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Vector Gaussian Two-Terminal Source Coding
Jia Wang and Jun Chen, Member, IEEE

Abstract—We derive a lower bound on each supporting line of
the rate region of the vector Gaussian two-terminal CEO problem,
which is a special case of the indirect vector Gaussian two-terminal
source coding problem. The key technical ingredient is a new ex-
tremal inequality. It is shown that the lower bound coincides with
the Berger–Tung upper bound in the high-resolution regime. Sim-
ilar results are derived for the direct vector Gaussian two-terminal
source coding problem.

Index Terms—CEO problem, extremal inequality, MMSE, mul-
titerminal source coding, rate region.

I. INTRODUCTION

S INCE the introduction of the CEO problem by Berger
et al. [1], considerable attention has been devoted to char-

acterizing the rate region of the scalar Gaussian version of the
problem [2]. In particular, Oohama [3] developed an ingenious
method for bounding the rate region by leveraging Shannon’s
entropy power inequality to relate various information-theoretic
quantities. This method was later refined and eventually led
to a complete characterization of the rate region of the scalar
Gaussian CEO problem [4], [5] and its variant [6]. The scalar
Gaussian CEO problem is a special case of the general indirect
scalar Gaussian multiterminal source coding problem. In fact,
Oohama’s method is also applicable to this general problem [7],
although in this setting it does not yield a complete solution.
It was observed by Wagner et al. [8] that the Gaussian CEO

problem is closely related to the direct Gaussian multiterminal
source coding problem. By effectively exploiting this link, they
settled the longstanding open problem of determining the rate
region of the direct scalar Gaussian two-terminal source coding
problem.1 The intimate connection between indirect and direct
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1The rate region of the direct scalar Gaussian two-terminal source coding
problem was partially characterized in an earlier work by Oohama [9].

Gaussian multiterminal source coding was further elucidated in
[7]. Through this connection, Oohama’s method has become an
integral part of a general bounding technique for the direct scalar
Gaussian multiterminal source coding problem.
However, this method is not completely suitable for vector

Gaussian multiterminal source coding problems because in the
vector case the entropy power inequality in general yields a
loose bound unless the relevant covariance matrices satisfy a
certain proportionality condition. Though this issue can be (par-
tially) resolved for the vector Gaussian CEO problem as far as
the sum rate is concerned [10] by combining Oohama’s method
with an enhancement argument [11], it is unclear whether other
weighted sum rates can be treated in a similar way.
Recently, an alternative approach to Gaussian multiterminal

source coding problems was proposed in [12] (see [13] for fur-
ther development). The key idea underlying this approach is that
instead of relating information-theoretic quantities via the en-
tropy power inequality, one can relate the corresponding estima-
tion-theoretic quantities by exploiting the semidefinite partial
order between the (reduced) error covariance matrices incurred
by the MMSE estimator and the (reduced) optimal linear esti-
mator. Due to its estimation-theoretic nature, this approach is
directly applicable to the vector case. However, it is only effec-
tive for bounding the sum rate. This is because for the sum rate,
one can bound information-theoretic quantities in terms of esti-
mation-theoretic quantities in a greedy manner by invoking the
simple fact that the Gaussian distribution maximizes the differ-
ential entropy under a covariance constraint. On the other hand,
for other weighted sum rates, due to the existence of tension
among the relevant information-theoretic quantities, the greedy
method is not applicable anymore. Toward the end of removing
this limitation of the estimation-theoretic approach and making
it effective for bounding the whole rate region, in this paper, we
establish a new extremal inequality, which can be viewed as a
variant of the Liu–Viswanath extremal inequality [14]. It will
be seen that this extremal inequality enables us to deal with the
aforementioned tension in the two-terminal case.
The rest of this paper is organized as follows. In Section II, we

prove a new extremal inequality, which plays an instrumental
role in the converse arguments in this paper. In Section III, we
derive a lower bound on each supporting line of the rate region
of the vector Gaussian two-terminal CEO problem and estab-
lish certain sufficient conditions under which the lower bound
matches the Berger–Tung upper bound; in particular, we show
that the two bounds coincide in the high-resolution regime. Sim-
ilar results are derived for the direct vector Gaussian two-ter-
minal source coding problem in Section IV. Section V contains
a few concluding remarks.
Throughout this paper, the zero matrix and the iden-

tity matrix are denoted by and , respectively; for a positive
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semidefinite matrix , its unique positive semidefinite square
root is denoted by ; we assume the logarithm function is to
base and define .

