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Vector Gaussian Two-Terminal Source Coding

Jia Wang and Jun Chen, Member, IEEE

Abstract—We derive a lower bound on each supporting line of
the rate region of the vector Gaussian two-terminal CEO problem,
which is a special case of the indirect vector Gaussian two-terminal
source coding problem. The key technical ingredient is a new ex-
tremal inequality. It is shown that the lower bound coincides with
the Berger—Tung upper bound in the high-resolution regime. Sim-
ilar results are derived for the direct vector Gaussian two-terminal
source coding problem.

Index Terms—CEO problem, extremal inequality, MMSE, mul-
titerminal source coding, rate region.

I. INTRODUCTION

INCE the introduction of the CEO problem by Berger
S et al. [1], considerable attention has been devoted to char-
acterizing the rate region of the scalar Gaussian version of the
problem [2]. In particular, Oohama [3] developed an ingenious
method for bounding the rate region by leveraging Shannon’s
entropy power inequality to relate various information-theoretic
quantities. This method was later refined and eventually led
to a complete characterization of the rate region of the scalar
Gaussian CEO problem [4], [5] and its variant [6]. The scalar
Gaussian CEO problem is a special case of the general indirect
scalar Gaussian multiterminal source coding problem. In fact,
Oohama’s method is also applicable to this general problem [7],
although in this setting it does not yield a complete solution.

It was observed by Wagner et al. [8] that the Gaussian CEO
problem is closely related to the direct Gaussian multiterminal
source coding problem. By effectively exploiting this link, they
settled the longstanding open problem of determining the rate
region of the direct scalar Gaussian two-terminal source coding
problem.! The intimate connection between indirect and direct
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IThe rate region of the direct scalar Gaussian two-terminal source coding
problem was partially characterized in an earlier work by Oohama [9].

Gaussian multiterminal source coding was further elucidated in
[7]. Through this connection, Oohama’s method has become an
integral part of a general bounding technique for the direct scalar
Gaussian multiterminal source coding problem.

However, this method is not completely suitable for vector
Gaussian multiterminal source coding problems because in the
vector case the entropy power inequality in general yields a
loose bound unless the relevant covariance matrices satisfy a
certain proportionality condition. Though this issue can be (par-
tially) resolved for the vector Gaussian CEO problem as far as
the sum rate is concerned [10] by combining Oohama’s method
with an enhancement argument [11], it is unclear whether other
weighted sum rates can be treated in a similar way.

Recently, an alternative approach to Gaussian multiterminal
source coding problems was proposed in [12] (see [13] for fur-
ther development). The key idea underlying this approach is that
instead of relating information-theoretic quantities via the en-
tropy power inequality, one can relate the corresponding estima-
tion-theoretic quantities by exploiting the semidefinite partial
order between the (reduced) error covariance matrices incurred
by the MMSE estimator and the (reduced) optimal linear esti-
mator. Due to its estimation-theoretic nature, this approach is
directly applicable to the vector case. However, it is only effec-
tive for bounding the sum rate. This is because for the sum rate,
one can bound information-theoretic quantities in terms of esti-
mation-theoretic quantities in a greedy manner by invoking the
simple fact that the Gaussian distribution maximizes the differ-
ential entropy under a covariance constraint. On the other hand,
for other weighted sum rates, due to the existence of tension
among the relevant information-theoretic quantities, the greedy
method is not applicable anymore. Toward the end of removing
this limitation of the estimation-theoretic approach and making
it effective for bounding the whole rate region, in this paper, we
establish a new extremal inequality, which can be viewed as a
variant of the Liu—Viswanath extremal inequality [14]. It will
be seen that this extremal inequality enables us to deal with the
aforementioned tension in the two-terminal case.

The rest of this paper is organized as follows. In Section II, we
prove a new extremal inequality, which plays an instrumental
role in the converse arguments in this paper. In Section III, we
derive a lower bound on each supporting line of the rate region
of the vector Gaussian two-terminal CEO problem and estab-
lish certain sufficient conditions under which the lower bound
matches the Berger—Tung upper bound; in particular, we show
that the two bounds coincide in the high-resolution regime. Sim-
ilar results are derived for the direct vector Gaussian two-ter-
minal source coding problem in Section IV. Section V contains
a few concluding remarks.

Throughout this paper, the zero matrix and the £ x % iden-
tity matrix are denoted by 0 and I, respectively; for a positive
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semidefinite matrix 3, its unique positive semidefinite square

1 . .
root is denoted by ¥ ; we assume the logarithm function is to
base e and define log™ 22 = max(log z,0).

II. EXTREMAL INEQUALITY

We first review some basic definitions and results in
[12, Sec. II]. We assume that random matrices are of mean
zero unless specified otherwise. For any random matrices
8731,...7§k with the same column dimension 7, define
LE[SST], B4 = LE[SST], and B4 = LE[SST],
where S£(ST,...,8T)T. The (reduced) optimal linear es-
timator of S from Sl, .. ..,ék, is defined as AS, where A
is any solution of the equation AXg = Yg ¢ (in particular,
A= ZSTSZS* Lif 34 is invertible), and the incurred (reduced)
error covariance matrix g, ¢ is given by

T
Yy ag=3s— AES,S'

Note that the (reduced) optimal linear estimator coincides with
the standard linear MMSE estimator when n = 1. For any
random object V' jointly distributed with S, we define Xgy =
Ys_gs|v) and refer to it as the (reduced) error covariance ma-
trix incurred by the MMSE estimator of S from V' (i.e., E[S|V]).
An important fact is that

Ysv 2 Bs-g

for any random matrix S’ (of the same size as S) that is a func-
tion of V'; of particular relevance here is the case S’ = AS with
S being a function of V.

The main result of this section is the following extremal in-
equality.

Theorem 1: LetZ be an m X n random matrix such that each
column is an independent copy of an . x 1 Gaussian random
vector with mean zero and positive-definite covariance matrix
¥z. Let i be a real number and T be a positive-definite matrix
satisfying ;2 > 1 andT' < Xy, respectively. Moreover, let £* be
a positive-definite matrix satisfying £* < T2 — £,)~!
for which there exists a positive semidefinite matrix M such that

(E) = p(3 +%z) T+ M, (1
M(T - £*) = 0. )

Then, for any random object V and 7 x n random matrix S,
jointly independent of Z, such that Xg|g.7 v < I, we have

h(S|V) — ph(S + Z|V)
< 7 log((2me) ™ |£7]) — £- log((2me)"™ [ + £,
Proof: See Appendix A. ]
Define G to be the set of joint distributions py g such that S —
E[S|V] is independent of V" and the columns of S — E[S|V] are

independent and identically distributed (i.i.d.) Gaussian random
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Fig. 1. Vector Gaussian two-terminal CEO problem.

vectors. It is easy to verify that for py.s € G, ¥gjgyz v 2 T if
and only if ¥g)y- <X I'. Therefore, we have

h(S|V) — ph(S + Z|V)

max
pv,s:Eg|stz,v 30

> max
pv,.s€GBgs1z,v 3T

= max _ A(S|V) — ph(S + Z|V)
pv.s Egizs‘v =T

= max_ L log((2me)™|3]) — w log((2me)™|X+Xz])
0<E<F 2 2
4)

log((2me)™ %" + %z]).  (5)

h{S|V) — ph(S + Z|V) 3)

n o ek n
> 2 log((2me)|5]) - /5

In view of Theorem 1, the inequalities in (3) and (5)
must be equalities. Note that (1) and (2) are in fact the
Karush—Kuhn—Tucker (KKT) conditions that are necessary for
a solution of the maximization problem in (4) to be optimal.
Theorem 1 implies that these conditions are sufficient for the
global optimality. If we replace Xgjgyz v = I by Bgjyv < T,
then Theorem 1 becomes essentially a conditional version of
the extremal inequality by Liu and Viswanath [14, Corollary 5]
for the case y+ > 1. It is easy to show that Xgy» = I' implies
Ygs+z,v = I (while they are equivalent for pys € §) by
leveraging the fact?

Ysisizv < Nz — Nz(Bgy + Nz) 'Yz,

As a consequence, Theorem 1 can be viewed as a strengthened
version of the Liu—Viswanath extremal inequality.

III. VECTOR GAUSSIAN TwWO-TERMINAL CEO PROBLEM

We shall first give a formal definition of the rate region of
the vector Gaussian two-terminal CEO problem (see Fig. 1
for the system model). Let X, N1, and N2 be three mutually
independent /m X 1 Gaussian random vectors with mean zero
and positive-definite covariance matrices Xx,, XN, , and X,
respectively. Let X; = Xy + N; and Xy = Xy + No. Let
{(Xo(t),N1(#),Na(#), X1(¢), X2(#)) }32, be iid. copies of
(Xp, N1, N2, X1, X).

Definition 1: A rate pair (Rq, R2) is said to be achievable
subject to distortion constraint D if for all sufficiently large n,

2Note that &z — £z(Zg|v + £z)~1Z3 is the (reduced) error covariance
matrix incurred by the (reduced) optimal linear estimator of S from E[S|V] and
S+ Z.
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there exist encoding functions }‘( )L R {1,2,...,M;},
1+ = 1,2, such that

1
n

Yxuw, w, 2D

where W; = ff"')(X;"), i = 1, 2. The rate region R(D) is the
closure of the set of all achievable rate pairs subject to distortion
constraint D.

