

b2i − b1i
b2j
b1j

)
is uncertain.

After the above steps, and by performing some certain column permutations, the matrix A
can be transformed into the form

(
I, B(1), B(2), B(3)

)
, where B(1) is a non-negative matrix,

B(3) is a nonpositive matrix, and the elements in the first row of B(2) are all negative, while
the elements in the second row of it are all positive. To simplify the discussion, we can
write the above matrix as (I, B(1)), with b(1)ij being the ij-th element in B(1), where i ∈ {1, 2},

j ∈ {1, · · · , N − 2}. Then, we let m = maxi∈{1, ··· , N−2}{−
b(1)1i

b(1)2i

, b(1)2i b(1)1i < 0} = − b(1)1s

b(1)2s

. We

multiply the second row of the above matrix by m and add the product to the first row.
Then, multiplying the second row of the resulting matrix with 1

b(1)2s

and exchanging the

second column with the s-th column so that the identity matrix structure on the left-hand
part can be ensured, we arrive at the following matrix:1 0 b(1)11 − b(1)21

b(1)1s

b(1)2s

· · · − b(1)1s

b(1)2s

· · · b(1)1,N−2 − b(1)2,N−2
b(1)1s

b(1)2s

0 1 b(1)21

b(1)2s

· · · 1
b(1)2s

· · · b(1)2,N−1

b(1)2s


In the above matrix, we have if b(1)2i > 0, where i ∈ {1, · · · , N− 2}, then b(1)1i − b(1)2i

b(1)1s

b(1)2s

> 0,

and if b(1)2i < 0, then b(1)1i − b(1)2i
b(1)1s

b(1)2s

< 0. As a result, if A has zero cover, then it can be

transformed into the right-hand side form in Equation (11).
Necessity: Suppose that A can be transformed into the form in Equation (11). Then,

consider the case when B− contains two nonpositive vectors having their negative terms in
different rows. Then Ax = 0 can be written as:(

I2×2 B+ B̄− b1 b2
0(N−2)×2 0 0 0 0

)
×
(
u1, u2, x+, x−, v1, v2

)T
= 0

where b1 = (b1, 0)T , b2 = (0, b2)
T , and b1, b2 are negative, and B̄− is the matrix formed by

deleting b1 and b2 from B−. Then we will have:(
u1
u2

)
=

(
v1
v2

)
− B+x+ − B̄−x−

Now, since x is the solution and must be positive, we can let the elements in x+ and x−

take any positive value. If we let v1 and v2 be positive and large enough, we can still
obtain positive u1 and u2. In this case, all elements in x are positive and satisfy the equation
Ax = 0. By Theorem 1, A has zero cover.

This completes the proof of the theorem.

5. Cover Order and Linear Programming

In this part, we present a systematic procedure using the concept of hyper-rectangle
cover for solving LP problems.
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5.1. Linear Programming (LP) Problem

The LP problem [16], in general, can be stated as:

min cTx (12)

subject to Ax = b

x ≥ 0

where A ∈ RM×N , with M < N, b ∈ RM, and c, x ∈ RN . We can assume that A has full
rank in general since redundant or inconsistent linear equations can always be detected
and removed. The feasibility set of the above LP problem is:

F1 =
{

x ∈ RN
+ : Ax = b

}
⊂ RN

+ (13)

From the necessary and sufficient condition for the existence of non-negative solution for
a nonhomogeneous system of linear equations developed in Theorem 2, we can directly
obtain the necessary and sufficient condition that guarantees the nonempty feasibility set
of the LP problem. This is stated in the following theorem:

Theorem 7. The feasibility set F1 of the LP problem is nonempty iff Rc(Ã) ≤ Rc(A), where
Ã = (A,−b).

Letting z = cTx; then, by adding the objective function into the constraints, the above
LP problem can be restated as:

min z (14)

subject to
(

A
cT

)
x =

(
b
z

)
x ≥ 0

We denote
(

A
cT

)
as Ac,

(
A −b
cT −z

)
as A(z). By applying the échelon transformation to

A(z) without changing the position of the last row and the last column, we have:

A(z)→
(

I(M+1)×(M+1) B(M+1)×(N−M−1) fz + g
)

(15)

where f and g are (M + 1)× 1 column vectors. To simplify the analysis, in the following,
we separate A(z) into two parts and let:

Ã =
(

I(M+1)×(M+1) B(M+1)×(N−M−1)
)

and b̃ = fz + g (16)

We have the following observations:

Property 1. From Theorem 2, in order to have a nonempty feasibility set for this LP problem,
adding b̃ to the right-hand side of Ã should not increase the cover order of Ã. In other words,
the cover order of A(z) should be less than or equal to the cover order of Ac.

Property 2. In a minimization problem, if the uncovered variable has a negative coefficient in the
objective function and has negative or zero coefficients in all constraints in the échelon form, then
the objective function is unbounded over the feasible region.

5.2. Three Possibilities of the Solution

Based on Property 1, we now analyze the possibilities of the solutions and the optimal
value of the objective function of the LP problem under the three conditions: (1) Ã has full
cover; (2) 0 < Rc(Ã) < N; (3) Ã has zero cover, resulting in the following theorem:
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Theorem 8. For the LP problem given by Equation (14): If Ã has full cover and the matrix B in Ã
is a non-negative matrix, then the LP problem has optimal solution if and only if b̃i = fiz + gi ≤ 0,
i = 1, 2, · · · , Rr. By solving these inequalities, we will have the range of z, which is:

max

{
− gi

f (+)
i

, i ∈ {1, · · · , Rr}
}
≤ z ≤ min

{
− gi

f (−)i

, i ∈ {1, · · · , Rr}
}

, (17)

where f (+)
i and f (−)i are the positive and negative terms in the first Rr elements of b̃, respectively.