II. EXTREMAL INEQUALITY

We first review some basic definitions and results in
[12, Sec. II]. We assume that random matrices are of mean
zero unless specified otherwise. For any random matrices

with the same column dimension , define
, , and ,

where . The (reduced) optimal linear es-
timator of from is defined as , where
is any solution of the equation (in particular,

if is invertible), and the incurred (reduced)
error covariance matrix is given by

Note that the (reduced) optimal linear estimator coincides with
the standard linear MMSE estimator when . For any
random object jointly distributed with , we define

and refer to it as the (reduced) error covariance ma-
trix incurred by theMMSE estimator of from (i.e., ).
An important fact is that

for any random matrix (of the same size as ) that is a func-
tion of ; of particular relevance here is the case with
being a function of .
The main result of this section is the following extremal in-

equality.
Theorem 1: Let be an random matrix such that each

column is an independent copy of an Gaussian random
vector with mean zero and positive-definite covariance matrix
. Let be a real number and be a positive-definite matrix

satisfying and , respectively. Moreover, let be
a positive-definite matrix satisfying
for which there exists a positive semidefinite matrix such that

(1)

(2)

Then, for any random object and random matrix ,
jointly independent of , such that , we have

Proof: See Appendix A.
Define to be the set of joint distributions such that

is independent of and the columns of are
independent and identically distributed (i.i.d.) Gaussian random

Fig. 1. Vector Gaussian two-terminal CEO problem.

vectors. It is easy to verify that for , if
and only if . Therefore, we have

(3)

(4)

(5)

In view of Theorem 1, the inequalities in (3) and (5)
must be equalities. Note that (1) and (2) are in fact the
Karush–Kuhn–Tucker (KKT) conditions that are necessary for
a solution of the maximization problem in (4) to be optimal.
Theorem 1 implies that these conditions are sufficient for the
global optimality. If we replace by ,
then Theorem 1 becomes essentially a conditional version of
the extremal inequality by Liu and Viswanath [14, Corollary 5]
for the case . It is easy to show that implies

(while they are equivalent for ) by
leveraging the fact2

As a consequence, Theorem 1 can be viewed as a strengthened
version of the Liu–Viswanath extremal inequality.

III. VECTOR GAUSSIAN TWO-TERMINAL CEO PROBLEM

We shall first give a formal definition of the rate region of
the vector Gaussian two-terminal CEO problem (see Fig. 1
for the system model). Let , , and be three mutually
independent Gaussian random vectors with mean zero
and positive-definite covariance matrices , , and ,
respectively. Let and . Let

be i.i.d. copies of
.

Definition 1: A rate pair is said to be achievable
subject to distortion constraint if for all sufficiently large ,

2Note that is the (reduced) error covariance
matrix incurred by the (reduced) optimal linear estimator of from and

.



WANG AND CHEN: VECTOR GAUSSIAN TWO-TERMINAL SOURCE CODING 3695

there exist encoding functions ,
, such that

where , . The rate region is the
closure of the set of all achievable rate pairs subject to distortion
constraint .
To facilitate subsequent analysis, we define

, , , ,
, and define , , , , , ,

accordingly. Note that is independent of and
is independent of , . It can be verified that

In view of the fact that , we
shall assume . It can be shown through a
simple time-sharing argument that is a (closed) convex
set. Therefore, is completely characterized by its sup-
porting lines. Define

where and are nonnegative real numbers. We shall
bound by establishing upper and lower bounds
on . Without loss of generality, we assume

. Note that the degenerate case
corresponds essentially to a (remote) Wyner–Ziv problem.
Specifically, it can be shown (see Appendix B) that

(6)

Hence, unless stated otherwise, we shall focus on the case
in the rest of this section.