To facilitate subsequent analysis, we define Y =
E[Xo|X1, Xo],N = XY, X; = E[X(|X], N; = Xo—X;,
i = 1,2, and define Y(¢), N(¢ ),Xi(t),N (t),i=1,2,¢
accordingly. Note that IN is independent of (X, Xz)

is independent of 5(11 ,% = 1, 2. It can be verified that

En = (Ex, + S5 +2x,)

Y = BB X + ENELL X
g, = Ox #5501 i=1.2
X; =N BN Xs, =12

ZN
nd

In view of the fact that ¥n < Xxywy w, = Xx,, we
shall assume ¥y < D < ¥x,. It can be shown through a
simple time-sharing argument that R(D) is a (closed) convex
set. Therefore, R(D) is completely characterized by its sup-
porting lines. Define

R(D.ay,a0) = inf

a1y + aslis
(R1,R2)ER(D)

where «; and «y are nonnegative real numbers. We shall
bound R(D) by establishing upper and lower bounds
on R(D,a,qs). Without loss of generality, we assume
a1 > «ag > 0. Note that the degenerate case as = 0
corresponds essentially to a (remote) Wyner—Ziv problem.
Specifically, it can be shown (see Appendix B) that

Car BN+ Eg
=min— log ——2

D 2 - |D|
subject to ENEiif)Egﬁ ¥y +EN XD,
0<D =N, + g,

R(D,a1,0) (6)

Hence, unless stated otherwise, we shall focus on the case a1 >
s > 0 in the rest of this section.

A. Lower Bound

The main result of this section is the following theorem,
which provides a lower bound on R(D, a1, «2).
Theorem 2: R(D, a1, a0) > R(D, oy, as), where

R(D, a1, )%
. o] — Q9 + 1
iin 0g — — —
Do.D1.D- 2 |DOH2~ - 2N2D22N2|
UL NI I A
D |Dol|De|
subject to  B'D B + BIDLEN < B4 - Dyt
¥n <Dy =D,
0<Dij2N“ 1 =1,2.
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Proof: Let .fi(n> R 1,2, , M}, 0 = 1,2,
be two encoding functions such that EXO Wy, W D, where
W; = f(XP), i = 1,2. Denote Nxr i wa s XXy Xy Wy s
and ng‘ x7.w, by Do, Dy, and Dy, respectively. Note that

EN-<D05D (7)
0<D; <%, i=12 (8)

We shall first leverage the estimation-theoretic approach
in [12] to establish a connection between Dy and (D, D5).
We only give a sketch of this step here due to its similarity
to the derivation of (4) in [12]. It can be verified (cf., [12
eq. (2)]) that the (reduced) error covariance matrix incurred
by the MMSE estimator of Y™ from Xy, Wi, and W5 is
INEN DIEN BN + ENEn,D2EN, Ex. In addition, it can
be shown (cf., [12, eq. (3)]) that the (reduced) error covariance
matrix incurred by the (reduced) optimal linear estimator of
Y" from X3 and E[X2|W), Wa]is (Do — Ex) 1+ E5") L
Therefore, we have

ENEN DB BN + EnEN Do BN Bn
< (Do —3n) '+ E5) T

which is equivalent to

S DRy BRI Deny! < B - Dt )

The next step is to derive a lower bound on <t log M; +
22 log M> in terms of Dy, Dy, and D». Note that

04_1 log M; + 04_2 log My

CL’Q

(11

| \/

H(Ws)

v

Cl/,‘
- H(W1|W2) + TjH(Wl, Wa)
a1 —

I(XG, X7 W |Wa)

()42

+ ZI(Xg, X, X5 W, Wo)

0%
- ln (X5 Wil W2) + 1(X43 W X))

+ 2K Wi, Wa) + 10X WX
+ T(X3: W X))

&1 — 9 X1

= MO0 WA W) + S T(XE W)

e
+ X W W) + IS X)) (10)
For reasons that will become clear, we introduce the following
minimization problem:

min, 17020k E+Eg, | Lo |2+2N2|7

0<T<D, Dy 2 % 1z

where Dy = (Eg ENQ IEN,2 b 5 ) L Tt can be
shown (cf., [17, Propos1t10n 3.3.11)) t211at for any optimal so-
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lution 3" to this minimization problem, there exist § € [0, 1]
and M > 0 such that

az(z*)*l:((mfa2)9+a2)(2*+2N2)*1+M (11)
M(D,;—%%)=0 (12)
(1 — )b | |z + DI 1 =" + XN,
og 2 — log ———%
2 BT Do T2
. —ay B4 2G|
= min log"m ————=
0<==<D, : Do
|24+ XEg, |
1 2 (13)
Y
Now continuing from (10), we have
ﬂlong + %logMg
n
(O/l )9 n n,
> LTI 1K W, Wa) — 1(X: Wa))

T
(a5] X9

+ SLIXE W XE) +
+I(X2,VV2|XO))
> ((11—2&2)9 log 1Xx, |

1 — o)l

(en

“2(I(Xg: Wi, Wa)

_ (()’.1 —(1/,2)0
[Dyo| 2

log((2me)™ [3x, |)

1Xn, |
|D1|

XYy -1
i MXg[W2) + 2 o8
|2X0 | Q2 <
+ —=h(XZ|X0)—
|D() | n ( 2 | 0 )

((141—(1/,2) (()’,1—()&2)0
= 1 - log((2me)™ |
5 log Ll - SR log(2me) B, )

(o1 — ()42)9 XN, |
= h(XG|W 1]
= (o i)+ 5 o L2

+ —1 %h(XﬁXQ, W)

|2X0| Qo
—h(X”|X )
Do
- n( (K W2) + H(XGIK) — (X [172)
(e1—a2)f  [Ex,| (1—a2)f
= log —
2 5Dy 2
|2N1| |2X0|
|D1| 139
(041 — 052)9 4+ o
+ n

log

log((2me)™ B, |)

| )‘(z\xo|
1Ex, |

+—lo +—l +—l

h(Xp|Ws) — —h(X IWa).  (14)

In view of (11), (12), and the fact that

pu— - — 1 . 1 -~
S ixs w, = B, e Dot B,

one can readily show by leveraging Theorem 1 that

(a1 — a)f + s
n

x o
RXEIW2) — “2A(X3 (W)

] — (9 4 + w9 TGy
> (+10g((27r6) 1"+ X, 1)

8% *
- log((2me)™[Z")).

(15)
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Substituting (15) into (14) gives

M s My + 22 log My
T n

(041 — Clg)@ _ ‘2* =+ ZN2| 23] X |ZN1|
> log — log
2 Do 2 D |
) 330123, x, 127 + B, |
2 %8 Dl Sy, IT]
which, together with (13), implies
L log My + 22 log M,
n n
1 — (g + |2+2N2| a1 ‘ZNll
> min lo +—1lo
0<E<D, ® D] 2 %Dy
az . 1Ex0]1Eg,x, 12+ By, |
+ —log
2 Do, |[X]
Define D, = YNZEIQ (2t + 252)’12;}121\12. Note that

0<¥ < ]32 is equivalent to 0 < D} < D5; moreover, we
have

|E+EN2|:|2T1 )y (2 + 34 )
:|2§i_2N2D/2 N2| !

fl |71

and

B0 12 x| [, 1%, %0 15+ B |

B, [1Z] DXASHEDY
_ By, (B4 B, |
2, (12
. 12p-t 1
S, PR+ 5
X |
|ZN2|
D5
As a consequence
ﬂlog]V[l + %1()%']\/[2
n n
— 1
>  min i =1 ) —1
0<D,<D; 2 |D0||2~ - BN, D5XER,
w1 |2N1‘ |EX0HEN°|
+—1 +22 16
2 D, Dol D] (o

Combining (7)—-(9) and (16) yields R(D,aq,a9) >
R'(D, ay, r2), where

R'(D, o, 02)=
] — (o i 1

IDy|[Ex. — Eny DLEN |
[ | [ Ex, [[EN, |
D1 |Do/|D5|
Dy + Z‘.NZDZZNi <3y - Dyl
¥Nn <Dy <D,
0<D; <2N,.
0 < D) < D,.

min -
Dy.D1,D2, D) 2

+ S log + 2 log

subject to

1=1,2
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Without loss of optimality, one can set D, = Dy in
the above minimization problem, which implies that
R'(D,01,00) = R(D, w1, a9). This completes the proof
of Theorem 2. |

B. Upper Bound

The main result of this section is the following upper
bound on R(D, w1, as), which will be referred to as the
Berger—Tung upper bound since it is a simple consequence of
the Berger—Tung inner bound of R(D).

Theorem 3: R(D, a1, as) < R(D, ay, «s), where

R(D, a1, a0)2

. a1 — 02 + 1
min log — — —
p,'B/p. 2 Dul[Ey. — SniDoZn |
a1 1Zn, |, oo [ Ex BN
+ —log + —log ——F——
2 ® |D1| 2 % (D] Do
subject to EgﬁDlE;ﬁ + EgéDgS;é =¥y - D;t,
¥n <Dy =D,
0<Dij2N“ 1 =1,2.