Proof. The proof of the above theorem follows directly from Property 1.

It should be noted that if the constraint of z in Theorem 8 is contradictory, i.e., if

min

{
− gi

f (−)i

, i ∈ {1, · · · , Rr}
}

< max

{
− gi

f (+)
i

, i ∈ {1, · · · , Rr}
}

, (18)

then the feasibility set of this linear program is empty: i.e., F1 = ∅. In other words, we are
not able to find any feasible solution to this LP problem in this case. In addition, if there

is no lower bound of z, i.e., max
{
− gi

f (+)
i

, i ∈ {1, · · · , Rr}
}

in Equation (17) can be negative

infinity, then the objective function in this minimization problem is unbounded.
By the same argument, obtaining the maximum value of z can also be achieved by

solving the above inequalities. The maximum value will then be:

max z = min{− gi

f (−)i

, i ∈ {1, · · · , Rr}}. (19)

If Ã has full cover, but the matrix B is not a non-negative matrix, then let I ⊆ {1, · · · , Rr}
be the index set of the non-negative rows in Ã. According to the assumption in échelon
transformation, the first non-negative row vector in Ã contains the largest number of
positive terms and the number is N1. Then the optimal value of the LP problem can be
obtained by performing the following steps.

Cover Method (Minimization Form)

Step 1. Solving fiz + gi ≤ 0, for i ∈ I and a candidate minimal value of z is:

z0 = max

{
− gi

f (−)i

, i ∈ I
}

= − gs

f (−)s

Step 2. If z0 satisfies:

max

{
− gk

f (−)k

, k ∈ {1, · · · , Rr}\I
}
≤ z0 ≤ min

{
− gk

f (+)
k

, k ∈ {1, · · · , Rr}\I
}

then the process ends and the optimal value is obtained, which is

zmin = z0 = max

{
− gi

f (−)i

, i ∈ I
}

Otherwise, there exist some k ∈ {1, · · · , Rr}\I such that fkz0 + gk > 0, i.e., we have
Rc(A(z)) > Rc(Ac), then the process continues.

Step 3. Choose column jk to pivot in (i.e., introduce into the basis variable) by:

−
b1,jk
bk,jk

= min

{
−

b1j

bkj
, bkj < 0, 1 ≤ j ≤ N1

}
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Step 4. Choose row k̄ to pivot in (i.e., drop from the basis variable) by:

fk̄z0 + gk̄
bk̄,jk

= min

{
fkz0 + gk

bkjk
, bkj < 0, fkz0 + gk > 0

}

Step 5. Replace the k̄-th column with the (M + jk)-th column and re-establish the éche-
lon form.

Step 6. If the matrix B is a non-negative matrix in the new échelon form, then the process
ends and the optimal value is obtained, which is

z0 = max

{
−

gnew
i

f (−)new
i

, i ∈ {1, 2, · · · , Rr}
}

Otherwise, the process continues.
Step 7. Return to step 1.

The whole pivot process each time is performed by using − bi,jk
bk̄ ,jk

times the k̄-th row in

Ã, and adding the product into i-th row, for i = 1, 2, · · · , Rr. Then we divide the k̄-th row
with bk̄,jk

, and the (M + jk)-th column becomes ek̄. Next, we exchange the position of the
(M + jk)-th column and the k̄-th column. After this process, fk̄z + gk̄ is negative and the
structure of the identity matrix ahead is reserved. The above computational procedures
of the cover method in solving the LP problem can be summarized in the flow chart of
Figure 3.

Figure 3. Flow diagram of the cover method.

This simple step-by-step method provides an attractive alternative approach to the
LP problem.

The following example provides a clear illustration of the cover method procedure.
Here, Ã has full cover but the matrix B in Ã is not a non-negative matrix.
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Example 3.

min −x1 − x2

2x1 + x2 + x3 = 12

x1 + 2x2 + x4 = 9

x1, x2, x3, x4 ≥ 0

Letting z = cTx and adding the objective function into the constraints, we will have the following
augmented matrix:

Ã(z) =

 2 1 1 0 −12
1 2 0 1 −9
−1 −1 0 0 −z


Applying the échelon transformation to Ã(z) without changing the position of the last column,
we have

Ã(z)→

1 0 0 1 −9− z
0 1 0 −1 9 + 2z
0 0 1 1 −21− 3z


Since we exchange the position of the first two rows during this transformation, the corresponding
positions of variables are also exchanged. According to Theorem 8, in order to have the feasible
solutions for this LP problem, the following two conditions should be satisfied at the same time:
−9− z ≤ 0 and −21− 3z ≤ 0. By solving these two inequalities, we will have a candidate
optimal value of z, which is z0 = max{−9,−7} = −7. Since z0 ≤ min

{
− g2

f2

}
= − 9

2 , then
the optimal value of the objective function is z∗ = −7, and the corresponding optimal solution is
x∗ = (5, 2, 0, 0)T .

Similarly, for the case when 0 < Rc(Ã) < N, we can also apply the above procedures
to obtain the optimal value of the objective function and the optimal solution towards the
LP problem by changing the definition of the index set I and the range of k. For this case,
we consider i ∈ J , and J ⊆ {1, · · · , s} is the index set of the non-negative rows in the first s
rows of Ã, where s is obtained through the échelon transformation, and k ∈ {1, 2, · · · , s}\J .

For the zero-cover matrix, the status of the solution for the LP problem is given in the
following theorem.