A. Lower Bound

The main result of this section is the following theorem,
which provides a lower bound on .
Theorem 2: , where

Proof: Let , ,
be two encoding functions such that , where

, . Denote , ,
and by , , and , respectively. Note that

(7)

(8)

We shall first leverage the estimation-theoretic approach
in [12] to establish a connection between and .
We only give a sketch of this step here due to its similarity
to the derivation of (4) in [12]. It can be verified (cf., [12,
eq. (2)]) that the (reduced) error covariance matrix incurred
by the MMSE estimator of from , , and is

. In addition, it can
be shown (cf., [12, eq. (3)]) that the (reduced) error covariance
matrix incurred by the (reduced) optimal linear estimator of

from and is .
Therefore, we have

which is equivalent to

(9)

The next step is to derive a lower bound on
in terms of , , and . Note that

(10)

For reasons that will become clear, we introduce the following
minimization problem:

where . It can be
shown (cf., [17, Proposition 3.3.11]) that for any optimal so-
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lution to this minimization problem, there exist
and such that

(11)

(12)

(13)

Now continuing from (10), we have

(14)

In view of (11), (12), and the fact that

one can readily show by leveraging Theorem 1 that

(15)

Substituting (15) into (14) gives

which, together with (13), implies

Define . Note that

is equivalent to ; moreover, we
have

and

As a consequence

(16)

Combining (7)–(9) and (16) yields
, where
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Without loss of optimality, one can set in
the above minimization problem, which implies that

. This completes the proof
of Theorem 2.

B. Upper Bound

The main result of this section is the following upper
bound on , which will be referred to as the
Berger–Tung upper bound since it is a simple consequence of
the Berger–Tung inner bound of .
Theorem 3: , where

Proof: Let and be generated by and , re-
spectively, via paralleled Gaussian test channels, i.e.,

, , where is an matrix and
is an Gaussian random vector with independent zero-
mean unit-variance entries; moreover, we assume , , and

are mutually independent. Denote ,
, and by , , and , respectively.

It is clear that

(17)

Moreover, we can set to be any matrix satisfying

(18)

by suitably choosing , . It can also be verified (cf.,
[12, eq. (5)]) that

(19)

Let and . Ac-
cording to the well-known Berger–Tung inner bound [15], [16],
we have if

(20)

Note that

(21)

where the last equality is due to

Combining (17)–(21) yields ,
where

Since , it follows that

and the proof is complete.

C. Matching Conditions

In this section, we shall investigate the conditions under
which . It is easy to see that
without loss of optimality one can set in the min-
imization problem associated with . Therefore,

can be defined equivalently as

Moreover, it is clear that if an optimal solution to
satisfies

(22)

then with is an optimal solution to the
minimization problem associated with , and con-
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sequently . It can be verified that
the matching condition (22) is satisfied in the scalar case (i.e.,

).
To facilitate analysis, we replace with the following min-

imization problem:

Note that provides a lower bound on ; fur-
thermore, if an optimal solution to satisfies (22),
then it is also an optimal solution to and consequently

. Ignoring the constant terms,
one can write the Lagrangian of as

where , , and are positive semidefinite matrices. Since
is a convex semidefinite programming problem,

is an optimal solution to if it satisfies the following KKT
conditions:

By setting and , we can
simplify the KKT conditions as

(23)

(24)

(25)

It can be readily shown by comparing (22) and (24) that
if there exists sat-

isfying (23) –(25). For the special case (which

corresponds to the sum rate), one can verify that the solution to
the matrix (23) and (24) is given by

Substituting this solution into (25), we see that
if , . This matching

condition was first derived in [10]. Now consider the general
case . Define , , and

, . We can rewrite (23)–(25) as

(26)

(27)

(28)

Combining (26) and (27) gives

Note that

Setting , ,

and , we obtain the following quadratic
matrix equation:

(29)

For the purpose of solving (29), we consider a closely related
matrix equation

which can be written equivalently as

(30)
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Fig. 2. Direct vector Gaussian two-terminal source coding problem.