Proof: Let W1 and W, be generated by X; and X, re-
spectively, via paralleled Gaussian test channels, i.e., W; =
A X, +U;,i = 1,2, where A is an m X m matrix and Uj;
is an m x 1 Gaussian random vector with independent zero-
mean unit-variance entries; moreover, we assume Uy, U,, and
(Xo, Xy, X>) are mutually independent. Denote Xx,|w, w,
¥x, X0, W, »and ¥x, Xy, W by Do, D1, and Dy, respectively.
It is clear that

Dy - EN. (17)
Moreover, we can set D; to be any matrix satisfying
0<D; < EN;, (18)

by suitably choosing A;, ¢ = 1,2. It can also be verified (cf.,
[12, eq. (5)]) that

SNDEN +ELIDEL =8 - Dt (19)

Let Ry = I(Xl;W1|W2) and Ry = I(XQ;WQ). Ac-
cording to the well-known Berger—Tung inner bound [15], [16],
we have (R, Ry) € R(D) if

D, < D. (20)

Note that

a1 R + asRs
= o1 [(X1; W1 |Wa) 4+ asl(Xa; Wa)
= (a1 — a)l(X1; W1 |Wa) + aal(Xy, Xo; W1, W)
= (o1 — a2)I(Xp,X1; W1 |W3)
+ anl(Xg, X1, Xo; Wi, W)
= (o1 — ) (Xo;: W1|[Wa) + o I(X1; W1 X)
+ a2 (I(Xo; Wi, Wa) + I(X2; W2 [X)))
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_ ] — (9 log ‘EX(J‘W2| O[_llog |2N1|
2 Dy 2 Dy
a2 |2X0H2N‘>‘
+ —log ———
2 "[Do|| D
X1 — (X9 1
= og
2 DBy - BND.T
(a3} |EN1 | Q2 |EX0 HEN?
+ —log + —log = —2 (21)
2 Dy T 2 ° |Dy[IDy]

where the last equality is due to

2X0|VV2 = (2;]2 - 2§1D221§{,)—1

Combining (17)—(21) yields R(D, a1y, 2) < F/(D7 a1, Qs),
where

E/(Dv ay, a?)é

. o] — 2 1
min og — — —
Dy, D1,D2 2 |D0H2N2 — 2N2D22N2|
pX Yx, || BN,
n u_110g| N 2 o Xo || En,
2 |Dy| 2 |Do||D2|
subject to BN DByl + ENIDLEN! < B - Dy,
EN = DO = D7
0<Dl‘j2N;, 1=1,2.

Since ¥x,w, w, = Xx,/w,, it follows that
1 1
og - - =
Do||Eg, — Env, DoZn, |

n 1
DoRg! - En, Doy, |

= log

and the proof is complete. |

C. Matching Conditions

In this section, we shall investigate the conditions under
which R(D, a1, as) = R(D,a1,00). It is easy to see that
without loss of optimality one can set Dy = D in the min-
imization problem associated with R(D, a1, @s). Therefore,
R(D, a1, a2) can be defined equivalently as

(P)  R(D,o1.)2
L0 — + 1
min log — — —
D, D; 2 ID||Z5. — BN, Da¥y, |
ap BN ar Bk (YN,
+ —log + 2 log ERo ]
2 °Dy 2 ° DDy
subject to B D Tyl + iDL < By DL,

0<Dij2Nia 1 =1,2.

Moreover, it is clear that if an optimal solution (D1, D5) to (P)
satisfies
. 17y g1 ~1 -
YN, DiZy, + BN, Doy, =5 -D ' (22)

then (]5(), ]51, ]52) with Dy = D is an optimal solution to the
minimization problem associated with R(D, cv1, «t2), and con-
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sequently B(D, a1, a2) = R(D, a1, a2). Tt can be verified that
the matching condition (22) is satisfied in the scalar case (i.e.,
m = 1).

To facilitate analysis, we replace (P) with the following min-
imization problem:

(P) R(D.ay, a0)2
; a1 — Qg 1
min :
DB 2 0 D[S - Byl DaBy|
ap BN | |2, |2, |
+ _1 L _1 200177720
* D] DD,
subject to EN1D12N1 + 2N2D22Ni < —-DY,
0<Dij2N” 1 =1,2.

Note that (f’) provides a lower bound on R(D, a1, ay); fur-
thermore, if an optimal solution (D1, D5) to (P) satisfies (22),
then it is also an optimal solution to (P) and consequently
R(D,a;,a2) = R(D,ay,as). Ignoring the constant terms,
one can write the Lagrangian of (P) as

L(D,Dy)

= —(Oél — Oég) l()g |2szlzlt ZNg
— aq log D] — aslog |Do|
+ tr[A(En, D1 2, + 28, Do Ty, —En +D )]
+ tr[lly(Dy — Eny)] 4 tr[z(D2 - X, )]

_D2|

where A, I, and II; are positive semidefinite matrices. Since
(P) is a convex semidefinite programming problem, (D1, D»)
is an optimal solution to (P) if it satisfies the following KKT
conditions:

Vp, L(D1,Ds)|p, _p,

= D+ EGASY + 1L =0,
Vb, L(D1,Ds)|p, _p,

= (01— 22)(En, Eg B, — Do) 7!

— Dy + B ASL! + 1L =0,
AED BN + DSy - By + DY) =0,
(D, —En,)=0, i=12
T, DBy, + Ex DoBy, X By -
0<D;<%N,, i=12

Dfl

By setting A = aliNlﬁfliNl and II; = II, = 0, we can
simplify the KKT conditions as
(a1 —

w)(Bg. — BN, Do¥y,) T+ BN, D Sy,

— 2N, D5 1SN, =0 (23)
TN DI + 3 DB -2+ D=0 (24)
0<D; <%y, i=12 (25)

It can be readily shown by comparing (22) and (24) that
R(D,ai,a3) = R(D,a;,ay) if there exists (Dl Dz) sat-
isfying (23) —(25). For the special case «v; = @y = 1 (which
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corresponds to the sum rate), one can verify that the solution to
the matrix (23) and (24) is given by

1
D, = §2NL(2§1 -D H®y,, i=1,2.
Substituting this solution into (25), we see that R(D,1,1) =
R(D,1,1)if ' - D' < 28!, i = 1,2. This matching
condition was first derived in [10]. Now consider the general
case oy > «s > 0. Define A = 2;11 -D1,B= 2;11, and

D, = ZIQ}]AJ,;ZE, i = 1,2. We can rewrite (23)—(25) as

(Oél — O&Q)(B — DQ)—l + ozlf)fl — OéQD;l =0 (206
D, +D;-A=0 (27)
0<D; <%y, i=1,2 (28)

Combining (26) and (27) gives

(Ozl — ()éQ)(B — Dg)—l + ()ll(A — D2)—1 — (l/,ngl =0.

Note that
(()él*(kQ)(B*]jg)71+()él(A*D2)7

(ap — ag)(B]_Dz‘l ~1,) '4ai1(AD;

—asl,, =0

17042]5;1 =0
1 _Inl)fl

— (a1 — a2)(AD, L)+ al(B]jz‘ -L,)
— a2(AD; ' -L,)(BD; ' -1,,)=0

= (a1 —m)(AD;' - 1,) + o(BD;! - 1,,)
— a2(AD;'BD; ' —-BD; ' —AD; ' +1,,) =

(@ — a)(BZD; B> — B%A*B*)

+a1(B?A"'BD,'B? - B A 'B?)

—QZ(B D;'BD;'B! - BtA !BD,;'B}
_B'D;!B? +B§A*1Ba) = 0.

Setting G = B:D, 'B2,C = 2L, + (1 + 2)BZA 'B?,

and Q = %B%A’lB%, we obtain the following quadratic
matrix equation:

G?2-CG+Q=0o. (29)
For the purpose of solving (29), we consider a closely related
matrix equation

1 1
G2—§CG—§GC+Q:0

which can be written equivalently as

(G — %C)Q = icz -Q. (30)
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n 1,
Xi Encoder 1
2
X; Encoder 2

Fig. 2. Direct vector Gaussian two-terminal source coding problem.

—E[ X]

w W, |

Decoder

—E[ X} 7,7, ]

Let UAUT be the eigenvalue decomposition of B:A !Bz,
where U is a unitary matrix and Aédiag(/\l, «ees Am) IS @ pos-
itive-definite diagonal matrix. Note that

1
gl
1 Q
1 : 2
= U [P0+ (14 2)A)2 - Z2A]UT
4" o 9 oD
1 01,92 lar o 1oag T
:U[— 1+ —=)A+-—(—-3)A Im]U .
n +a2) 2(){2(0/2 A+ -~
Since 3—1 > 1, it follows that
1 1.9, lor,oq 1 o
1 A — —3)A >0
4( + ) +2a2(a2 ) +4((142)
for all A. Therefore, iCQ Q is positive semidefinite and

(LC?2-Q)? is well defined. Note that (1 C? - Q)* = UOUT,

where © = diag(6,,...,0,,) with
1 (4] 10/.1 X1 1 (23] %
‘97-:[—1 EVIAZ 4 (2 3)), ——2},
' 4( +(12) "+2(J42((12 ) ’+4(a2) '
1=1,....m

LetG = 1 5C +( Cc?— Q) 2. Itis easy to see that G is a solution
to (30). Moreover it can be verified that CG = GC;  as a con-
sequence, G isalsoa solution to (29). Let D, = B:G !Bz
and Dy = A — D,. Since G = 1C = BXA~'B3, it follows
that D; = 0, i = 1,2. Therefore, if D; < By, = 1,2, then
(26)—(28) are all satisfied, and consequently, R(D, a1, a2) =
R(D. a1, @3). A simple sufficient condition is A < Z‘.ﬁ}, 1=
1.2. In view of the fact that A = X' — D!, this sufficient
condition is satisfied in the high-resolution regime3

-2 31

It is worth noting that (31) does not depend on (cx1, a2 ) and thus
provides a condition4 under which the rate region R(D) is com-
pletely characterized. We summarize this result in the following
theorem.