Theorem 9. For a full rank matrix Ã, if it has zero cover, then the LP problem is feasible
but unbounded.

Proof. Since adding any column to the right-hand side of a zero-cover matrix will still
arrive at a matrix with zero-cover, the feasibility set F1 is always nonempty in this case.
However, according to Theorem 5, a zero-cover matrix can be transformed into a structure
which has at least one negative column or has one nonpositive column, but the same row
position where the zero lies will be negative in some other column(s) of this structure. Thus,
by Property 2, the objective function is unbounded over the feasible domain for the case
when Ã has zero cover.

5.3. Feasible Solutions for the LP Problem

With the échelon form and the specific structure of the zero-cover matrix, we are able
to obtain a series of feasible solutions for any given LP problem. The detailed process is
given in the following:

As we know,
(
Ã, b̃

)
is an échelon form matrix, where Ã ∈ R(M+1)×N and b̃ ∈ RM+1.

Then the échelon form can be divided into the following blocks:
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(
Ã, b̃

)
=

(
Is 0 B(1) B(3) b̃(1)

0 I(M+1−s) B(2) B(4) b̃(2)

)
, (20)

where s is obtained through échelon transformation. Then by Theorem 1, in the sys-
tem

(
Ã, b̃

)
x = 0, x ≥ 0, the covered variables xi are all zeros. As a result, we can

ignore those covered column vectors in
(
Ã, b̃

)
, which correspond to

(
Is B(1)

0 B(2)

)
. In

Equation (20), since B(3) is a zero matrix and b̃(1) is a zero vector, we only need to consider
the remaining part of

(
Ã, b̃

)
which is

(
I(M+1−s), B(4), b̃(2)

)
. Let us denote this part as(

Ā, b̄
)
=
(
I, B̄, b̄

)
=
(

I(M+1−s), B(4), b̃(2)
)

. The cover order of this matrix is zero. Thus,
in order to obtain the feasible solution for the LP problem, we only need to solve the
following system of linear equations, where the non-negative vector x̄ is the uncovered
part in x: (

I, B̄, b̄
)
x̄ = 0 (21)

For simplicity of discussion, we can assume that I ∈ Rm×m, B̄ ∈ Rm×(n−m), and b̄ ∈ Rm.
From Theorem 5, we know that the zero-cover matrix can be transformed to the form which
contains at least one negative column, or has one nonpositive column, but the row position
where the zero lies will be negative in some other column of the matrix. Without loss
of generality, we can assume that the negative column appears in the first column of
B̄, i.e.,

(
b̄11, b̄21, · · · , b̄m1

)T is a negative column vector. Then the following procedure
enables us to obtain a series of feasible solutions to the LP problem.

Suppose that x̄ = (x̄1, · · · , x̄m, x̄m+1, x̄m+2 · · · , x̄n, x̄n+1)
T , where x̄1, · · · , x̄m corre-

spond to the column vectors in the m×m identity matrix, x̄m+1, x̄m+2, · · · , x̄n correspond
to the column vectors in B̄, and x̄n+1 corresponds to b̄ in the multiplication

(
I, B̄, b̄

)
x̄. Then,

by Equation (21), the first m elements in x̄ can be expressed as a linear combination of
x̄m+1, · · · , x̄n+1:

x̄1 = −b̄11 x̄m+1 − b̄12 x̄m+2 − · · · − b̄1(n−m) x̄n − b̄1 x̄n+1

... (22)

x̄m = −b̄m1 x̄m+1 − b̄m2 x̄m+2 − · · · − b̄m(n−m) x̄n − b̄m x̄n+1

In order to obtain a linearly independent feasible solution set, we first let the vector
(x̄m+1, · · · , x̄n+1)

T be a set of linearly independent vectors (L, 1, 0, · · · , 0)T , (L, 0, 1, · · · , 0)T ,
· · · , (L, 0, 0, · · · , 1)T successively. In addition, in order to satisfy the non-negativity con-
straints on the variable x̄i, i = 1, · · · , n + 1, we let:

L = max

{
− b̄i2

b̄11
,− b̄i3

b̄21,
, · · · ,−

b̄i(n−m)

b̄m1
,− b̄i

b̄i1

}
, i = 1, 2, · · · , m (23)

We can then obtain a set of linear independent basic feasible solutions:

α1 =
(
−b̄11L− b̄12, · · · ,−b̄m1L− b̄m2, L, 1, 0, · · · , 0

)T

α2 =
(
−b̄11L− b̄13, · · · ,−b̄m1L− b̄m3, L, 0, 1, · · · , 0

)T

... (24)

αn−m−1 =
(
−b̄11L− b̄1n, · · · ,−b̄m1L− b̄mn, L, 0, 0, · · · , 1, 0

)T

αn−m =
(
−b̄11L− b̄1, · · · ,−b̄m1L− b̄m, L, 0, 0, · · · , 0, 1

)T
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Any convex combination of those basic feasible solutions, i.e.,

x̄ = k1α1 + k2α2 + · · ·+ kn−mαn−m

where the real numbers ki satisfy ki ≥ 0 and k1 + · · · + kn−m = 1, is thus a solution of
Equation (21). By padding the covered variables into x̄, we obtain a series of feasible
solutions to the LP problem.

5.4. The Simplex Method and the Cover Method

In 1947, Dantzig developed an algorithm to solve the LP problem efficiently, called the
simplex method.