Let be the eigenvalue decomposition of ,
where is a unitary matrix and is a pos-
itive-definite diagonal matrix. Note that

Since , it follows that

for all . Therefore, is positive semidefinite and
is well defined. Note that ,

where with

Let . It is easy to see that is a solution
to (30). Moreover, it can be verified that ; as a con-
sequence, is also a solution to (29). Let
and . Since , it follows
that , . Therefore, if , , then
(26)–(28) are all satisfied, and consequently,

. A simple sufficient condition is ,
. In view of the fact that , this sufficient

condition is satisfied in the high-resolution regime3

(31)

It is worth noting that (31) does not depend on and thus
provides a condition4 under which the rate region is com-
pletely characterized. We summarize this result in the following
theorem.
Theorem 4: if

, .

IV. DIRECT VECTOR GAUSSIAN TWO-TERMINAL
SOURCE CODING PROBLEM

In this section, we shall apply the new bounding technique to
the direct vector Gaussian two-terminal source coding problem
(see Fig. 2 for the system model).
Let , , and be three positive integers with

. For any matrix , we denote its

3It is easy to verify that , .
4Due to its inherent symmetry, this condition does not rely on the assumption

.

first diagonal submatrix by and its second
diagonal submatrix by , and call an

block diagonal matrix if

Let be an Gaussian random vector
with mean zero and positive-definite covariance matrix ,
where is an Gaussian random vector with mean zero
and positive-definite covariance matrix , .
Let be i.i.d. copies of .
Definition 2: A rate pair is said to be achiev-

able subject to distortion constraint if for
all sufficiently large , there exist encoding functions

, , such that

where , . The rate region
is the closure of the set of all achievable rate pairs subject to
distortion constraint .
We shall assume , , which is justified

by the fact that , . Since
is a (closed) convex set, it is completely characterized by its
supporting lines. Define

where and are nonnegative real numbers. Following the
proof strategy for the CEO problem, we shall bound
by establishing upper and lower bounds on .
Without loss of generality, we assume . For the
degenerate case , it can be shown [cf., the proof of (6)]
that

Hence, we shall focus on the case in the rest of
this section.
For the purpose of subsequent analysis, we augment the

probability space by introducing random objects which are
not necessarily functions of the existing ones. Specifically,
let be an Gaussian random vector, independent of
, with mean zero and positive-definite covariance matrix
and let be i.i.d. copies

of . Furthermore, we define ,
, , ,
, , and define , , ,

, , , , , accordingly. It is clear
that and are mutually independent, ; similarly,
and are mutually independent, . Let be

the set of positive-definite matrices such that is
an block diagonal matrix. Note that if ,
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then form a
Markov chain.

A. Lower and Upper Bounds

We shall establish a lower bound and an upper bound on
in this section.

Theorem 5:
for any , where

(32)

Proof: The proof is similar to that of Theorem 2 and is
relegated to Appendix C.
Theorem 6:

for any , where

(33)

Proof: Due to the similarity to the proof of Theorem 3,
we only give an abbreviated proof here. Let and be
generated by and , respectively, via paralleled Gaussian
test channels. Specifically, , where is an

matrix and is an Gaussian random vector
with independent zero-mean unit-variance entries, ;
moreover, it is assumed that , , and are mutually in-
dependent. Now pick an arbitrary from and denote

, , by , , , respectively.
It can be verified (cf., [12, eq. (11)]) that

Furthermore, we have

The desired result follows by invoking the fact that
if

(i.e., ), , and
the fact that one can set to be an arbitrary matrix satisfying

by suitably choosing , .