Theorem 4: R(D, oy, a2) =
) Li=12

IV. DIRECT VECTOR GAUSSIAN TWO-TERMINAL
SOURCE CODING PROBLEM

D= (Z5 i=1,2.

R(D, o, 0) if D < (B —

In this section, we shall apply the new bounding technique to
the direct vector Gaussian two-terminal source coding problem
(see Fig. 2 for the system model).

Let m, mq, and ms be three positive integers with m =
my + mo. For any m X m matrix A = (aj’k,), we denote its

3t is easy to verify that (E' — E;f)*l i=1,2.

4Due to its inherent symmetry, this condition does not rely on the assumption
[ag] Z Qo

_v. _¥
= ENL' = Lx,|X;»
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first diagonal submatrix (a; x)1<j k<m, by (A)1 and its second
diagonal submatrix (@; i ), +1<;j.k<m by (A)2, and call A an
(mq,m2) block diagonal matrix if

A = diag((A)1, (A)2)= <(l?))l (1:)2> .

Let X = (XT,X2)7 be an m x 1 Gaussian random vector
with mean zero and positive-definite covariance matrix ¥x,
where X; is an 1; X 1 Gaussian random vector with mean zero
and positive-definite covariance matrix X¥x, = (Xx);,7 = 1,2.
Let {(X(t). X1(#), X2(#)) }52 bei.i.d. copies of (X, X1, X5).

Definition 2: A rate pair (R, Ro) is said to be achiev-
able subject to distortion constraint (Dy,Ds) if for
all sufficiently large n, there exist encoding functions
FO L Rmexn (1,2, M}, i = 1,2, such that

1

—log M; < Ry,

n

Yxrwy w, 3 Dy,

i=1,2
i=1,2

where W; = f,t-(")(Xf’), i = 1,2. The rate region R(D1,D>)
is the closure of the set of all achievable rate pairs subject to
distortion constraint (Dq, Ds).

We shall assume 0 < D; < ¥x,,¢ = 1,2, which is justified
by the fact that 0 < EX?‘WL’WE < ¥x,,¢=1,2. Since R(D)
is a (closed) convex set, it is completely characterized by its
supporting lines. Define

R(Dl,Dg,(ll,()Ag) = O‘lRl +()52R2

inf
(R1,R2)ER(D,Ds)

where «v; and i are nonnegative real numbers. Following the
proof strategy for the CEO problem, we shall bound R(D;, D)
by establishing upper and lower bounds on R(D1, Do, «vq, a2).
Without loss of generality, we assume «; > «o > 0. For the
degenerate case va = 0, it can be shown [cf., the proof of (6)]
that

o [Ex x|
R(D{.D>5,2,0) = min— log ————
(D1, D, 1,0) 113112 og D

subject to D < Dy,

0= ]5 < EXI\XQ-

Hence, we shall focus on the case a; > @9 > 0 in the rest of
this section.

For the purpose of subsequent analysis, we augment the
probability space by introducing random objects which are
not necessarily functions of the existing ones. Specifically,
let N be an mn x 1 Gaussian random vector, independent of

X, with mean zero and positive-definite covariance matrix
¥n and let {(X(¢), X1(t), Xo(t), N(¢))}$2, be i.id. copies

of (X,X;1,Xs,N). Furthermore, we define Y = X + N,
Xi = EXiY], N; = X; - X, X, = E[X;[X],
N, = X; — X;, i = 1,2, and define N(¢), Y(£), X;(t),

Ni(t), Xi(t), Ni(t), i = 1,2, ¢ > 1, accordingly. It is clear
that X; and N; are rnutually independent, « = 1,2; similarly,
X; and N; are mutually independent, i = 1,2. Let N(EX) be
the set of positive-definite matrices £ such that T+t

an (1, mz) block diagonal matrix. Note that if ¥ & N(EX),
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then (Xl,Xl) — Xl — Y <« XQ — (XQXQ) form a
Markov chain.

A. Lower and Upper Bounds

We shall establish a lower bound and an upper bound on
R(D;,Do, a1, «2) in this section.

Theorem 5: R(D1,Ds, a1,a9) > R(D1,D0, BN, a1, )
for any By € N(Xx), where

R(Dy, Dy, Bn,01, )=

min P02 1ogt |ZX+:1:N‘ 1 1
DI 2 |D+2N||ZXQHZ§12 —2§2F22§2|
(11 log | N1| 042 og |2X + ZNHZNz‘
® Ty |D+2N||F2|
SlleGCt to dlag(I‘l,I‘z) D1+ (32)
0<D <Xy,
(D); = D;, i=1,2,
0<I‘ijENl 1=1,2.

Proof: The proof is similar to that of Theorem 2 and is

relegated to Appendix C. |

Theorem 6: R(D1,Ds, a1,03) < R(D1,Da, BN, a1, 00)
for any B € N(Ex), where

E(])lv D27 2N~,O517 ()42)é

min MTA2 ot [Zx + 2|
DT 2 ID+3n %, |15, — S Do Zg |
(11 log | N1| ()42 og [Xx + ZNHZNQ\
I D + En|[Is
bub, cct to dldg(Fl,Fg) =D t4+2) (33)
0<D<Xx,
(D), <D;, i=1,2,
0<%, =12

Proof: Due to the similarity to the proof of Theorem 3,
we only give an abbreviated proof here. Let W; and W2 be
generated by X; and X3, respectively, via paralleled Gaussian
test channels. Specifically, W; = A;X; + U;, where A; is an
my; X m; matrix and Uj; is an mn; x 1 Gaussian random vector
with independent zero-mean unit-variance entries, ¢ = 1,2;
moreover, it is assumed that Uy, Uy, and X are mutually in-
dependent. Now pick an arbitrary X from N(Xx ) and denote
EXIWl,WZ 5 Exl Y, W Exz Y , W2 by D, I‘l, Fg, respectively.
It can be verified (cf., [12, eq. (11)]) that

diag(T;,Ty) = (D71 + 2t
Furthermore, we have

o I(X1; W1 W) + anl(Xa; Wy)
|Xx + En|

X1 — (X9 +

0g — - -
2 D + En1Ex, 85 — Bg TS|
Tx + EN||E
+_1 |N1|+21 [2x + En(E, |
T | ID + En (T2
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The desired result follows by invoking the fact that
(I(Xl;W1|W2),I(X2;W2)) S R(Dl,Dg) if
in‘WhW = D7 (i.e., (D), = D,j), 1 = 1, 2, and
the fact that one can set I'; to be an arbitrary matrix satisfying
0 < I'; 2 Xy, by suitably choosing A;, i = 1,2. ]

B. Matching Conditions

It is easy to see that the minimization problems associated
with R(Dl,DQ EN o, (12) and E(D] Dz,EN o, ()42) arc
almost identical except that “<” in (32) is replaced by “=""in
(33). Indeed, we shall show that the two bounds coincide under
certain conditions.

Let D(D, D2, Ex ) be the set of positive-definite matrices
D such that (D); = D;,i = 1,2, and D! — 5" is a positive
semidefinite (1, ms2) block diagonal matrix.

Lemma 1: If for some D, Xy, I'y, and I's with
D e D(DhDg,Ex), EN S N(Ex), and dldg(rl,I‘Q) =
(D! + B4") 1, there exists an (my,m») block diagonal
matrix II satisfying

> oq(D+2x) 7,
(D(H — (yl(D + EN)il)D)l = (11]:‘1,
(D~ a1(D + Ex)')D)z =

asly — (a7 — (kg)Fg(ENZEEIi 2N2

- F2)71F27

then E(Dlv Dg, EN, 1, ()52) = E(Dl, Dz, EN, o1, ()42).
Proof: See Appendix D. |
Note that for D, ¥n, ', and I's with D € D(D;, D5, Ex),

N € N(Ex), and diag(T;,Ty) = (D! + Z') !, we have
(D(II - oy (D + En) HD); = eIy
— (DID);, = a;(D - (D '+ Z") D1 + eully
— (DID), = Q,20,D; (34)
and
(D(IL - a1 (D + %) D)o
=Ty — (a1 — )T B BT —T) ' T
< (DID); = a;(D— (D '+ 2" 1),
+ads— (o1 — )Ty S By !B, —T5) Ty
< (DID); = v, D,
—(a1—az)(ly +P2(2N22§i2m _T,)° Ty
<= (DIOD); = D20, D,
—(e=)(D 420 - B B B )
(35)

In fact, there is a unique (m1, mo) block diagonal matrix II
satisfying (34) and (35). To see this, we partition D into the

form (Dm Dl,z)
Ds1 Dap
where D; ;, = Dy, ¢ = 1,2. Now (34) and (35) can be written
equivalently as
2
> D, ;(I);D]; =,

=1

i=1,2
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which can be further written as

(B opit DraoDua) (veellly))
- (L)

where ® is the Kronecker product and vec(-) is the vec operator.
Note that

Di12® Dy

Di1®Dia
Dos®Dso

=D=«D

Dy ®Dsy; ) ¥

where * is the Khatri—-Rao product [18]. Since D > 0, it follows
that D * D is positive definite and thus invertible. As a conse-
quence, I is uniquely determined by the following equation:

() =mepyt (@) o

vee((ID)g) vee(§2z)

Therefore, we can reexpress Lemma 1 in the following form.

