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Capacity-Achieving Distributions for the
Discrete-Time Poisson Channel–Part I:

General Properties and Numerical Techniques
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Abstract—Despite being an accepted model for a wide variety
of optical channels, few general results on optimal signalling
for discrete-time Poisson (DTP) channels are known. Among the
most significant is that under simultaneous peak and average
constraints, the capacity-achieving distributions are discrete with
a finite number of mass points.

In this paper, several fundamental properties of capacity-
achieving distributions for DTP channels are established. In par-
ticular, we demonstrate that all capacity-achieving distributions
of the DTP channel have zero as a mass point. In the case of only a
peak constraint, it is further shown that the optimal distribution
always has a mass point at the maximum amplitude. Finally,
under solely an average power constraint, it is shown that a finite
number of mass points are insufficient to achieve the capacity. In
addition to these analytical results, a numerical algorithm based
on deterministic annealing is presented which can efficiently
compute both the channel capacity and the associated optimal
input distribution under peak and average power constraints.
Numerical lower bounds based on the envelope of information
rates induced by the maxentropic distributions are also shown
to be extremely close to the capacity, especially in the low power
regime.

Index Terms—Discrete-time Poisson channel, capacity-
achieving distributions, deterministic annealing.

I. INTRODUCTION

THE discrete-time Poisson (DTP) channel is commonly
used to model low intensity, direct detection optical

communication channels. For this channel model, the intensity
of the input signal is allowed to vary between discrete time
slots while remaining fixed inside each interval, and the
channel output is a statistic on the number of received photons
in each time interval [1]. Constraints are placed on both the
peak power, A and the average optical power, ε.

Although currently no analytic expression is known for the
capacity of the DTP channel, many capacity bounds have been
developed. In [2], [3], McEliece derived several upper bounds
on the capacity of the DTP channel with zero photodetector
dark current under peak and average power constraints. In [4],
Shamai established lower and upper bounds on the capacity of
the DTP channel for binary inputs that are located at {0, A}
with average power constraint only. Lapidoth and Moser [5]
derived analytical lower and upper bounds on the capacity
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of the DTP channel with dark current. These bounds are
asymptotically tight as the peak and average powers tend to
infinity, although they are often loose in the lower power
regime. In [6] lower and upper bounds on DTP channel
capacity are given asymptotically as the average power tends
to zero with a fixed peak power. In [7], Martinez derived a
class of tight lower bounds based on the Gamma distribution
and non-asymptotic upper bounds via duality for the DTP
channel with no dark current under only an average power
constraint.

Relatively little work has been done on capacity-achieving
distributions for the DTP channel. In [8], Smith provided a
general characterization of the capacity-achieving distributions
for peak amplitude and average power constrained additive
Gaussian channels and established the Karush-Kuhn-Tucker
(KKT) conditions on the optimality of an input distribution.
Following Smith’s approach, Shamai [9] proved that the
capacity-achieving distributions for the DTP channel with
peak and average constraints consist of a finite number of
mass points. Extensions of Smith’s seminal work to different
but related channel models can be found in [10], [11], [12].

In contrast to previous work on the DTP channel which
concentrates on bounding capacity, this paper investigates
the capacity-achieving distributions of the DTP channel. This
approach not only provides insight on the channel capacity but
is also a useful tool to guide signalling design. It is shown that
the capacity-achieving distributions always have a mass point
at zero and, in the case with only a peak power constraint,
also a point at the maximum amplitude. We also prove that
distributions that consist of a finite number of mass points are
not capacity-achieving for the DTP channel with only average
power constraint.

In addition to the analytical results, this paper presents a
computationally-efficient numerical algorithm based on the
deterministic annealing (DA) framework of Rose [14] to find
the capacity and the associated optimal input distributions.
A somewhat surprising observation on the capacity achieving
distributions for the DTP channel is that for a fixed average
power constraint and increasing A, the peak power constraint
can alternate between being active and inactive. We also obtain
numerical capacity lower bounds using maxentropic source
distributions. Simulation results show that the envelope of
these bounds is very close to the channel capacity, especially
when the received power is smaller or at most on the same
order as the the dark current.

In the second part of this paper [20] the special case of
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binary capacity-achieving distributions for the DTP channel
are considered under a number of operating regimes.