B. Matching Conditions

It is easy to see that the minimization problems associated
with and are
almost identical except that “ ” in (32) is replaced by “ ” in
(33). Indeed, we shall show that the two bounds coincide under
certain conditions.
Let be the set of positive-definite matrices
such that , , and is a positive

semidefinite block diagonal matrix.
Lemma 1: If for some , , , and with

, , and
, there exists an block diagonal

matrix satisfying

then .
Proof: See Appendix D.

Note that for , , , and with ,
, and , we have

(34)

and

(35)

In fact, there is a unique block diagonal matrix
satisfying (34) and (35). To see this, we partition into the
form

where , . Now (34) and (35) can be written
equivalently as
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which can be further written as

where is the Kronecker product and is the vec operator.
Note that

where is the Khatri–Rao product [18]. Since , it follows
that is positive definite and thus invertible. As a conse-
quence, is uniquely determined by the following equation:

(36)

Therefore, we can reexpress Lemma 1 in the following form.
Lemma 2: If for some and

, the unique block diagonal ma-
trix determined by (34) and (35) [or, equivalently, by (36)]
satisfies , then

.
Define

and

.
Lemma 3: is a singleton for any
.
Proof: See Appendix E.

The following two theorems (i.e., Theorems 7 and 8) indi-
cate that and
coincide in the high-resolution regime (i.e., when and

are small) and the weak-dependence regime (i.e., when
is small), where is the Frobenius norm. The

proofs can be found in Appendixes F and G.
Theorem 7: There exists a such that if

, , then
for some .

Theorem 8: For any with ,
, there exists a such that if

, then
for some .

We shall proceed to derive a more explicit matching con-
dition for the case . According to Lemma 3,

is a singleton when . Denote
its element by , which is of the form

Now we choose

Clearly, implies . Note that

Since both and are block
diagonal matrices, it follows that . In view of
the fact that is an block diagonal matrix,
the condition of Lemma 1 is satisfied if we can find a positive
semidefinite block diagonal matrix such that

(37)

(38)

where and .

Define , , ,
, and . Clearly, and are positive

semidefinite. Moreover, since is positive definite, it follows
that , , and consequently,

, . Define

Through some algebraic manipulations, we can convert (37) and
(38) to the following matrix equations:

(39)

where

Let be the eigenvalue decomposition of , where
is a unitary matrix and is a diagonal
matrix (with , ), . Define

and , . We can write
(39) equivalently as

which can be solved to obtain

(40)

where with , , and

with , , and is

the Hadamard product. Note that if and given by (40)
are positive semidefinite, then the resulting is also positive
semidefinite, and thus, the condition of Lemma 1 is satisfied.
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For the special case (which corresponds to the
sum rate), one can readily verify that (40) yields

which are positive definite. As a consequence, we have
. Further-

more, it can be shown that both and
are equal to . Therefore, we

obtain the following theorem.
Theorem 9: If , then

where is the unique element of .
Define

,
,

and . It is easy to show that if
, then

The characterization of for
remains an open problem. It is worth noting that in the
scalar case (i.e., ).

V. CONCLUSION

We have derived a lower bound on each supporting line
of the rate region of the vector Gaussian two-terminal CEO
problem by leveraging the estimation-theoretic method de-
veloped in [12] together with a variant of the Liu–Viswanath
extremal inequality. It is shown that the lower bound coincides
with the standard Berger–Tung upper bound under certain
conditions. Note that the extremal inequality in Theorem 1
is only suitable for the two-terminal case, while the estima-
tion-theoretic method does not have such a limitation. As far
as the sum rate is concerned, the lower bound in this study can
be directly extended to the general multiterminal case since the
extremal inequality is needed only when the rates are weighted
differently. Furthermore, due to the resemblance between our
lower bound and the Berger–Tung upper bound, one can easily
conjecture the form of the desired multiterminal generalization
of our lower bound. However, a more sophisticated extremal
inequality is needed to establish such a lower bound for a
general weighted sum rate in the multiterminal setting [19].
We have also studied the direct vector Gaussian two-terminal

source coding problem and obtained similar results. Again,
generalizing these results to the multiterminal setting is not
completely straightforward. In particular, certain brute-force
calculations in this study (see, e.g., the proof of Lemma 3)
need to be handled in a more conceptual manner. It is worth
mentioning that recently the vector Gaussian one-helper source
coding problem, which is a special case of the direct vector
Gaussian two-terminal source coding problem, has been com-
pletely solved [20], [21].