Lemma 2: If for some D € D(D;,Dy,¥x) and
¥x € N(Xx), the unique (mq,ms) block diagonal ma-
trix II determined by (34) and (35) [or, equivalently, by (36)]
satisfies TI t (J/l(D + EN)il, then E(Dh Dg, EN, a1, (142) =
R(D17 D27 ENa (e 042)~

Define D = {(D;.D») :
and Dy = {(Dl,Dg) €
ox)Ex, x, + Bx, =
SxDEL o+ Bx, = Di).

Lemma 3: D(D1, Do, ¥x) is a singleton forany (D, D») €
Do.

Proof: See Appendix E. |

The following two theorems (i.e., Theorems 7 and 8) indi-
cate that E(Dl, Do, ZN, o1, OéQ) and E(Dl, D, ZNj w1, OdQ)
coincide in the high-resolution regime (i.e., when ||D;|| and
[|D2]| are small) and the weak-dependence regime (i.e., when
|Ex, x|l is small), where || - || is the Frobenius norm. The
proofs can be found in Appendixes F and G.

Theorem 7: There exists a p(a1,@2) > 0 such that if
||D,|| < p(oq, Odg), ¢ = 1,2, then E(DLDQ, ZN, a1, OdQ) =
R(Dy, Dy, N, ay, ap) for some Xn € N(Ex).

Theorem 8: For any (D1,D3) with 0 < D; < Xx,,
¢ = 1,2, there exists a p(ay,2) > 0 such that if
lquXQ || < Q(Ozl, o), then R(D1, Dy, NN, 01, 0) =
R(Dy, Dy, XN, a1, @r2) for some Xn € N(Xx).

We shall proceed to derive a more explicit matching con-
dition for the case (D1,D3) € Dy. According to Lemma 3,
D(D;, D5, ¥x) is a singleton when (D;.Ds) € Dy. Denote
its element by D, which is of the form

D, ©
e’ D,/

0 <D < Sx,i =12
T —1 —1

D le;Xz(zz(llDlzzcll -

D212X17X2(2X3D22X2 -

Now we choose
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Clearly, D > 0 implies ¥x > 0. Note that

D+2N:(2D1 0 >

0 2D,
D'+ uy
_ (2D, -eD;'e’) ! 0
- 0 2D, —©'D 'O L)

Since both £x' — D' and D~ + By are (1n1,m3) block
diagonal matrices, it follows that Xy € N(Xx). In view of
the fact that D + X is an (i1, mse) block diagonal matrix,
the condition of Lemma 1 is satisfied if we can find a positive
semidefinite (1, 72 ) block diagonal matrix ¥ such that

D;(¥);D; + O(¥);0" = T,

Dg(\I’)QDQ + GT(lII)16 = OéQFQ
— (1 — an)To(Bg, B! Ty, —To) 7 'Ty  (38)

(37

whereT'; = (D, -0D,'0")andT, = }(D,-6"D;'0).
D; (¥),D

1
§ L L o L
Define G; = Z,i=12,H=D,"6"D, ?,
Q; = H"H,and Q> = HH” . Clearly, Q; and Q5 are positive
semidefinite. Moreover, since D is positive definite, it follows
that D; > GDQ’IGT, D, - GTDflﬂ, and consequently,
Q; < IL,,,i = 1,2. Define
~1 1 -1 1 1 ~1
C = [D, "8y, T 8¢, Dy F = S + éQQ} :
Through some algebraic manipulations, we can convert (37) and

(38) to the following matrix equations:

G;,-QGQ;=8B;, i=12 (39)
where
B, = %(alIml = 2Q1) (L. — Q1)
ST, Q)0 - QuH
B; = %(UézImg - UélQL))(ImQ - Qz)
o] — Qo

- T(Im; - QZ)C(Img - QQ)
Let UiAiUzT be the eigenvalue decomposition of Q;, where U;
is a unitary matrix and A,;édiag(/\i,l, ..+, Aim, ) 1s a diagonal
matrix (with A, ; € [0,1),5 = 1,...,m;), i = 1,2. Define
G; = UI'G,U; and B, = UTB,U;, i = 1,2. We can write
(39) equivalently as

G, —AGA =B, i=1.2
which can be solved to obtain
G =E,6B;, i=12 (40)
where Elé(ﬁjyk) with &, = m,j, k=1,...,m,and

_—

Ey2( L k) with &7 = ﬁ,]k =1,...,m9,and ® is
the Hadamard product. Note that if G, and G, given by (40)
are positive semidefinite, then the resulting ¥ is also positive
semidefinite, and thus, the condition of Lemma 1 is satisfied.
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For the special case «; = a2 = 1 (which corresponds to the
sum rate), one can readily verify that (40) yields

1—)\1':1 1-—
20+ riq)

~ )‘i'm' .
G.i:diag( : 1)), 1=1,2

2(1 1 A,

which are positive definite. As a consequence, we have
R(Dy,Dy,EN,1,1) = R(Dy,D3,En,1,1). Further-
more, it can be shown that both R(D1 D2 ¥n,1,1) and
R(Dy, D5, EN, 1, 1) are equal to log ‘D‘ Therefore, we
obtain the following theorem.

Theorem 9: 1f (D1,D3) € Dy, then

2]

R(Dy,D,,1,1) = 1
*' D

where D is the unique element of D(D1, DQ, ¥x).

Define D; = {(D;,Dy) € D : By, x,(Ex. D18, —
2)—(1)2)(1,)(2 + 2X2 = DQ}: Dy = {(D17D2) € D:
2X17X2 (ZiiDzz;{i - Z;{i )Zil,XQ + le = Dl}s
and D3 = D — Dg U Dy U Dy, It is easy to show that if
(Dl,DQ) € D;, then

1=
R(Dl,D%l:l):—low' X

i=1,2.

The characterization of R(Dj,D5,1,1) for (D;,D3) € Dy
remains an open problem. It is worth noting that D3 = @ in the
scalar case (i.e., m1 = mg = 1).

V. CONCLUSION

We have derived a lower bound on each supporting line
of the rate region of the vector Gaussian two-terminal CEO
problem by leveraging the estimation-theoretic method de-
veloped in [12] together with a variant of the Liu—Viswanath
extremal inequality. It is shown that the lower bound coincides
with the standard Berger—Tung upper bound under certain
conditions. Note that the extremal inequality in Theorem 1
is only suitable for the two-terminal case, while the estima-
tion-theoretic method does not have such a limitation. As far
as the sum rate is concerned, the lower bound in this study can
be directly extended to the general multiterminal case since the
extremal inequality is needed only when the rates are weighted
differently. Furthermore, due to the resemblance between our
lower bound and the Berger—Tung upper bound, one can easily
conjecture the form of the desired multiterminal generalization
of our lower bound. However, a more sophisticated extremal
inequality is needed to establish such a lower bound for a
general weighted sum rate in the multiterminal setting [19].

We have also studied the direct vector Gaussian two-terminal
source coding problem and obtained similar results. Again,
generalizing these results to the multiterminal setting is not
completely straightforward. In particular, certain brute-force
calculations in this study (see, e.g., the proof of Lemma 3)
need to be handled in a more conceptual manner. It is worth
mentioning that recently the vector Gaussian one-helper source
coding problem, which is a special case of the direct vector
Gaussian two-terminal source coding problem, has been com-
pletely solved [20], [21].
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It should be noted that our bounding technique is applicable to
the vector version of the indirect Gaussian two-terminal source
coding problem (which contains the vector Gaussian two-ter-
minal CEO problem as a special case) studied in [7]. In fact,
albeit somewhat implicitly, our treatment of the direct vector
Gaussian two-terminal source coding problem is to a large ex-
tent based on a careful analysis of an indirect source coding
problem in which Y is the remote source.

APPENDIX A
PROOF OF THEOREM 1

If o = 1, then (1) and (2) imply that &* = T". Since

h(S,S + Z|V) = h(S|V) + h(Z),
h(S,S+Z|V)=h(S+Z|IV)+h(S|S+ Z,V),

it follows that

h(S|V) — h(S + Z|V)
= h(S|S +2.V) - h(Z)
< %log((2ﬂ_e)m|r‘) _ %log((2ﬁe)7n|zz|)

- glog((27r(z)m|f‘ ~T(T+5,) 1))
- 5 log((2re)" [Sz])

n PO . _
5 log((2re) ™ [L|(T + Bg)

(T +B2) - T)

~ 5 lo((2me) " [Bz)

5 log((2me)™[E) — 3 log((2me)™ | + )

n % n m *
§log((27r(z)m|2 [} — 2 log((27e)™|X" + Xz]).
So it suffices to consider the case ¢« > 1.
If M = 0, then (1) implies
1
=%
pu—1

Consequently

1 . , R
5 log((2me) %)) — £ log((2me) "7 + B

-1 )
= —E—log((2me)"|%2])

(p—1)m
2

Wi

+ log(p — 1) = =~ log . (41)

By the conditional version of the entropy power inequality, we
have

h(S|V) — uh(S + Z|V) < h(S|V)
2 oy (exp (ih(sw)) +exp(ih(Z)))

mn mn

where the right-hand side of the inequality, as a function of
h(S|V), is maximized at

h(S|V) = h(Z) — " log(n — 1)
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and the corresponding maximum value is equal to

[mn

(p— L)mn log(

(= () +

pw—1) log 1. (42)

A comparison of (41) and (42) completes the proof for the case
M =0.