The balance of this paper is organized as follows. Section II
presents the channel model and Section III contains the
developed general properties of the capacity-achieving distri-
bution. A numerical algorithm to compute the capacity and
the associated optimal input distribution, along with a class of
tight lower bounds based on the maxentropic distributions, is
presented in Section IV. The paper concludes in Section V.

II. CHANNEL MODEL

In the DTP channel, data are transmitted by sending pulse
amplitude modulation (PAM) intensity signals which are fixed
in discrete time intervals. The receiver is modelled as a photon
counter which generates an integer representing the number
of received photons. Specifically, in each time interval, ΔT , a
channel input intensity x [photons/second] is corrupted by the
combined impact of background radiation and photodetector
dark current at a rate of λ [photons/second]. The channel
output y [photons], is a random value related to the the number
of received photons in ΔT and obeys a Poisson distribution
with mean (x + λ)ΔT . Without loss of generality, assume
ΔT = 1 and accordingly

PY |X(y|x) = (x + λ)y

y!
e−(x+λ), x ∈ R

+, y ∈ Z
+. (1)

Furthermore, due to device constraints and limited energy
storage at the transmitter (e.g., a satellite in deep-space laser
communications), there is an average power constraint,

E(X) ≤ ε, [Average Power Constraint]. (2)

Also, due to the dynamic range limitation of transmitter, the
peak intensity must also be constrained,

0 ≤ X ≤ A, [Peak Power Constraint]. (3)

Without loss of generality, it is assumed that 0 ≤ ε ≤ A.
Notice that the constraints in this model can also be relaxed
to yield DTP channels with only average power constraint (i.e.,
A → ∞) or only peak power constraint (i.e., ε = A). Unless
otherwise noted, in this paper, A is finite.

The channel capacity, C, of a DTP channel is the maximum
mutual information over input distributions satisfying average
and peak power constraints. It is well known that the capacity-
achieving distribution is unique and discrete with a finite
number of mass points for finite A and ε [9]. Therefore,
there is no loss of generality in considering an input dis-
tribution defined over constellation ψx � {x1, x2, . . . , xn},
0 ≤ x1 < x2 < . . . < xn ≤ A, with corresponding probability
masses ψp � {p1, p2, · · · , pn}. Let Fx denote the cdf of the
input, that is

dFx = p1δ(x − x1) + p2δ(x− x2) + . . .+ pnδ(x− xn),

where δ(·) denotes the Dirac impulse functional. Thus,

C � max
Fx∈F

I(X ;Y )

= max
Fx∈F

∫
x

[∑
y

PY |X(y|x) log PY |X(y|x)
PY (y)

]
dFx, (4)

where

F �
{
Fx(x) :

∫ A

0

dFx = 1,EFx{X} ≤ ε

}
,

E is the expectation operator, PY (·) denotes the correspond-
ing distribution on the channel output and PY |X(·|·) denotes
the channel law.

Finally, define ψ∗
x(A, ε), ψ∗

p(A, ε), F ∗
x (A, ε) to be the

corresponding optimal values under constraints A and ε.

III. GENERAL RESULTS FOR CAPACITY-ACHIEVING

DISTRIBUTIONS

In this section, three general properties of the capacity-
achieving distribution are demonstrated under different con-
straints.

A. Properties of the capacity-achieving distribution

Lemma 1 (Shifting downward increases mutual information).
Let X denote a random variable defined over constellation
ψx = {x1, x2, . . . , xn}, 0 < x1 < x2 < . . . < xn ≤ A, with
corresponding probability masses ψp = {p1, p2, · · · , pn}, ∀i
pi �= 0. Let Y denote the output of a DTP channel generated
by X . Define another input XΔ = X − Δ with shifted
constellation ψxΔ = {x1 − Δ, x2 − Δ, · · · , xn − Δ}, and
let YΔ denote the corresponding output. For any Δ ∈ (0, x1],

I(X ;Y ) ≤ I(XΔ;YΔ), (5)

with equality if and only if |ψx| = 1.

Proof: A detailed proof can be found in Appendix A.