It should be noted that our bounding technique is applicable to
the vector version of the indirect Gaussian two-terminal source
coding problem (which contains the vector Gaussian two-ter-
minal CEO problem as a special case) studied in [7]. In fact,
albeit somewhat implicitly, our treatment of the direct vector
Gaussian two-terminal source coding problem is to a large ex-
tent based on a careful analysis of an indirect source coding
problem in which is the remote source.

APPENDIX A
PROOF OF THEOREM 1

If , then (1) and (2) imply that . Since

it follows that

So it suffices to consider the case .
If , then (1) implies

Consequently

(41)

By the conditional version of the entropy power inequality, we
have

where the right-hand side of the inequality, as a function of
, is maximized at
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and the corresponding maximum value is equal to

(42)

A comparison of (41) and (42) completes the proof for the case
.

Now consider the case . Let . We
have

It follows from [11, Lemma 12] that and

(43)

Let be the eigenvalue decomposition of , where
is a unitary matrix and is a

positive semidefinite diagonal matrix of rank . Note that
implies . Let be an randommatrix such that each
column is an independent copy of an Gaussian random
vector with mean zero and covariance matrix . Similarly, let
be an random matrix such that each column is an in-

dependent copy of an Gaussian random vector with mean
zero and covariance matrix , where .
We assume , , and are mutually independent. Define
an matrix

It is easy to see that the joint distribution of is pre-
served if we let

Note that

where

Since , it follows that

In view of the fact that

we have

(44)

Let , where is the (reduced) optimal linear
estimator of from . One can readily show that is indepen-
dent of . Moreover, it is clear that . Note that

Since , it follows that
, and consequently

(45)

which, together with (44), implies

(46)

It can be shown by invoking the conditional version of the en-
tropy power inequality (cf., the case ) that

(47)

Substituting (47) into (46), we obtain

(48)

Let be an random matrix, independent of ,
such that each column is an independent copy of an
Gaussian random vector with mean zero and covariance matrix
. It can be verified [cf., (44) and (45)] that

(49)

In view of (43) and (49), we have

which implies

(50)

Combining (48) and (50) completes the proof.
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APPENDIX B
CHARACTERIZATION OF

Let , , be two en-
coding functions such that , where

, . Note that

(51)

and

(52)

Moreover, we have

(53)

Combining (51)–(53) and denoting by , one can
readily see that

Now we proceed to show that this lower bound is in fact tight.
Let and be generated by and , respectively,
via paralleled Gaussian test channels, i.e., ,

, where is an matrix and is an
Gaussian random vector with independent zero-mean unit-vari-
ance entries; moreover, we assume , , and
are mutually independent. Denote by . It is clear
that we can set to be any matrix satisfying

(54)

by suitably choosing . Let be the linear
MMSE estimator of from and . Note that

(55)

According to the well-known Berger–Tung inner bound [15],
[16], we have if

, where

(56)

Combining (54)–(56) yields the following upper bound on
:

Let . In view of the fact that
, , and as

, the proof can be completed by a continuity argument.

APPENDIX C
PROOF OF THEOREM 5

Let , , be two en-
coding functions such that , , where

, . We pick an arbitrary from
and denote , , by ,

, , respectively. Note that

(57)

(58)

(59)

Moreover, one can show by following the derivation of (10) in
[12] that

(60)

Specifically, is the (reduced) error covariance ma-
trix incurred by the MMSE estimator of from , , and
, while is the (reduced) error covariance

matrix incurred by the (reduced) optimal linear estimator of
from and .
Now we proceed to derive a lower bound on

in terms of , , and . Let be an optimal
solution to the following minimization problem:

where . It can be shown
[cf., (11)–(13)] that there exist and such that

(61)

(62)

(63)
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Note that

(64)

In view of (61), (62), and the fact that

, Theorem 1 can be readily applied
to show that

(65)

Substituting (65) into (64) and invoking (63) yields

which can be shown, through algebraic manipulations, to be
equivalent to

(66)

It is clear that (57)–(60) and (66) together imply
, where

The desired result follows by recognizing the fact that
.