The LP problem is to find the extreme point of this polytope where the objective
function is the smallest (or largest) in value if such an extreme point exists. By moving
along the edge of the polytope, the simplex method identifies these extreme points with
better objective values. The process continues until the optimum objective value is reached,
or an unbounded edge is visited. For an LP problem having a nonempty feasible region,
the algorithm always terminates because of the finite number of extreme points in the
polytope. In practice, the simplex method has shown remarkable efficiency. However,
in 1972, Klee and Minty gave an example, the Klee–Minty cube [44], showing that the
worst-case complexity of the simplex method is exponential time.

While the simplex method regards the objective value z in the canonical tableau of the
LP problem as a variable, the cover method treats it as a constant. Given a linear program,
the cover method first rewrites an LP problem into the form of Equation (14), and then
A(z) is transformed into its échelon form. At this stage, if the matrix B in this échelon form
is a non-negative matrix, then the optimum objective value can be determined directly
according to Theorem 8. Thus, the computational complexity of this case is almost entirely
determined by the complexity of échelon transformation. In the following, we will review
the échelon transformation and analyze its computation complexity.

Consider a full rank matrix A ∈ RM×N with M < N. The complexity of transforming
A into an échelon form is O(M2N). In the structure arrangement process of the échelon
transformation, the row having the greatest number of nonzero elements is moved to the
first row, while the nonzero elements in this row have been moved to the left side of B.
Meanwhile, the corresponding column permutation such that the identity matrix structure
could be preserved is performed. Thus, the selection of the row having the greatest number
of nonzero elements is completed. The next step takes away the columns of A corresponding
to these nonzero elements in the first row and performs an échelon transformation on the
remaining part of A. Such an iteration of échelon transformation, each time taking a lower
complexity, continues until the desired form is achieved. The complexity of the structural
arrangement process is O(M2(N − M)). Thus, the computation complexity of échelon
transformation in solving this type of LP problem by cover method is O(M2N).

It is observed, however, that if the matrix B is not a non-negative matrix, then the cover
method for solving the LP problem will involve pivoting steps for which the complexity of
the algorithm is no longer polynomial.

6. Cover Length

We first encountered the concept of cover length in Definition 1. In this section, we
propose a method to determine the cover length of the covered variable xi associated with
the i-th column vector ai in Ax. In addition, we find a strong relationship between the
problem of cover length determination and the non-negative least square (NNLS) problem
such that we can obtain an analytical result of the NNLS problem by simply determining
the cover length of the corresponding variable. We also include a discussion of the various
algorithms for solving the NNLS problem and the cover length method developed here.

6.1. Determination of Cover Length

In general, the cover length is obtained by solving the following optimization problem:
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Problem 1. Let A ∈ RM×N , x = {x1, x2, · · · , xN}T ∈ RN
+ and xN be covered in Ax.

max xN (25)

subject to xTATAx ≤ 1

where xn ≥ 0 for n = 1, 2, · · · , N.

The maximum value of xN within the constraints is the cover length of the covered
variable xN . To solve the above optimization problem, let us form a Lagrangian function:
L(x, λ) = −xN −∑N

n=1 λnxn +λN+1(xTATAx− 1)/2, where λn > 0 for n = 1, 2, · · · , N + 1.
Then, the necessary and sufficient condition for x∗ to be an optimal solution is that the
following Karush–Kuhn–Tucker (KKT) condition must be satisfied:

∇L(x, λ)|x=x∗ ,λ=λ∗ = −eN − λ∗ + λ∗N+1ATAx∗ = 0 (26)

x∗nλ∗n = 0 for n = 1, 2, · · · , N

λ∗N+1
(
(x∗)TATAx∗ − 1

)
= 0

(x∗)TATAx∗ ≤ 1

x∗ ≥ 0

λ∗N+1 ≥ 0, λ∗ ≥ 0

where the non-negative vector λ∗ ∈ RN
+ is associated with the optimal vector x∗ such that

L(x∗, λ∗) is a stationary point of L(x, λ). On the other hand, we notice that

xTATAx = pNN

(
xN +

p̄T
N x̄N

pNN

)2
+ x̄T

N

(
P̄NN −

p̄Np̄T
N

pNN

)
x̄N (27)

where P = ATA is an N× N positive semidefinite (PSD) matrix, pNN is the NN-th element
in P, P̄NN is the (N − 1) × (N − 1) sub-matrix of P by deleting the N-th row and N-th
column from it, p̄N is the (N − 1)× 1 vector generated by deleting the N-th entry from the
N-th row of P, and x̄N denotes the (N − 1)× 1 vector obtained by deleting the N-th entry
from x. Therefore, we can represent the KKT condition alternatively as:

−λ̄∗N + λ∗N+1

((
x∗N +

p̄T
N x̄∗N

pNN

)
p̄N +

(
PNN −

p̄Np̄T
N

pNN

)
x̄∗N
)
= 0 (28)

−1− λ∗N + λ∗N+1

(
pNN x∗N + p̄T

N x̄∗N
)
= 0

x∗nλ∗n = 0

λ∗N+1
(
(x∗)TATAx∗ − 1

)
= 0

(x∗)TATAx∗ ≤ 1

x∗ ≥ 0

λ∗N+1 ≥ 0, λ∗ ≥ 0

Here, λ̄∗N and x̄∗N denote, respectively, the (N − 1)× 1 vectors obtained by deleting the
N-th entry from λ∗ and x∗. Since x∗N 6= 0, we have λ∗N+1 6= 0, and, thus, x∗N = λ∗N+1. Using
the KKT condition, the solution to Problem 1 is given in the following theorem:

Theorem 10. Let A be an M× N real matrix with its rank being R. Then, xn is covered in Ax if
and only if there exists an invertible principal sub-matrix Pi1i2···ir of order r in ATA that includes
the nn-th element [ATA]nn, such that the following two conditions are satisfied simultaneously:

1. P−1
i1i2···ir |ij=nej ≥ 0 and

[
P−1

i1i2···ir |ij=nej

]
j
> 0;
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2. det(Pi1···ir |ij=n→k) ≥ 0 for k ∈ {1, · · · , N}\{i1, · · · , ir}, where Pi1···ir |ij=n→k is the sub-

matrix of ATA by replacing the old row :
(

pn,i1 , · · · , pn,ir
)

in Pi1···ir |ij=n with the new row
(pk,i1 , · · · , pk,ir ).