Corollary 2 (Mass point at zero). The capacity-achieving
distribution for the DTP channel under average and peak
power constraints always contains a mass point located at
0. That is, 0 ∈ ψ∗

x(A, ε) for any constraints A and ε.

Proof: This is a direct consequence of Lemma 1.

Lemma 3 (Squeezing decreases mutual information). Let X
denote a random variable defined over constellation ψx =
{x1, x2, . . . , xn}, 0 ≤ x1 < x2 < . . . < xn ≤ A, with
corresponding probability masses ψp = {p1, p2, · · · , pn}, ∀i
pi �= 0. Let Y denote the output of a DTP channel generated
by X . Define another input Xα = αX with squeezed
constellation {αx1, αx2, · · · , αxn}, and let Yα denote the
corresponding output. For α ∈ [0, 1),

I(X ;Y ) ≥ I(Xα;Yα), (6)

with equality if and only if |ψx| = 1.

Proof: This result can be proved by invoking [13, Theo-
rem 2]. A more elementary proof is provided in Appendix B.

Corollary 4 (Point at peak amplitude). For the DTP channel,
when only the peak power constraint is imposed, the capacity-
achieving distribution always contains a mass point located
at A, i.e., A ∈ ψ∗

x(A,A).

Proof: This follows from Lemma 3 directly.
Another interpretation of Lemma 1 is that the mutual infor-

mation is monotonically decreasing with λ. By Proposition 8
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in Appendix B, increasing λ is equivalent to shifting the
constellation to the right. This interpretation can also be shown
via [13, Theorem 1].

B. On the capacity-achieving distribution under only average
power constraint

As in [8], define

i(x, Fx) � −
∞∑
y=0

PY |X(y|x) log PY (y)

PY |X(y|x)

= (x+ λ) log(x+ λ)− x−
∞∑
y=0

e−(x+λ) (x+ λ)y

y!

× log

(∫ A

0

e−x(x + λ)ydFx

)
. (7)

The mutual information induced by Fx can be written as

I(Fx) =

∫ A

0

i(x, Fx)dFx. (8)

Finally, define the multiplier function with Lagrange multiplier
μ ≥ 0 as

M(μ, x, Fx) = I(Fx) + μ(x− ε)− i(x, Fx). (9)

The following theorem from [9] is of fundamental importance
for this paper.

Theorem 5. [KKT conditions [9, Eq. (24),(25)]] Fx(A, ε)
is capacity-achieving iff the following conditions are satisfied
for some μ ≥ 0,

M(μ, x, Fx(A, ε)) ≥ 0, x ∈ [0, A], (10)

M(μ, x, Fx(A, ε)) = 0, x ∈ ψ(Fx(A, ε)), (11)

where ψ(Fx(A, ε)) is the set of points of increase of Fx(A, ε).

The following result provides a partial characterization of
the capacity-achieving distribution for the DTP channel when
the peak power constraint is relaxed (i.e., A → ∞ and thus
only an average power constraint is imposed).

Theorem 6 (Insufficiency of distributions with bounded
support under average power constraint). Distributions with
bounded support are not capacity-achieving for the DTP
channel under only an average power constraint.

Proof: Suppose instead that the capacity-achieving distri-
bution dF ∗

x under average power constraint ε has a bounded
support Ω ⊆ [0, A∗]. It follows from Theorem 5 that

M(μ, x, F ∗
x ) ≥ 0, x ∈ [0, A], (12)

M(μ, x, F ∗
x ) = 0, x ∈ ψ(F ∗

x ),

for any A ≥ A∗.
Suppose x1 and x2 are two arbitrary points of increase of

F ∗
x with x1 < x2. In view of the fact that M(μ, x1, F

∗
x ) =

M(μ, x2, F
∗
x ) = 0, we can rewrite the multiplier function as

M(μ, x, F ∗
x )

=
x− x1
x2 − x1

(i(x2, F
∗
x )− i(x1, F

∗
x )) + i(x1, F

∗
x )− i(x, F ∗

x ).