APPENDIX D
PROOF OF LEMMA 1

Consider the following minimization problem (which is es-
sentially a relaxed version of the minimization problem associ-
ated with )

where , ,
, and . The Lagrangian of is

given by

where , , and are positive semidefinite matrices.
Since is a convex semidefinite programming problem,
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is an optimal solution to if it satisfies the
following KKT conditions:

which can be written equivalently as

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

Now assume and . Since
is an block diagonal matrix, we can con-

struct and such that

(75)

It is easy to show that if is an optimal solu-
tion to , then it is also an optimal solution to the mini-
mization problem associated with ,
which, together with (75), implies

. The proof is completed by noticing
the fact that our choice of satisfies the conditions
(70)–(74) and the fact that the existence of positive semidefinite
matrices , , and satisfying (67)–(69) is equivalent to the
existence of an block diagonal matrix satisfying

APPENDIX E
PROOF OF LEMMA 3

We shall first show that there exists a unique positive-definite
matrix such that , , and is an

block diagonal matrix. Let be a positive-definite
matrix of the form

Note that

where

Clearly, is an block diagonal matrix if
and only if , i.e.,

(76)

We shall show that is uniquely determined by (76). Define

and

Since is positive definite, it follows that .
We can write (76) equivalently as

(77)

Let . Note that (77) implies

i.e., . Therefore, is symmetric and
. Now it can be readily verified that

(78)

Let be the singular value decomposition of , where
and are, respectively, and unitary

matrices, and is an diagonal matrix. Without loss of
generality, we assume that is of the form
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where are positive. In view of (78), we have

where , . Note that (77), together
with the fact , implies that and have the
same rank. As a consequence, must be of the form

Again by (77), we must have

which implies . Therefore, is uniquely given by

(79)

It can be verified that the resulting is positive definite and
is an block diagonal matrix.

Now we proceed to show that for this , if ,
then , . By symmetry, it suffices to prove that

implies
, i.e.,

Note that

(80)

Define ,
, and , where . Continuing

from (80), we have

Since ,
it follows that

where for
, and for
. Note that , , as ,

where for , and
for . Therefore, we have

, i.e.,

It can be shown by leveraging (79) that

which completes the proof.

APPENDIX F
PROOF OF THEOREM 7

We shall show that the condition of Lemma 2 is satisfied in
the high-resolution regime. To this end, it suffices to consider
the case where is a singleton5 and its element
satisfies . Let (which is a

positive-definite block diagonal matrix) and

Clearly, , , and all converge to as , .
It can also be verified that

Now choose an arbitrary from . Note that

(81)

and

(82)

where ,

(which is an block diagonal matrix),
, and

Define with , , and
for . We can rewrite (81) and (82) as

5Note that the condition in Lemma 3 is satisfied when
and are sufficiently small.
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Clearly, and as ,
; moreover

which converges to as , . As a conse-
quence, we must have as
, . Since , it follows that

is positive definite when , , are sufficiently
small.

APPENDIX G
PROOF OF THEOREM 8

We shall show that the condition of Lemma 2 is satisfied
in the weak-dependence regime. In view of Lemma 3 and the
fact that when is sufficiently small,
it suffices to consider the case where is a
singleton. Denote the element of by . It is
easy to see that as .
Let for some
satisfying and . Due to the
fact that (which is a posi-
tive-definite matrix) as and the fact that

(which is an block
diagonal matrix), we have when is
sufficiently small. Since ,

, and as , it
follows that as . Now it can be
readily shown that for the block diagonal matrix
determined by (34) and (35) [or, equivalently, by (36)], we
must have and consequently

as . Note that
and

Therefore, is positive definite when
is sufficiently small.
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