Now consider the case M # 0. Let 5 = (p — 1)X". We
have

p(E ) T = (BT = (B 4+ 82) M.
It follows from [11, Lemma 12] that 0 < ¥ < ¥ and

=+ 55 [T+3
= +%z T +3%g

43)

Let UAU? be the eigenvalue decomposition of £z — X5, where
U is a unitary matrix and A=diag(A1....,\,,0,...,0) is a
positive semidefinite diagonal matrix of rank r. Note that M #
0 implies > 1. Let Z be an m x n random matrix such that each
column is an independent copy of an m X 1 Gaussian random
vector with mean zero and covariance matrix X . Similarly, let
Z be an r X n random matrix such that each column is an in-
dependent copy of an 7 x 1 Gaussian random vector with mean
zero and covariance matrix X, , where ¥, = diag(A1, ..., Ap).
We assume Z, Z, and (S, V) are mutually independent. Define

an 1 X 7 matrix ;
a-v(h),

It is easy to see that the joint distribution of (Z,S, V) is pre-
served if we let B R
Z=7+GZ

SRR

Note that

where

Since |G| = 1, it follows that

WS +Z,Z|V) = h(S+Z,Z

V).
In view of the fact that

WS +Z,2|V) = k(S +Z|V) + h(Z|S + Z,V)
7 h Z

|
(S + Z|V) + h(Z)
we have

WMS+Z|V)=hS+Z|V)+h(Z)— hZIS+Z,V). (44)
Let A = Z — AZ, where AZ is the (reduced) optimal linear

estimator of Z from Z. One can readily show that A is indepen-
dent of (Z, S, V'). Moreover, it is clear that ¥ A > 0. Note that

Z=AZ+A=-AS+A(S+Z)+A.
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Since Ygjs1zv = T, it follows that ¥, g 5 = ATAT
¥ A, and consequently

WZIS+2Z,V) < glog((27re)"‘|AFAT +EA) 45)
which, together with (44), implies
R(S|V) — uh(S + Z|V) < h(S|V) — uh(S + Z|V)
— ph(Z) + % log((2me)"|AT AT + SA|).  (46)

It can be shown by invoking the conditional version of the en-
tropy power inequality (cf., the case M = 0) that

h(S|V) — uh(S + Z|V) < glog((m)mm*n

un

- log((2me)™ 8" + X5]). 47)
Substituting (47) into (46), we obtain
h(S|V) — uh(S + Z|V)
< glog((Zmz)mm*D - % log((2me)™|S* + 5|
— uh(Z) + % log((2re)"|ATAT +3A]).  (48)

Let S be an m X n random matrix, independent of (Z,Z, Z),
such that each column is an independent copy of an m x 1
Gaussian random vector with mean zero and covariance matrix

I'. It can be verified [cf., (44) and (45)] that

S +Z) + h(Z) — (S + Z)
= W(Z|S+Z)

= ;llog((zm)"|ArAT +2a)). (49)

In view of (43) and (49), we have

S log((2me)"™ 31" + 5]) + h(Z)
— 5 log((2me)" £ + £z)

- glog((zm)"wf +5,)) + h(Z)
- % log((27e)™ T + Sz)

= (S +Z)+ h(Z) — (S + Z)

- glog((Zwe)r|AI‘AT N

which implies

n * n U
5 log((2me)™ [£7) — E- log((2me) ™ |27 + 5y )
— uh(Z) + % log((2re)"|ATAT + 54 |)

= 7 log((2me)™ =7 )) — £ log((2me) " £7+ B (50)

Combining (48) and (50) completes the proof.
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APPENDIX B
CHARACTERIZATION OF R(D rv1,0)

R7™ " — {1,2,...,M;},i = 1,2, be two en-
< D, where W; =

Let f(")
coding functions such that Xx i, w,
f(”)(X”) ¢ = 1,2. Note that

0 { EXizlﬂfhxg j EXEI‘X; - 2N1 ‘I’ 2Nz (51)

and
D = Exow, w,

= Yynjw,w, T BN
= By w, xp + BN

= INEN Ex wx; B, EN 4 BN (52)

Moreover, we have

1 1
—log My > —I(XT; W1[X3)
n n

1
H(XPIXE) - A(OXT W, X3)

1, BN +2g,l

B w, xn .
Combining (51)—(53) and denoting 2){711 Wy, xp by D, one can
readily see that
BN, + g, |
el
subject to  EnZn. DEN En + En < D,
0= f) = 2N1 +2N2'

R(D,a;,0) > minailog
D 2

Now we proceed to show that this lower bound is in fact tight.
Let W1 and Wy be generated by X; and X5, respectively,
via paralleled Gaussian test channels, i.e., W, = A, X, + U,,
i = 1,2, where A; is an m x m matrix and U; isanm x 1
Gaussian random vector with independent zero-mean unit-vari-
ance entries; moreover, we assume U;, Uy, and (X¢, X1, X3)
are mutually independent. Denote Xx , jw, w, by D’. Itis clear
that we can set D’ to be any matrix satisfying

0 <D < Zx, 1w, (54)
by suitably choosing A;. Let B1X; + B2 W, be the linear
MMSE estimator of Xy from X and W>. Note that

Yxo Wi W, = B,D'BT + B, x, W - (55)

According to the well-known Berger—Tung inner bound [15],

[16], we have ( ( SHA 1| “2)'/1(:{25 HZ)) € R(D) if
Yx,w, w. = D, where
|2X1\W2|
( 1, 1| 2) 2 | /| ( )

Combining (54)—(56) yields the following upper bound on
R(D, ., O)Z
1Xx, W, |
D]
subject to ByD'BY + Yxox,,w, XD,
0<D = 2X1\W2'

R(D,x,0) < min 2 log
o 2 -
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Let Ay = kL. In view of the fact that ¥x , jw, — ¥x,x, =
ENl + EN 5 B1 — ENENN and EXU|X1,W) — YN as K —
00, the proof can be completed by a continuity argument.

APPENDIX C
PROOF OF THEOREM 5
Let £« R™X™ — {1,2,...,M;}, i = 1,2, be two en-
coding functions such that EX;; wy,w, = Dg, i = 1,2, where
= f"(Xm), i = 1,2. We pick an arbitrary £x from
N(Zx) and denote X x « | Wy Was ZXY Y™ Wys ng Y™ W by D,
T'y, I, respectively. Note that

0<D=2Xx (57)
(D),j =D;, =12 (58)
0<Fiijl7 1 =1,2. (59)

Moreover, one can show by following the derivation of (10) in
[12] that

diag(Ty,T) < (D '+ 25 ! (60)

Specifically, diag(T';, I'2) is the (reduced) error covariance ma-
trix incurred by the MMSE estimator of X" from Y™, Wy, and
W, while (D~ + 2g") ! is the (reduced) error covariance
matrix incurred by the (reduced) optimal linear estimator of X"
from Y” and E[X"|W7, Wa].

Now we proceed to derive a lower bound on %t log My +
22 Jog M3 in terms of D, I'y, and I'>. Let 2" be an optimal
solution to the following minimization problem:

min a1~ @2 + Xx + En[IZ + ENz
0<E<F, 2 D+ En|[Eg, |
a2 1+ g,
22 os 2
+ 7 0og B

where 'y = (X5 Z Ty 12 Z‘v—z 'y~1 Ttcan be shown
[cf., (11)~(13)] that there exist # € [0,1] and M = 0 such that

(B = (a1 —ag)f+a2)(B +Eg, ) T+M (61)
M, - =) =0 (62)
(Oél - 042)0 oot |2X =+ 2NHZ* + ZN2|
2 % T D+3Iny,
Qg |2»< + 2NJ|
T los
. ] — o + |2X+EN||2+EN2|
= min log
0<E<F, 2 D+ En |2y, |
Y+ X
) (63)

|2
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Note that

Mo My + 22 log Mo
n n

> W2 pyn Xy W W)
n
+ “—Z’I(Y" X7, X5 Wi, Wa)
&1 —

= - (Y"; Wy |W/2) + FI(X?; WilY™)
o

+ 7—L2(I(Y"; Wi, Wa) + I(X5; Wa|Y™))

(Oq — ()/2)9

i
1 2

+ (XY WY + (Y W, W)
+ (X5 W3 |X3))

> (I(Y™; Wy, Wy) — [(X2; Wa))

(o1 — az)f 1 Xx + ¥n|
= 2 D + Xn|
((11 - 042)0 mo ¢ |2N1|
5 log((2me) |2x )+ 9 log T, |
b @ g B A BNl ey Pl
*DrEn | 2 %,
o] —as)f +« B o <
+ %h(xgﬂ/@) — ?zh(Xg“/VZ)' (64)

In view of (61) (62), and the fact that EX“\X" w, =

I, 2 ]."22 EN , Theorem 1 can be readily applied
to show “that

_ 9 . ~
(o202 gy - S nxgwe)
> (051 — 052)9 + o
- 2

a2 m *
- 710g((27re,) 7).

log((2me)™ [ + B, |

(65)

Substituting (65) into (64) and invoking (63) yields

a—llogﬂfl + %bgﬂfz >
n n
] — (2 oot |ZX + 2N||2 + 2N2|
2 ° D+ En[[Bg, |
Ex+ENEg, %, 1B+ B, |
ID+En][Zx, [|X]

min_
0<X=<T>

| N1| 0/2

T |

(€51

-|-—1 og

which can be shown, through algebraic manipulations, to be
equivalent to

ﬂ10ng + %logMg >
n 7

. 23] ‘2N1| Qo . 1¥x + 2NHEN |
min —1 og —log ——— M=%
0<T,=T, 2 T4 | 2 D + En||T5|
ap—ag L |Ex+EN]

g — — —.
2 |D+ZNH2X2HZN1_thr’QZNU

(66)
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It is clear that (57)-(60) and (66) together
R(D1,Ds, a1, 0) > R (D1, Do, XN, vy, v ), where

imply

E’(Dla DszNf o1, a?)é
AT

+%2 g Xx 42N By, |
T

ID+En||T5|
o — g ozt |IEx +EnN]|
2 ID+Ex[Zg, 155, -2

o
—1 log

min
D.I', .,

n ! —1
< I"ZENJ

subject to  diag(T';,Ty) < (D1 4+ 2t
0=<D = Xx,
(D); =D;, i=1,2,
0<Ii =Ty, i=12
0<T,=<T,.