Then the cover length is given by cn(xn) =

√[(
Pi1i2···ir |ij=n

)−1
]

nn
.

Proof. The KKT condition of Problem 1 can be simplified as: Px = b, x ≥ 0, b ≥ 0,
bN > 0 and xibi = 0 for i = 1, 2, · · · , N − 1, where b ∈ RN

+ . Let N̄ be the set con-
sisting of all the indices of xi which are all positive in the variable x. Denoting the car-
dinality of a set as | · |, we are able to find an |N̄ | × |N̄ | sub-matrix P̄ of P, such that
P̄x̄ = e|N̄ | with all xi in x̄ being uncovered variables in x and x̄|N̄ | = xN , i.e., the last
entry in x̄ is equivalent to the last one in x. Then there exists a full column rank matrix
T ∈ R|N̄ |×r, where r ≤ |N̄ |, containing P̄|N̄ | in P̄. Without loss of generality, we can let

T =
{

t1, · · · , tr−1, P̄|N̄ |
}

and we will have Tx̃ = e|N̄ |, where x̃ ∈ Rr
+ and x̃r > 0. This can

be proved in the following: Let T be the smallest set containing P̄|N̄ |, s.t. e|N̄ | ∈ cone T,

where cone T = cone
{

t1, · · · , tr−1, P̄|N̄ |
}

={θ1t1 + · · · + θr−1tr−1 + θrP̄|N̄ ||θi ≥ 0 for
i = 1, · · · , r}. Then T is linearly independent; otherwise, there are µj ∈ R (not all 0),
s.t. ∑r−1

j=1 µjtj + µrP̄|N̄ | = 0. And there are λj ≥ 0, s.t. ∑r−1
j=1 λjtj + λrP̄|N̄ | = e|N̄ |, where

λr > 0. Then, we have ∑r−1
j=1(αµj + λj)tj + (αµr + λr)P̄|N̄ | = e|N̄ |. If µr ≥ 0, then let

α = max1≤j≤r−1 {−
λj
µj

, µj > 0} = − λi
µi

. Thus, for every 1 ≤ j ≤ r− 1, λj + αµj ≥ 0 and

λi + αµi = 0. Then, we can have a new x̃ ∈ Rr−1 with the last element of it, which
is λr + αµr, being positive, while the others are r − 2 elements, which are expressed as

λj + αµj, being non-negative. When µr < 0, we let α = max1≤j≤r−1 {−
λj
µj

, µj > 0} = − λi
µi

.

Then, we have a new x̃ ∈ Rr−1 with the last element of it being positive while the others are
non-negative in the same manner as the case when µr ≥ 0. As a result, we can always find
a smaller set T̃ containing P̄|N̄ |, s.t. e|N̄ | ∈ cone T̃. Thus, T is linearly independent. Accord-
ing to the constraints of x, x̃ should be equivalent to x̄ and T = P̄. As a result, P̄ is invertible.
Since we have P̄x̄ = e|N̄ |, where x̄ ∈ Rr

+ and x̄r > 0, we will have P−1
i1i2···ir |ij=nej ≥ 0 and

the j-th element in it is positive. Until now, the first statement has been proven.
By using the new row (pk,i1 , · · · , pk,ir ) to replace the old row (pn,i1 , · · · , pn,ir ) in

Pi1i2···ir |ij=n, we will have Pi1i2···ir |ij=n→kx̄ = bkej. To simplify the expression, we denote

Pi1i2···ir |ij=n→k as P̄k. If P̄k is invertible, then xn =
bk|P̄(r−1)×(r−1)|

|P̄k |
, where P̄(r−1)×(r−1) is the

(r− 1)-th order leading principle sub-matrix of Pi1i2···ir . Since Pi1i2···ir is a positive defi-

nite matrix, it follows that
∣∣∣P̄(r−1)×(r−1)

∣∣∣ > 0. In addition, bk ≥ 0, xn > 0, then we have

det(P̄k) > 0. When bk = 0, det(P̄k) = 0. As a result, det(P̄k) ≥ 0, for k = 1, 2, · · · , N but
k 6= i1, i2, · · · , ir.

When the above conditions are all satisfied, the cover length of xn can be obtained

directly, which is

√[(
Pi1i2···ir |ij=n

)−1
]

nn
.

From the above result, we can also conclude that if there is no principal sub-matrix
that can satisfy all the conditions, then the corresponding variable is uncovered within
the constraint.

The following example illustrates how the above method can be used to obtain the
cover length of the covered variable:
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Example 4. Determine the cover length of covered variable x4 given the following 4× 4 matrix
and its PSD matrix:

A =


−3 −2 −5 −2
3 −5 0 −4
1 3 1 −3
2 2 1 4

, P = ATA =


23 −2 18 −1
−2 42 15 23
18 15 27 11
−1 23 11 45


We need to find out the principal sub-matrix that can satisfy all the conditions listed in Theorem 10.
We first examine all the 2× 2 principal sub-matrices of P containing a negative element in the right
upper side corner, since only such a principle sub-matrix of order-2 could satisfy the condition that
the last column of its inverse is a positive vector. Inspection of the above PSD matrix shows that there

is only one such principal sub-matrix: P14 =

(
23 −1
−1 45

)
. We verify that P14 above is invertible

and the last column of its inverse matrix is a positive column vector. Then, we replace the second row

in P14 with the other rows, resulting in P14|4→2 =

(
23 −1
−2 23

)
and P14|4→3 =

(
23 −1
18 11

)
.