Note that

M(μ,A, F ∗
x )

=
A− x1
x2 − x1

(i(x2, F
∗
x )− i(x1, F

∗
x )) + i(x1, F

∗
x )− i(A,F ∗

x )

=
A− x1
x2 − x1

(i(x2, F
∗
x )− i(x1, F

∗
x )) + i(x1, F

∗
x )

= −(A+ λ) log(A+ λ) +A

+
∞∑
y=0

e−(A+λ) (A+ λ)y

y!
log

(∫ A

0

e−x(x+ λ)ydF ∗
x

)

≤ A− x1
x2 − x1

(i(x2, F
∗
x )− i(x1, F

∗
x )) + i(x1, F

∗
x )

− (A+ λ) log(A+ λ) +A

+

∞∑
y=0

e−(A+λ) (A+ λ)y

y!
log ((A∗ + λ)y) (13)

=
A− x1
x2 − x1

(i(x2, F
∗
x )− i(x1, F

∗
x )) + i(x1, F

∗
x )

− (A+ λ) log(A+ λ) +A+ (A+ λ) log(A∗ + λ), (14)

where (13) is due to the fact that the support of dF ∗
x is con-

tained in [0, A∗]. It can be seen from (14) that M(μ,A, F ∗
x ) <

0 when A is large enough since the term −A logA prevails
(i(x2, F ∗

x ) and i(x1, F ∗
x ) can be viewed as constants), which

is contradictory with (12). Thus, under solely an average
power constraint, distributions with bounded support are not
capacity-achieving.

It was shown by Shamai in [9] that, with peak power
constraint and with or without average power constraint, the
capacity-achieving distribution for the DTP channel must
consist of a finite number of mass points. Theorem 6 indicates
that this conclusion does not hold if the peak power constraint
is relaxed.

IV. NUMERICAL RESULTS FOR CAPACITY-ACHIEVING

AND CAPACITY-APPROACHING DISTRIBUTIONS

Although some general properties of capacity-achieving
distributions for the DTP are known, closed-form analytical
expressions remain unknown in general. Therefore, it is of
practical importance to develop numerical methods to compute
such distributions. The numerical computation of both the
channel capacity and the optimal distribution are useful for
system implementation such as code design. These numerical
results, as well as tight lower and upper bounds, serve as
guidelines for system design.

A. Deterministic annealing algorithm for DTP capacity com-
putation

A particle method was developed in [16] to compute the
capacity of the DTP channel under average and peak power
constraints as well as the associated optimal input distribu-
tion. This method is computationally intensive as it requires
an initial discrete distribution with large enough cardinality
(usually hundreds) to ensure convergence. In this paper, we
propose a more computationally efficient algorithm based on
the deterministic annealing (DA) method. The DA method was
originally developed to compute the rate-distortion function
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Input: A, λ
Output: A discretized segment of the capacity curve

1 Initialization (typical values): s = 1, n = 2, x1 = 0, x2 = 0.01, p(x1) = p(x2) = 0.5, ω = 10−5, δ = 10−2,
NBA = NGD = 20 ;

2 repeat
3 Initialize: k = 1, ε(0) = 0;
4 repeat
5 k = k + 1;
6 [Blahut-Arimoto] for NBA iterations do
7 For every mass point, update p(xi) according to rules:

Q(k)(xi|yj) = p(x
(k−1)
i )P (yj |x(k−1)

i )∑
i′ p(x

(k−1)
i′ )P (yj |x(k−1)

i′ )
, (15)

p(k)(xi) =
exp

(∑
j P (yj |x(k−1)

i ) logQ(x
(k−1)
i |yj)− sx

(k−1)
i

)
∑
i exp

(∑
j P (yj |x(k−1)

i ) logQ(x
(k−1)
i |yj)− sx

(k−1)
i

) , (16)

p(k)(yj) =
∑
i

p(x
(k−1)
i )P (yj |x(k−1)

i ), (17)

8 end
9 [Gradient Descent] for NGD iterations do

10 Update all xi with appropriate choice for step-size θk

x
(k)
i = x

(k−1)
i + θk

∂

∂xi

(∑
y

PY |X(y|xi) logQ(xi|y)− sxi

)∣∣∣∣∣
xi=x

(k−1)
i

(18)

11 end
12 Compute ε(k) =

∑
i x

(k)
i p(x

(k)
i ) ;

13 until |ε(k) − ε(k−1)| ≤ ω ∨ k ≥ 100;
14

C =
∑
i

p(xi)
∑
j

P (yj |xi) log
(
P (yj |xi)
p(yj)

)
.