The desired result follows by recognizing the fact that
R(D1, D5, En, a1, a2) = R (D1, D2, En, a1, a2).

APPENDIX D
PROOF OF LEMMA 1

Consider the following minimization problem (which is es-
sentially a relaxed version of the minimization problem associ-
ated with E(Dh Dg, EN, o7, ()/2))

P) DI{"l}nl"g — a log |D + En|
— (a1 — ag)log [B, B! By

—aqlog |T'1| — as log ||

.~ T2l

subject to - diag(Ty,Ty) = (D1 + 31,
0<D,
E,DE; < F,\D,F/, i=1,2,
0<T,, i=1,2
where E; = diag(I,,,,0), Es = diag(0,1,,,), F, =
(I,,,0)7, and F» = ( I.,)T. The Lagrangian of (P) is
given by

L(D,T,,Ty)
=0 log [D+XN|— (1 —az) log [Xg, 21:11 2,
— aylog|I'y| — azlog I's|

+ tr(A(diag(T1,Ty) — (D1 + 7))

+ tr(IL E; DE,) + tr(Il,E;DE,)

_P2|

where A, II;, and II, are positive semidefinite matrices.
Since (P) is a convex semidefinite programming problem,
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(ﬁ,fl,fg) is an optimal solution to (15) if it satisfies the
following KKT conditions:

VpL(D,I',T2)|5_p =0

Vr, LD, Ty, Ty)[p ;. =0, i=1,2
0<D

E,DE; < F,D,F’, =12

0<I;, i=1,2

A(diag(T1,To) - (D '+ 5y H =0
IL(E,DE;, - F,D,;F7) =0, i=1,2

which can be written equivalently as

]j(ElﬂlEl + E2H2E2 - ()’,1(]5 + Z"N)il)]’j

=D +E)TAD T+ ) ! (67)
(A =l (68)
(A)2 = asly — (a1 — a2)(Ex, B  Bg, — T2) 7 (69)
0<D (70)
E,DE; < F,D,;F/, i=1,2 (71)
0<TI;, i=1,2 (72)
A(diag(Py. Th) - (D ' +3g") H=0 (73)
IL,(E,DE;, - F,D,F') =0, i=1,2 (74)

Now assume D e D(D,D5,Ex) and En € N(Xx ). Since
D'+ o is an (m1, m2) block diagonal matrix, we can con-
struct I'; and I's such that

diag(l'y,T) = (D T+ )% (75)
It is easy to show that if (D,I';,T';) is an optimal solu-
tion to (P), then it is also an optimal solution to the mini-
mization problem associated with R(Di, Do, En, a1, as),
which, together with (75), implies B(D1, Dy, XN, 1, 0) =
R(D1, Dy, XN, o1, ar2). The proof is completed by noticing
the fact that our choice of (D I';,T5) satisfies the conditions
(70)—(74) and the fact that the existence of positive semidefinite
matrices A, II;, and I5 satisfying (67)—(69) is equivalent to the
existence of an (1, mo) block diagonal matrix II satisfying

I> o (D+Ex)t
(D - (D + En) HD); = Ty
(DI - ay(D + En) " ")D),
= ol — (o1 — 2)Pa (8, B By, — Ty) 7'y,

APPENDIX E
PROOF OF LEMMA 3

We shall first show that there exists a unique positive-definite
matrix D such that (D); = D;,i = 1,2,and D' — X3 isan

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 6, JUNE 2013

(mq,m2) block diagonal matrix. Let D be a positive-definite
matrix of the form

(& )
e’ D,/
Note that
_ A, A
wol 1 3)
X <A3T A,
B, B
Dfl — 1 3)
(BsT B,
where

A1 =35 + 251 8x, x, A2 5%, x, B,

Ay = (Bx, — %, %, 5%, Ix, %)

Az = -5 8x x, Ay

B, =D;'+D;'6B,8"D;’

B,=(D,-6'D;'0)"’

B; = —-D;'6B..
Clearly, D! — 2;(1 is an (m1,ms2) block diagonal matrix if
and only if A3 = Bgj, i.e,

2;(} 2X17X2 (2X2 - 2§1,X2 2;(} le,xz)—l

=D;'9(D, -6'D;'e) . (76)

We shall sihow thlat O is uniquely determined by (76). Define
H=D,?6D, ? and

M= D1§2)—(1 EXI :Xz(z"xz - 2;(1,)(2 2)—(1 Exl,xz)ilDZE .

Since D is positive definite, it follows that I,,, — H'H > 0.
We can write (76) equivalently as

M(I,,, - H'H) = H. (77)

Let C = HM7. Note that (77) implies
c'c+Cc-MM" =0

ie.,C = M(I,, — H'H)MTY. Therefore, C is symmetric and
C > 0. Now it can be readily verified that
c’'c+Cc-MM" =0
=C*+C-MM’" =0

1 1
= (EI"“ + C)2 = ZI"U + MMT

1 1
= C = (7L, + MM7T)z — oL, (78)
Let UAVT be the singular value decomposition of M, where
U and V are, respectively, m; X mi and msy X my unitary
matrices, and A is an my X my diagonal matrix. Without loss of
generality, we assume that A is of the form

diag(A1,...,A;) O
0 0
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where Aq, ..., A, are positive. In view of (78), we have

UTHVAT = (diag(m, ey ) 0)
0 0

where t; = (14X%)7 1,5 = 1,... . Note that (77), together
with the fact I,,,, — H”H > 0, implies that H and M have the
same rank. As a consequence, H must be of the form

diag(#2,.... %) &\ 7
U( 5 A

Again by (77), we must have

® = —diag(per, ..., )P

which implies ® = 0. Therefore, © is uniquely given by

1 M1 38 1
GZDEU(dld‘g( 0/)\1) g)vTD5

It can be verified that the resulting D is positive definite and
D! — %" is an (11, ms) block diagonal matrix.

Now we proceed to show that for this D, if (D1, D») € Dy,
then B; = A;, i = 1.2. By symmetry, it suffices to prove that
2%, % (B DiBx — Bx1)8x, x, + Bx, = Dy implies
Bg t AQ, i.e.,

(79

(D,-8'D'6) = (Ex, - Bx, x, %, Bx1 x,)

Note that

Zgl Xa(E;(iD 2;(1 - 2)7(1)2)(17)(2 + 2X2 = D>
=D, (Sx, - 2% %6 5% Ex, x. Dy 2
1

D, 22X1’X22§(1D12;&2X17X2D = Ln,. (80)

"
Exl XZEXiEXth)D2 : > Q =
Q + €l,,,,, where ¢ > 0. Continuing

Define G = D, ? (Exz
(MTM)?, and Q(e) =
from (80), we have

D;%(ZXZ - zil,xzziile,xz)D;
D, 5L %, Bx!DiTk! Bx, x, D5
= G+ GQ2G = L,,
= G +GQ*e)G =1,
> QUIGQ() + AIGAIEQ() = Q0
= (5T, +QEAGA) = |

= QOGQ(A) & (AL, + QX(e))* -
=G> Qg

my T QQ(F))%
= G71 j Q(E) [( s + Q2( ))% - _I'm2

it
. »-l>|

Since Q(¢) = (MTM)z + el,,, =

it follows that
1 9 11 -1
Q(‘) [(Zlmz +Q (6))2 - 517@} Q(F)

= Vdiag(v1(€), ..., Vi, (€)) VT

V((ATA)? + 1,,,,)VT,
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where 1;(€) = (A + €)? (( N+ o2 - Y fori =
L....r,and v;(e) = €((5 —|—F)5—%)—1 fori = r+
1,...,ms. Note that u,(e) — vi,i=1,...,mo,as ¢ — 0,
where 1; = AX((L1 4+ 227 — ! for i = 1,...,r, and

=1 fori = r+1,...,my. Therefore, we have G~1 <
Vdiag(vy, ..., vm,) VT, ie.,
—1

(Exz - 2§1 Xy 2)—(1 2Xl ,Xo )

1
= D, *Vdiag(ry,.. .,

Umy, ) VID, 2

It can be shown by leveraging (79) that

N

(D, ©7D,10)"' =D, *Vdiag(11.. .., vm,)VID

[

which completes the proof.

APPENDIX F
PROOF OF THEOREM 7

We shall show that the condition of Lemma 2 is satisfied in
the high-resolution regime. To this end, it suffices to consider
the case where D(D1, D5, ¥x) is a singleton’ and its element
D satisfies D < Ex. Let G = (D ! — £¢') ! (which is a
positive-definite (121, ms) block diagonal matrix) and

a (A Aip
A‘<A2,1 (A),

Clearly, D, G, and A all converge to 0 as |D;|| — 0,i=1,2.
It can also be verified that

) = G3(G +3x) 'G*t.