The determinants of both are verified to be non-negative. From the above discussion, we can see that
the invertible 2× 2 principal sub-matrix P14 satisfies all the conditions in Theorem 10 and we have:

P−1
14 =

( 45
1034

1
1034

1
1034

23
1034

)
. Thus, we can conclude that the cover length of x4 is c4(x4) =

√
23

1034 .

Lemma 4. For any A ∈ RM×N and x ∈ RN
+ ,

1. If all the entries of ATA are positive, then the cover length of xn is cn(xn) =
1√

[ATA]nn

.

2. If ATA has full rank and all the entries in the n-th column of
(
ATA

)−1 are positive, then

the cover length is cn(xn) =

√[
(ATA)

−1
]

nn
.

Proof. To prove the first statement, given an M× N real matrix A and x ∈ RN
+ , we can

rewrite xTATAx as:

xTATAx = x̄TĀTĀx̄ + x̄TĀTanxn + aT
n Āx̄xn + aT

n anx2
n

where Ā is the M× (N− 1) sub-matrix formed by deleting the n-th column of A, x̄ denotes
an (N − 1)× 1 vector obtained by deleting n-th entry from x and an is the n-th column
of A.

According to the assumption of Statement 1, i.e., all the entries of ATA are positive,
then all terms in the above equations are non-negative. Thus, for any given positive real-
valued number τ > 0, xTATAx ≤ τ2 implies that aT

n anx2
n ≤ τ2, which gives xn ≤ τ√

aT
n an

.

Therefore, according to the definition of cover length in Definition 1, the cover length of xn
is given by cn(xn) =

1√
[ATA]nn

.

The second statement can be obtained from Theorem 10 directly.

6.2. Cover Length Problem and NNLS Problem

The NNLS problem is a constrained least squares regression problem in which all the
variables can only take non-negative values. Specifically, the NNLS problem can be stated
as follows [45]:

Problem 2 (Non-negative Least Squares (NNLS)). Given B ∈ RM×N and b ∈ RM, find a
non-negative vector u ∈ RN

+ such that

min ‖ Bu− b ‖2
2 (29)

subject to u ≥ 0
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In the following, we show by introducing a new variable that the NNLS problem can
be turned into a problem of determining the cover length of the corresponding variable.
In so doing, a connection between cover length determination and the NNLS problem is
established, providing us with a method to arrive at the closed-form optimal value of the
objective function.

First, we let

τ2 =‖ Bu− b ‖2
2 (30)

When τ = 0, Problem 2, is equivalent to the problem of finding solutions for the nonho-
mogeneous system of linear equations Bu = b with non-negative constraints on u. Let us
consider the case when τ > 0: by dividing τ2 on both sides of Equation (30), we will have

‖ B
u
τ
− b

1
τ
‖2

2= 1 (31)

Introducing a new variable x =
(

u
τ , 1

τ

)T
, the origin problem can be transformed into:

Problem 3.

max xN+1 (32)

subject to ‖ Ax ‖2
2= 1

where xn ≥ 0 for n = 1, 2, · · · , N, xN+1 = 1
τ > 0 and A = (B,−b).

We observe that Problem 3 is of the same form as Problem 1 and is consistent with
Problem 2. Thus, the NNLS and the cover length determination problem are equivalent.
By solving the cover length of the corresponding variable xN+1, we obtain the equivalent
closed-form optimal value of the objective function in the NNLS problem. If we are not
able to find the cover length of this variable, xN+1 is unbounded within the constraint and
the optimum value of the objective function in the NNLS problem is almost zero.

Example 5. The cover length determination problem in Example 4 is consistent with the NNLS

problem: min
u∈R3

+

‖ Bu − b ‖2
2, where B =


−3 −2 −5
3 −5 0
1 3 1
2 2 1

 and b = (2, 4, 3,−4)T . Let

τ2 =‖ Bu− b ‖2
2 and x = (x1, x2, x3, x4)

T = (u
τ , 1

τ )
T . The cover length of x4 is c4(x4) =

1√
23/1034

= 1
τ ; thus, the optimal value of this NNLS problem is τ2 =‖ Bu− b ‖2

2=
(

1
c4(x4)

)2
=

23/1034.

The above example demonstrates how to convert the cover length determination of a
desired variable into the optimal value of the corresponding NNLS problem and verifies
the equivalence of the two problems. For certain types of matrices, using this equivalence,
we can even directly obtain the analytical optimal value of the NNLS problem. This is
demonstrated by the example of the M-matrix in the following. Let us first define the Z-
and the M-matrices [46]:

Definition 4 (Z-matrix). An N × N real matrix in which the off-diagonal entries are less than
or equal to zero, i.e., a matrix of the form A = (aij) with aij ≤ 0 ∀ i 6= j, 1 ≤ i, j ≤ N, is a
real Z-matrix.

Definition 5 (M-matrix). Let A be an N × N real Z-matrix. Then A is also an M-matrix if it
can be expressed in the form A = sI− T, where T = (tij) with tij ≥ 0, for all i 6= j, 1 ≤ i, j ≤ N,
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where s is at least as large as the maximum of the moduli of the eigenvalues of T, and I is an
identity matrix.