15 Apply the “two-symbols-one-location strategy” ;
16 Re-initialize: s = (1− δ)s ;
17 until s ≤ 10−5;

Algorithm 1: The deterministic annealing algorithm.

[14], which provides a strong motivation for our work due
to the similarity between the computation of channel capacity
and rate-distortion function. Unlike the particle method which
only generates a single point on the capacity curve, the DA
method results in a discretized segment of the capacity curve.

1) The deterministic annealing & gradient decent algo-
rithm: According to [17, Corollary 9], a parametric expression
of channel capacity in terms of s for a given A is given by

C(ε) = sε+ max
Q(x|y)

∑
x

exp

(∑
y

PY |X(y|x) logQ(x|y)− sc(x)

)
,

(19)

where C(ε) is some point on the capacity curve parameterized
by s, Q(x|y) is the conditional distribution of X = x given
Y = y, with c(x) being the cost associated with symbol
x. For the DTP channel, we have c(x) = x. The parameter
s can be interpreted as the slope of the capacity curve at a
given average power, ε and a fixed peak amplitude and has a
similar physical meaning as β in [14].

Define the cost function κ as

κ � max
Q(x|y)

∑
x

exp

(∑
y

PY |X(y|x) logQ(x|y)− sx

)
.

(20)

In contrast with the case of computing the rate-distortion
function where the cost function is minimized [14], the cost
function (20) is maximized in the computation of channel
capacity.

Algorithm 1 presents a sketch of the DA algorithm. The
inputs to the algorithm are A and λ. The algorithm initializes
with a binary distribution (n = 2) and s set to some positive
value. Through the annealing process, the value of s decreases
to 0 gradually. For every fixed s, the cost function (20) is
deterministically maximized through updating the probability
masses and positions of the input symbols recursively. The
input probability is updated based on the Blahut-Arimoto rule
(15)-(17), while the positions of mass points are updated via
a gradient descent technique (18). A similar gradient descent
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Fig. 1. Channel capacity when A = 100, λ = 0 and 10 with various ε. The
dash lines indicate the transition points of |ψ∗

x|, the number of mass points
in the capacity-achieving distribution.

method has been used to improve clustering performance
through deterministic annealing [18] and in our previous
work [16]. It should be mentioned that, although simple to
implement, the gradient descent technique is not guaranteed
to converge to the global optimal solution.

More mass points may be needed during the annealing
process as s decreases. To change the value of n, a two-
symbols-one-location strategy is adapted from [14, Sec. VI]. In
this technique two mass points are assigned to each location,
each carrying half the probability mass. During the iteration
of algorithm, the points may stay merged at the same loca-
tion or diverge depending on the phase transition condition.
Constellation points that approach to within a small distance
of each other (e.g. 10−3) are merged into a two co-located
mass points with the same total probability. Notice that some
of the duplicate mass points may also diverge away from each
other during the gradient descent phase. For example, assume
for a given s, n = 2. However, if the corresponding optimal
distribution is ternary, then one of the mass points will diverge
away from its pair during step (18). The algorithm will then
store 6 points before next iteration. For further details on this
technique, the reader is referred to [14].

The result of the DA algorithm has not been proven to
necessarily converge to the global optimum (i.e., capacity-
achieving) distribution. Convergence of the Blahut-Arimoto
algorithm is guaranteed and the convergence of the gradient
descent algorithm to a local optimum can be realized through
the proper selection of the step size θk in (18) (e.g., according
to the Armijo rule [15]). Although not necessarily optimum,
the output of the DA algorithm can be tested for optimality
against the KKT conditions in Theorem 5. In the numerical
results that follow, in practice all of the outputs of the DA
algorithm satisfy Theorem 5 are thus capacity-achieving.

B. Simulation results using DA

Figure 1 plots the channel capacity curves for increasing ε,
with the peak power constraint A = 100 and for λ = 0 and
λ = 10 with δ = 0.01. For comparison, the results obtained
via the particle method [16] are also presented. From the
simulation results, it is apparent that both of these algorithms

yield the channel capacity as well as the capacity-achieving
distribution. Notice, however, that the DA algorithm generates
a segment of the capacity curve rather than discrete points.