D=(G'+x)"
= Gi(I, + GIZ'G?)'G?
=G2(I,, - A)G?2.
Now choose an arbitrary X from N(Xx ). Note that

(DHD)l = O‘lDl

—= (I, — A)H(I, - A), =Q (81)
and
(DIID); = D> — (a1 - a2)K
= (L —A)HI, — A))2 =Dy (82)
where K = (D' + ), - BT, B )"

H = G:IIGz (which is an (mq,m2) block diagonal matrlx)
Ql — G"I(Im - A)l, and

=

Oy = a1(Tn — A)s — (a1 — a2)(G); TK(G); 2.

Define B = (B,‘,,j) with Bi,,,j = (Im — A),;, 1 = 1,2, and
B, —A,; ; fori # j. We can rewrite (81) and (82) as

i =
vec((H),) vec(€)
B+B = ~ .
(B+B) (Vec((H)g) vee(€s)
SNote that the condition (D, D2) € Dy in Lemma 3 is satisfied when || D ||
and || D2 || are sufficiently small.
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Clearly, B+ B — 1,

mf-l-mg and Ql i alI’ml as ||D7” - 0’
¢+ = 1, 2; moreover

Q =1L, — Ay — (01 — 2)(G), ’K(G), *
= o0’1(]:111, - A)Q
— (a1 — as) (((Im ~A) L Ginglai),

ST

S

% _ _ L —1
~(G)} B B, BN (G))

which converges to 21, as |D;|| — 0,7 = 1,2. As a conse-
quence, we must have H — diag(a;1,,,, @21, ) as ||D;|| —
0,2 =1,2.Sincell = G‘%HG‘E, it follows that Il — ay (D 4+
¥n) L is positive definite when ||D;]|, i = 1,2, are sufficiently
small.

APPENDIX G
PROOF OF THEOREM 8

We shall show that the condition of Lemma 2 is satisfied
in the weak-dependence regime. In view of Lemma 3 and the
fact that (D1, D) € Dy when || Xx, x,|| is sufficiently small,
it suffices to consider the case where D(D;,D5, Xx) is a
singleton. Denote the element of B(D;, Dy, ¥x) by D. It is
casy to see that D — diag(Dy,D») as || Ex, x,|| — 0.
Let Bn = (Bdiag(Tx.,Bx) — £x')~' for some J
satisfying 8 > 1 and (a1 — @2)f < «;. Due to the
fact that By — A diag(Ex,,Xx,) (which is a posi-
tive-definite matrix) as |Zx, x,|| — 0 and the fact that
S+ By = Bdiag(ExL, BxL) (which is an (11, m2) block
diagonal matrix), we have £ € N(Ex) when ||Ex, x,|| is
sufficiently small. Since (D' + £5")2 — Dy '+ (8- 1)%x!,
2N‘> — %ixz, and ENZ — ‘83;»_)12)(2 as ||2X1,Xg
follows that 5 — D> as ||Ex, x,|| — 0. Now it can be
readily shown that for the (1, m2) block diagonal matrix II
determined by (34) and (35) [or, equivalently, by (36)], we
must have IT — diag(c;D; !, asD, 1) and consequently

— 0, it

II - Oél(D + EN)—1
— diag (1D — a1 (B - 1)((8 - 1)D1 + Bx,)
Dyt — a1 (8- D)((B—1)Ds + EXZ)A)

as || Ex, x,|| — 0. Note that a; D+ — ey (8 — 1)((8—1)Dy +
¥x,)"! = 0and

Dyt — o (8- D((B-1)Da + Bx,) !
= Dyt — (B — 1)(BDy) !

_ xyp — ((l([l}— aQ)ﬂDgl

= 0.

Therefore, I — a;(D + ¥n) ! is positive definite when
| is sufficiently small.

HEXL X2

REFERENCES

[1] T. Berger, Z. Zhang, and H. Viswanathan, “The CEO problem,” IEEE
Trans. Inf. Theory, vol. 42, no. 3, pp. 887-902, May 1996.

[2] H. Viswanathan and T. Berger, “The quadratic Gaussian CEO
problem,” IEEE Trans. Inf. Theory, vol. 43, no. 5, pp. 1549-1559,
Sep. 1997.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 6, JUNE 2013

[3] Y. Oohama, “The rate-distortion function for the quadratic Gaussian
CEO problem,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1057-1070,
May 1998.

[4] Y. Oohama, “Rate-distortion theory for Gaussian multiterminal source
coding systems with several side informations at the decoder,” IEEE
Trans. Inf. Theory, vol. 51, no. 7, pp. 2577-2593, Jul. 2005.

[5] V. Prabhakaran, D. Tse, and K. Ramchandran, “Rate region of the
quadratic Gaussian CEO problem,” in Proc. I[EEE Symp. Inf. Theory,
Chicago, IL, USA, Jun./Jul. 2004, p. 119.

[6] S. Tavildar, P. Viswanath, and A. B. Wagner, “The Gaussian many-
help-one distributed source coding problem,” I[EEE Trans. Inf. Theory,
vol. 56, no. 1, pp. 564-581, Jan. 2010.

[7] Y. Oohama, Distributed source coding of correlated Gaussian sources
[Online]. Available: arXiv:1007.4418v2

[8] A. B. Wagner, S. Tavildar, and P. Viswanath, “Rate region of the
quadratic Gaussian two-encoder source-coding problem,” /IEEE Trans.
Inf. Theory, vol. 54, no. 5, pp. 1938-1961, May 2008.

[9] Y. Oohama, “Gaussian multiterminal source coding,” [EEE Trans. Inf.
Theory, vol. 43, no. 6, pp. 1912-1923, Nov. 1997.

[10] S. Tavildar and P. Viswanath, “On the sum-rate of the vector Gaussian
CEO problem,” in Proc. 39th Asilomar Conf. Signals, Syst. Comput.,
2005, pp. 3-7.

[11] H. Weingarten and Y. Shamai, “The capacity region of the Gaussian
multiple-input multiple-output broadcast channel,” IEEE Trans. Inf.
Theory, vol. 52, no. 9, pp. 3936-3964, Sep. 2006.

[12] J. Wang, J. Chen, and X. Wu, “On the sum rate of Gaussian multiter-
minal source coding: New proofs and results,” IEEE Trans. Inf. Theory,
vol. 56, no. 9, pp. 3946-3960, Aug. 2010.

[13] Y. Yang, Y. Zhang, and Z. Xiong, “A new sufficient condition for
sum-rate tightness in quadratic Gaussian multiterminal source coding,”
IEEE Trans. Inf. Theory vol. 59, no. 1, pp. 408-423, Jan. 2013.

[14] T. Liu and P. Viswanath, “An extremal inequality motivated by mul-
titerminal information-theoretic problems,” IEEE Trans. Inf. Theory,
vol. 53, no. 5, pp. 1839-1851, May 2007.

[15] T. Berger, “Multiterminal source coding,” in The Information Theory
Approach to Communications, ser. CISM Courses and Lectures, G.
Longo, Ed. New York, NY, USA: Springer-Verlag, 1978, vol. 229,
pp. 171-231.

[16] S.-Y. Tung, “Multiterminal source coding,” Ph.D. dissertation, School
Electr. Eng., Cornell Univ., Ithaca, NY, USA, 1978.

[17] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA,
USA: Athena Scientific, 1999.

[18] S. Liu, “Matrix results on the Khatri-Rao and Tracy-Singh products,”
Linear Algebra Appl., vol. 289, pp. 267-277, Mar. 1999.

[19] J. Wang and J. Chen, “On the vector Gaussian L-terminal CEO
problem,” in Proc. IEEE Symp. Inf. Theory, Cambridge, MA, USA,
Jul. 1-6, 2012, pp. 571-575.

[20] Md. S. Rahman and A. B. Wagner, “Rate region of the Gaussian scalar-
help-vector source-coding problem,” IEEE Trans. Inf. Theory, vol. 58,
no. 1, pp. 172188, Jan. 2012.

[21] Md. S. Rahman and A. B. Wagner, Rate region of the vector
Gaussian one-helper source-coding problem [Online]. Available:
arXiv:1112.6367v1

Jia Wang received the B.Sc. degree in electronic engineering, the M.S. degree
in pattern recognition and intelligence control, and the Ph.D. degree in electronic
engineering from Shanghai Jiao Tong University, China, in 1997, 1999, and
2002, respectively.

He is currently an Associate Professor of the Institute of Image Communica-
tion and Information Processing, Shanghai Jiao Tong University, and a member
of Shanghai Key Laboratory of Digital Media Processing and Transmission.
His research interests include multiuser information theory and its application
in video coding.

Jun Chen (S’03-M’06) received the B.E. degree with honors in communication
engineering from Shanghai Jiao Tong University, Shanghai, China, in 2001 and
the M.S. and Ph.D. degrees in electrical and computer engineering from Cornell
University, Ithaca, NY, in 2004 and 2006, respectively.

He was a Postdoctoral Research Associate in the Coordinated Science Lab-
oratory at the University of Illinois at Urbana-Champaign, Urbana, IL, from
2005 to 2006, and a Postdoctoral Fellow at the IBM Thomas J. Watson Re-
search Center, Yorktown Heights, NY, from 2006 to 2007. He is currently an
Assistant Professor of Electrical and Computer Engineering at McMaster Uni-
versity, Hamilton, ON, Canada. He holds the Barber-Gennum Chair in Infor-
mation Technology. His research interests include information theory, wireless
communications, and signal processing.

He received several awards for his research, including the Josef Raviv Memo-
rial Postdoctoral Fellowship in 2006, the Early Researcher Award from the
Province of Ontario in 2010, and the IBM Faculty Award in 2010.