Theorem 11. Let A ∈ RN×N be a Z-matrix; then, the following statements are equivalent to A
being a nonsingular M-matrix:

1. All the principal minors of A are positive. That is, the determinant of each sub-matrix of A
obtained by deleting a set, possibly empty, of corresponding rows and columns of A is positive.

2. A is inverse-positive. That is, A−1 exists and A−1 is a non-negative matrix.

Then, with the properties of M-matrix and cover length, we have the following result.

Theorem 12. Let matrix B ∈ RN×(N−1) and vector b ∈ RN . Denote A as (B,−b). Supposing
that A is a nonsingular M-matrix, then the optimal value of the NNLS problem min

u∈RN−1
+

‖ Bu−b ‖2
2

is exactly equal to 1
[(ATA)−1]NN

.

Proof. By assumption, A is a nonsingular M-matrix, therefore ATA is invertible and all
the elements in (ATA)−1 are positive. Reformulating the NNLS problem to the problem
of determining the cover length of xN by applying Lemma 4, the cover length of the

corresponding variable xN is given by cN(xN) =

√[
(ATA)

−1
]

NN
. Thus, the optimal value

τ2 = ( 1
cN(xN)

)2 = 1
[(ATA)−1]NN

.

6.3. Comparison with the Active-Set Method

There are several normally used active-set methods for solving the NNLS problem.
A typical example is the algorithm lsqnonneg in Matlab, which aims at creating an active
set and using it to arrive at an approximate solution to the NNLS problem. lsqnonneg
starts with an all-zero vector and computes the associated negative gradient vector w. Then
it finds the index of the position where the maximum value in w occurs and moves this
index from the inactive set to the active set. By solving the corresponding least squares
problem with the current active set, one non-negative solution candidate can be obtained.
The active set and inactive set can be updated with the current candidate solution and
continue the whole process until all the elements in w are nonpositive or the inactive set is
empty. As Lawson and Hanson showed, this algorithm always converges and terminates
in finite steps. However, there is no upper limit on the possible number of iterations that
the algorithm might need to reach the point of the optimum solution, and it might be very
slow in practice, owing largely to the computation of the pseudo-inverse. With regard
to the computational complexity, since the exact running time required for the NNLS
solver is unknown, the computational cost cannot be specified exactly. In many standard
implementations of NNLS solvers (and particularly those based on active-set methods),
the cost is typically O(MN2) per iteration [47].

Compared with the active-set method, the cover length determination method is finite,
and once we find one principal sub-matrix that can satisfy the conditions in Theorem 10,
then the computation stops. Furthermore, we can find an upper limit on the possible
number of steps that the algorithm needs and obtain a closed-form optimal value of the
NNLS problem.

From the perspective of computation complexity, there is no clear advantage of the
cover length method compared with the lsqnonneg since it involves the combination and
permutation operations. However, while the accuracy of the lsqnonneg solution depends
on a prescribed tolerance ε, the cover length method yields the exact optimal value of the
objective function.

We now present some numerical results illustrating the performance of the cover
length method and lsqnonneg in solving the NNLS problem.
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Table 1 shows the average running time (seconds) and average error of the lsqnonneg
and the cover length method for the matrices and vectors randomly generated by Matlab’s
rand function. The results shown here are averaged over 100 random samples with varying
number of columns (from one to three) of B in the NNLS problem. The default termination
tolerance on the solution of lsqnonneg is 10×∑ij |aij| × N× eps, where eps = 2.22× 10−16,
N is the row number of the matrix B, and aij is the element in A = (B,−b). Table 1 also
includes the computation complexity (number of maximum operations) of the cover length
method in solving the NNLS problem. It is clear from the table that the advantage of the
cover length method over lsqnonneg lies in the accuracy of the optimal value since cover
length yields a closed-form one.

Table 1. Comparison between Matlab’s lsqnonneg and cover length method in solving the
NNLS problem.

Column Number of B 1 2 3

Complexity Cover length method 6 16 589

Running time
Cover length method 1.20× 10−4 2.40× 10−4 0.0024

lsqnonneg 2.10× 10−4 3.17× 10−4 4.18× 10−4

Average error
Cover length method 0.0000 0.0000 0.0000

lsqnonneg 1.1102× 10−16 2.6645× 10−15 2.8422× 10−14

7. Conclusions

Linear systems of equations with non-negativity constraints on solutions is an area
of study in linear algebra. Such problems arise frequently in many fields of science and
engineering. In our consideration of such problems, we discovered the hyper-rectangle
cover theory of a matrix, which is presented in this paper. The two main concepts in the
hyper-rectangle cover theory, viz., the cover order and the cover length, were first defined,
and many of their important properties were introduced. Based on this theory, several
novel approaches to analyzing the above typical problems were proposed. The necessary
and sufficient conditions under which a unique solution for a system of linear equations
with non-negativity constraints exists were identified. We also showed how the specific
échelon form of the matrix is constructed, and with this échelon form, the cover order of
any given matrix can be determined.

With the help of cover theory, the emptiness of the feasibility set and the various
possibilities of the solution for the LP problem were analyzed in detail. In addition,
with the property of zero-cover matrix, a series of feasible solutions to the LP problem can
be obtained.

Our study on the cover length led us to the development of a method to find the
cover length of a covered variable. We also showed the equivalence between cover length
determination and the NNLS problem so that the NNLS problem can be solved with
the cover length method. This provides us with the analytical optimal value obtainable
from the structure of the matrix rather than a numerical result having a finite accuracy.
The development of the hyper-rectangle cover theory, thus, not only provides us with an
efficient method to solve the system of linear equations with non-negativity constraints, it
also suggests to us attractive alternative approaches to the LP and the NNLS problems.