Consider the case of A = 100 and λ = 10 in Fig. 1
where |ψ∗

x| denotes the total number of the mass points in the
capacity-achieving distribution. For ε < −4 dB, the optimal
input distribution is binary and as ε increases, so too does |ψ∗

x|.
However, for ε > 11 dB, the capacity-achieving distribution
has |ψ∗

x| = 8 points. Notice also that for ε > 16 dB, both of
the capacity-achieving distribution and the channel capacity do
not change with increasing ε. Neither the capacity-achieving
distribution nor the channel capacity changes with increasing
ε. This saturation in capacity with increasing ε indicates that
the average power constraint becomes ineffective and the
capacity is limited by the peak power constraint. Notice that
this phenomenon occurs for ε >≈ A/2 = 17 dB.

The case of peak power constraint only and λ = 0 was
treated by Shamai in [9, Eq. (14)], where it is claimed that
the capacity-achieving distribution is

dF ∗
x = (1 − β1 − β2)δ(x) + β1δ(x − 0.3839A) + β2δ(x−A)

(21)

in the region 3.3679 ≤ A < φ, for some φ > 3.3679. In other
words, the constellation of the capacity-achieving distribution
scales linearly with A. However, after extensive simulation, we
have found that for ternary capacity-achieving distributions,
(21) is only capacity-achieving with A = 3.3679 but not for
larger values of A. In particular, for λ = 0, A = 4 and only
peak power constraint, the capacity-achieving distribution is

dF ∗
x = 0.4927δ(x) + 0.0768δ(x− 1.4033) + 0.4305δ(x− 4),

where the middle point is not located at x = 4 × 0.3839 =
1.5356.

C. Example: Inactive peak power constraint

It is easy to see that the average power constraint is
inactive if it is greater than the mean of the capacity-achieving
distribution under the peak power constraint only. However, it
is natural to expect that the peak power constraint is always
active since separating constellation points maximally should
improve performance. Somewhat surprisingly, we shall show
that the peak power constraint can be inactive (i.e., A /∈ ψ∗

x)
in some cases. It should be pointed out that A /∈ ψ∗

x does
not mean the peak power constraint is superfluous. Indeed,
according to Theorem 6, distributions with bounded support
are not capacity-achieving if the peak power constraint is
removed.

Figure 2 plots the capacity-achieving distributions for λ =
0, ε = 0.0594439 and various A. In both sub-figures, the
dashed curve represents the peak power constraint A while
the dots represent the positions of mass points in the optimal
input distributions. All simulations are carried out using the
numerical technique developed in Sec. IV-A. In Fig. 2(a)
the capacity-achieving distributions are plotted for different
peak-to-average ratios, A/ε with ε and λ fixed. Fig. 2(b)
highlights how the positions of the mass points in F ∗

x evolve
with increasing A. Notice that, when A ≤ 1, the peak power
constraint is active and F ∗

x has a mass point at A. When
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Fig. 2. Capacity-achieving distributions when λ = 0 and ε = 0.0594439 with various A: (a) distributions and (b) positions of mass points.

1 < A ≤ 5.54, as noted earlier, there is slack in the peak
power constraint and ψ∗

x = {0, 1}. Once A > 5.54, the
capacity achieving distribution is ternary and again the peak
power constraint is active. Thus, in this example, we observe
that for a fixed ε and λ the peak power constraint alternates
between being active and inactive as A increases.

To investigate further, consider the specific case for the same
λ and ε as above and A = 50ε = 2.972195. Using DA from
Sec. IV-A, the capacity-achieving distribution is found to be
binary and of the form

dF ∗
x = (1− ε)δ(x) + εδ(x− 1). (22)

Thus, the average constraint is active while there is slack in
the peak constraint. Further, the multiplier function in (9) is
computed to be

M(μ, x, F ∗
x ) = 3.7844e−x − x log x+ 2.392x− 3.7844,

(23)

and plotted in Fig. 3. Considering Theorem 5, it is clear from
Fig. 3 that dF ∗

x in (22) is in fact capacity-achieving for any
A ∈ (1, 5.54] and the peak power constraint is inactive in this
range.

D. Maxentropic capacity-approaching distributions

Although there are some algorithms to compute both the ca-
pacity and optimal input distributions for DTP channels (e.g.,
Section IV-A), often it is instructive to develop simple closed-
form input distributions which give a tight lower bounds on
the capacity.

Define a family of distributions, termed maxentropic, which
have equally spaced mass points in [0, A] and which maximize
entropy subject to average and peak power constraints. In
particular, the maxentropic distributions are given as [12]

dF †
x(K) =

K∑
k=0

p̄kδ

(
x− k

A

K

)
,

where

p̄k =
1

K + 1
, A ≤ 2ε, (24)
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Fig. 3. Multiplier function (23) for ε = 0.0594439 and λ = 0.

p̄k =
tk

1 + t+ t2 + . . .+ tK
, A ≥ 2ε, (25)

and t is some number between 0 and 1. These distributions
are in fact Boltzmann distributions which are widely applied
in statistical physics and clustering [19] and have also been
applied in Gaussian noise-corrupted optical channels [12].

E. Performance of Maxentropic Distributions on DTP Chan-
nels

The information rates induced by the maxentropic distri-
butions are shown in Figs. 4 and 5 for different A/ε and
λ = 3. The channel capacity in both cases are included for
comparison and computed through the deterministic annealing
method of Section IV-A.

It can seen from the figures that the performance of the
maxentropic distributions is very close to the channel capacity
and even capacity-achieving in some cases. At low ε, the
binary maxentropic distribution

dF †
x(1) =

(
1− ε

A

)
δ(x) +

ε

A
δ(x−A) (26)
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A/ε = 4/3

Channel Capacity

|ψ ∗
x| = 5K = 3
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K = 2
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K = 1
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x| = 4
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x| = 3

|ψ ∗
x| = 2

Fig. 4. Mutual information induced by the maxentropic input distributions
and the number of mass points versus ε when A/ε = 4/3 and λ = 3.
For comparison, the channel capacity and the number of mass points in the
capacity-achieving distribution, |ψ∗

x|, are also provided.
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K = 1
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Fig. 5. Mutual information induced by the maxentropic input distributions
and the number of mass points versus ε when A/ε = 4 and λ = 3. For
comparison, the channel capacity and the number of mass points in the
capacity-achieving distribution, |ψ∗

x|, are also provided.

is capacity achieving in both figures. As ε increases, the
number of mass points, K , required to approach the capacity
also increases. In fact, the mutual information induced by
the maxentropic distributions is often negligibly far from the
capacity for high ε with less mass points than the optimal
case. For example, in Fig. 4 when ε > 12.5 dB, a K = 3
maxentropic distribution is close to the channel capacity while
|ψ∗
x| = 5 points are in the optimal distribution. Similarly,

in Fig. 5, a K = 6 maxentropic distribution approaches
the capacity where up to 8 mass points are needed when
ε > 12.5 dB.

Therefore, the envelope of the information rates of max-
entropic distributions forms a close approximation to the
channel capacity of DTP channels. The simple forms of the
maxentropic distributions also make them a useful first step
in non-uniform signalling design for DTP channels and often
has the practical benefit of having near-capacity performance
with less mass points.

V. CONCLUSIONS

The DTP channel is a good model for many interesting
channels, including long range space optical systems. This
paper provides insight into the capacity-achieving and ap-
proaching distributions for DTP channels, including some
fundamental properties of the capacity-achieving distributions.
In addition, a numerical algorithm is presented based on
deterministic annealing which generates a segment of the
capacity curve and the associated optimal input distributions.
A simple family of maxentropic input distributions is defined
and used to develop tight lower bounds on the channel capacity
through the evaluation of the envelope of information rates for
different K .

An interesting insight of this work is that at low input
powers, when the received power is smaller or at most on
the same order as the the dark current, that binary inputs are
often optimal. Indeed, our simulations have shown that at low
input powers the binary maxentropic distribution in (26) is
optimal over a wide range of A. In the companion to this paper
[20], we expand our analytical results to develop necessary
and sufficient conditions for binary inputs being optimal as
well as presenting a closed-form expression for the capacity-
achieving distribution for large λ under both peak and average
constraints.

APPENDIX A
PROOF OF LEMMA 1

Proposition 7. If both X → Y → Z and X → Z → Y form
Markov chains, then PY |X(y|x)/PZ|X(z|x) does not depend
on x.