Author Contributions: Conceptualization, X.C., K.M.W. and J.Z.; methodology, X.C., K.M.W., J.C. and
J.Z.; software, X.C.; validation, X.C. and K.M.W.; formal analysis, X.C., K.M.W. and J.Z.; investigation,
X.C., K.M.W. and J.Z.; resources, X.C. and J.Z.; data curation, X.C.; writing—original draft preparation,
X.C.; writing—review and editing, K.M.W., J.C. and J.Z.; visualization, X.C. and K.M.W.; supervision,
K.M.W.; project administration, X.C. and K.M.W.; funding acquisition, K.M.W. and J.Z.; All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Mathematics 2023, 11, 2338 24 of 25

Data Availability Statement: Not applicable.

Acknowledgments: This paper was written with profound gratitude to, and in fond memory of,
Jiankang Zhang who, while pioneering much of the original research in hyper-rectangle cover
theory, guided the first author (X.C.) with the utmost care in her research, and introduced, with great
enthusiasm, some intriguing ideas in the subject to the second author (K.M.W.). His sudden departure
from life left those who worked with him with a feeling of loss. He will always be remembered as a
great teacher and a great colleague.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lay, D.C. Linear Algebra and Its Applications, 5th ed.; Pearson: New York, NY, USA, 2016.
2. Bebikhov, Y.V.; Semenov, A.; Yakushev, I.; Kugusheva, N.; Pavlova, S.; Glazun, M. The application of mathematical simulation for

solution of linear algebraic and ordinary differential equations in electrical engineering. In Proceedings of the IOP Conference
Series: Materials Science and Engineering, Wuhan, China, 10–12 October 2019; IOP Publishing: Bristol, UK, 2019; Volume 643,
p. 012067.

3. Dianat, S.A.; Saber, E. Advanced Linear Algebra for Engineers with MATLAB; CRC Press: Boca Raton, FL, USA, 2017.
4. Golomb, S.W.; Gong, G. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar; Cambridge

University Press: Cambridge, UK, 2005.
5. Bardsley, J.M.; Knepper, S.; Nagy, J. Structured linear algebra problems in adaptive optics imaging. Adv. Comput. Math. 2011,

35, 103. [CrossRef]
6. Datta, B.N. Linear and numerical linear algebra in control theory: Some research problems. Linear Algebra Its Appl. 1994,

197, 755–790. [CrossRef]
7. Joshi, H.; Yavuz, M.; Townley, S.; Jha, B.K. Stability analysis of a non-singular fractional-order COVID-19 model with nonlinear

incidence and treatment rate. Phys. Scr. 2023, 98, 045216. [CrossRef]
8. Joshi, H.; Jha, B.K.; Yavuz, M. Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak

using real data. Math. Biosci. Eng. 2023, 20, 213–240. [CrossRef]
9. Joshi, H.; Jha, B.K. 2D memory-based mathematical analysis for the combined impact of calcium influx and efflux on nerve cells.

Comput. Math. Appl. 2023, 134, 33–44. [CrossRef]
10. Anton, H.; Rorres, C. Elementary Linear Algebra: Applications Version; John Wiley & Sons: Hoboken, NJ, USA, 2013.
11. Demmel, J.W. Matrix Computations (Gene H. Golub and Charles F. van Loan). SIAM Rev. 1986, 28, 252–255. [CrossRef]
12. Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2012.
13. Roman, S.; Axler, S.; Gehring, F. Advanced Linear Algebra; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3.
14. Dines, L.L. On Positive Solutions of a System of Linear Equations. Ann. Math. 1926, 28, 386–392. [CrossRef]
15. Schrijver, A. Theory of Linear and Integer Programming; John Wiley & Sons: Hoboken, NJ, USA, 1998.
16. Dantzig, G.B.; Thapa, M.N. Linear Programming 1: Introduction; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2006.
17. Karmarkar, N. A new polynomial-time algorithm for linear programming. In Proceedings of the Sixteenth Annual ACM

Symposium on Theory of Computing, Washington, DC, USA, 30 April–2 May 1984; pp. 302–311.
18. Khachiyan, L.G. Polynomial algorithms in linear programming. USSR Comput. Math. Math. Phys. 1980, 20, 53–72. [CrossRef]
19. Potra, F.A.; Wright, S.J. Interior-point methods. J. Comput. Appl. Math. 2000, 124, 281–302. [CrossRef]
20. Wright, M. The interior-point revolution in optimization: History, recent developments, and lasting consequences. Bull. Am.

Math. Soc. 2005, 42, 39–56. [CrossRef]
21. Dantzig, G. Linear Programming and Extensions; Princeton University Press: Princeton, NJ, USA, 2016.
22. Dantzig, G.B.; Thapa, M.N. Linear Programming 2: Theory and Extensions; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2006.
23. Murty, K.G. Linear Programming; Springer: Berlin/Heidelberg, Germany, 1983.
24. Bro, R.; De Jong, S. A fast non-negativity-constrained least squares algorithm. J. Chemom. J. Chemom. Soc. 1997, 11, 393–401.

[CrossRef]
25. Gill, P.E.; Murray, W.; Wright, M.H. Practical Optimization; SIAM: Philadelphia, PA, USA, 2019.
26. Van Benthem, M.H.; Keenan, M.R. Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems.

J. Chemom. J. Chemom. Soc. 2004, 18, 441–450. [CrossRef]
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