Proof: If both X → Y → Z and X → Z → Y form
Markov chains, then

PY |Z(y|z) = PY |Z,X(y|z, x)
=
PY,Z|X(y, z|x)
PZ|X(z|x)

=
PY |X(y|x)PZ|Y (z|y)

PZ|X(z|x) ,

where PZ|X,Y = PZ|Y by Markov chain definition. This
implies that PY |X(y|x)/PZ|X(z|x) does not depend on x.

Now we proceed to prove Lemma 1. Let Pois(Δ) denote
a Poisson distributed random variable with mean Δ. Let
W ∼ Pois(Δ) be independent of XΔ and YΔ. By the data
processing inequality, we have

I(XΔ;YΔ +W ) ≤ I(XΔ;YΔ). (27)

The conditional distribution of YΔ+W given XΔ = x−Δ is
the same as that of Y given X = x, which implies H(YΔ +
W |XΔ = x−Δ) = H(Y |X = x) for any x ≥ Δ. Moreover,
YΔ +W and Y are identically distributed; as a consequence,
we have H(YΔ +W ) = H(Y ). Now one can readily show
that

I(XΔ;YΔ +W ) = I(X ;Y ), (28)

which, together with (27), yields the desired inequality.
Note that the equality in (27) holds if and only if XΔ →

YΔ +W → YΔ form a Markov chain. Since XΔ → YΔ →
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YΔ+W form a Markov chain, it can be shown by leveraging
Proposition 7 that XΔ → YΔ+W → YΔ also form a Markov
chain if and only if |ψx| = 1. This completes the proof of
Lemma 1.

APPENDIX B
PROOF OF LEMMA 3

For a DTP channel with dark current of rate λ and an
input distribution specified by constellation ψx and probability
masses ψp, let Iλ,ψx,ψp denote the resulting mutual infor-
mation between the channel input and the channel output.
One can prove the following proposition by following the
derivation of (28).

Proposition 8. Iλ,ψx,ψp = I0,ψx+λ,ψp

Now we proceed to prove Lemma 3. It suffices to consider
the case α ∈ (0, 1) since the degenerate case α = 0 is trivially
true. Define Binom(y, α) as a Binomial distribution with y ∈
Z
+ trials and with success probability α in each trial.
First consider the special case λ = 0. Introduce a random

variable Z such that X → Y → Z form a Markov chain,
where the conditional distribution of Z given Y = y is
Binom(y, α) for all y. By the data processing inequality, we
have

I(X ;Z) ≤ I(X ;Y ). (29)

Note that the conditional distribution of Z given X = x is the
same as that of Yα given Xα = αx, which implies H(Z|X =
x) = H(Yα|Xα = αx) for any x ≥ 0. Moreover, Z and Yα
are identically distributed; as a consequence, we have H(Z) =
H(Yα). Now one can readily show that

I(X ;Z) = I(Xα;Yα). (30)

which, together with (29), implies

I0,αψx,ψp ≤ I0,ψx,ψp . (31)

Note that the equality in (29) holds if and only if X →
Z → Y form a Markov chain. Since X → Y → Z form a
Markov chain, it can be shown by leveraging Proposition 7
that X → Z → Y also form a Markov chain if and only if
|ψx| = 1. Therefore, the equality in (31) holds if and only if
|ψx| = 1.

For the general case λ ≥ 0, it can be verified that

Iλ,ψx,ψp = I0,ψx+λ,ψp (32)

≥ I0,ψx+
λ
α ,ψp

(33)

≥ I0,αψx+λ,ψp , (34)

= Iλ,αψx,ψp , (35)

where (32) and (35) are due to Proposition 8, (33) is due
to Lemma 1, and (34) is due to (31). Clearly, Iλ,ψx,ψp ≥
Iλ,αψx,ψp is equivalent to the desired inequality

I(X ;Y ) ≥ I(Xα, Yα). (36)

To complete the proof of Lemma 3, it suffices to show that
the equality in (36) holds if and only if |ψx| = 1. The “if” part
is trivially true. The “only if” part is a simple consequence of
the fact that the equality in (31) holds only if |ψx| = 1.
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