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Abstract— We investigate the problem of the successive refine-
ment for Wyner-Ziv coding with degraded side information
and obtain a complete characterization of the rate region for
the quadratic vector Gaussian case. The achievability part is
based on the evaluation of the Tian-Diggavi inner bound that
involves Gaussian auxiliary random vectors. For the converse
part, a matching outer bound is obtained with the aid of a new
extremal inequality. Herein, the proof of this extremal inequality
depends on the integration of the monotone path argument and
the doubling trick as well as information-estimation relations.

Index Terms— Extremal inequality, lossy source coding, mean
squared error, rate region, side information, successive refine-
ment, vector Gaussian source, Wyner-Ziv problem.

I. INTRODUCTION

THE research on network source coding can be traced back
to the seminal work by Slepian and Wolf [2], where they

considered, among other things, the problem of lossless source
coding with side information at the decoder. Wyner and Ziv [3]
studied the lossy source coding version of this problem (which
later bears their names) and characterized its information-
theoretic limit. Subsequently, the Wyner-Ziv problem was
extended in various ways (see, e.g., [4]–[8]). One particular
extension, known as successive refinement for Wyner-Ziv
coding with degraded side information, is as follows: A source
is encoded and decoded, in a successive manner, to meet
different distortion constraints with the aid of progressively
enhanced decoder side information. This extended Wyner-Ziv
problem was tackled by Steinberg and Merhav [9] for the
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two-stage case and by Tian and Diggavi [10] for the multi-
stage case. Specifically, the computable characterizations of
rate regions in the discrete memoryless setting (with a general
distortion measure) and in the scalar Gaussian setting (with the
quadratic error distortion measure) were obtained accordingly.

In this paper, we consider the same extended Wyner-Ziv
problem with a particular attention paid to the vector Gaussian
setting (under covariance distortion constraints). The heart of
the present paper is a new inequality regarding the optimal-
ity of the Gaussian solution to a certain extremal problem.
It is well known that extremal inequalities play an important
role in characterizing the fundamental limits of Gaussian
network source and channel coding problems. Indeed, they
are indispensable to the converse argument for the Gaussian
broadcast channel coding problem [11]–[20], the Gaussian
interference channel coding problem [21]–[23], the Gaussian
multi-terminal source coding problem [24]–[30], the secret key
generation problem [31], the Gaussian multiple description
problem [32]–[35], and others [36], [37].

Basic extremal inequalities that rely on the differential-
entropy-maximizing property of the Gaussian distribution can
only handle simple situations where the objective functional
can be greedily optimized. When there are two or more
conflicting terms, Shannon’s entropy power inequality is often
used to resolve the tension. However, the proportionality
condition on the relevant covariance matrices needed for the
tightness of the entropy power inequality is quite restrictive,
typically only satisfied in scalar source and channel coding
problems. As a consequence, more sophisticated extremal
inequalities are needed to deal with vector Gaussian sources
and channels. The proofs of such extremal inequalities,
as well as the proof of the entropy power inequality, are
often proved by invoking the monotone path argument or its
variants.

The conventional monotone path argument nevertheless
appears to have its own limitations. For example, it fails to
yield a tight outer bound on the capacity region of the two-user
vector Gaussian broadcast channel with private and common
messages. The desired result is eventually obtained by Geng
and Nair [38] through a different approach involving so-called
doubling trick. On the other hand, this approach obscures some
useful information regarding the optimal Gaussian solution.
Fortunately, this problem can be remedied via a systematic
integration of the monotone path argument and the doubling
trick, as shown by Wang and Chen [39] in their new proof
of Courtade’s extremal inequality [40]. In this work, we make
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Fig. 1. Successive refinement for Wyner-Ziv coding with degraded side
information.

use of this integrated strategy, together with the properties
of the minimum mean square error (MMSE) and the Fisher
information, to establish a new extremal inequality, which
is further leveraged to characterize the rate region of the
aforementioned extended Wyner-Ziv problem in the vector
Gaussian source setting. It will be seen that the new extremal
inequality avoids the comparison of distortion matrices, and
thus is particularly handy when dealing with a large number
of covariance distortion constraints.

The rest of this paper is organized as follows. We present
the problem formulation and the main result in Section II.
Section III is devoted to proving a new extremal inequality,
which constitutes the main technical part of this paper. The
main result is proved in Section IV. We conclude the paper
in Section V. During the reviewing process, one anonymous
reviewer provided an alternative proof of our main result based
on the doubling/rotation method. With his/her kind permission,
we include the proof in Appendix D.

II. PROBLEM STATEMENT AND MAIN RESULT

Let X be a p × 1-dimensional random vector with mean
zero and covariance matrix K0 � 0. Moreover, let

Yi = X + Ni, i ∈ [1 : L], (1)

where Ni is a p × 1-dimensional random vector with mean
zero and covariance matrix Ki � 0, i ∈ [1 : L]. It is assumed
that

K1 � . . . � KL−1 � KL, (2)

and X , Ni −Ni+1, i ∈ [1 : L], are mutually independent and
jointly Gaussian.1 This assumption implies that

X → YL → YL−1 → . . . → Y1 (3)

forms a Markov chain. Let (X(t), Yi(t), i ∈ [1 : L])∞t=1 be
i.i.d. copies of (X, Yi, i ∈ [1 : L]).

The system model can be described as follows (see also
Fig. 1).

1Here NL+1 is a null random vector with covariance matrix KL+1 = 0.

• L encoding functions (φ(n)
i , i ∈ [1 : L]):

φ
(n)
i : Xn �→ M(n)

i , i ∈ [1 : L], (4)

where φ
(n)
i maps the source sequence Xn to the code-

word Mi(Xn), i ∈ [1 : L].
• L decoding functions (ϕ(n)

i , i ∈ [1 : L]):

ϕ
(n)
i :

∏
j∈[1:i]

M(n)
j × Yn

i �→ X̂n, i ∈ [1 : L], (5)

where ϕ
(n)
i produces the source reconstruction

X̂n
i (Mj , j ∈ [1 : i], Y n

i ) by using codewords
(Mj, j ∈ [1 : i]) and side information Y n

i . In particular,
under covariance distortion constraints, there is no loss
of optimality in assuming that ϕ

(n)
i performs MMSE

estimation, i.e.,

X̂n
i (Mj , j ∈ [1 : i], Y n

i ) = E[Xn|Mj , j ∈ [1 : i], Y n
i ].

Definition 1: A rate tuple (Ri, i ∈ [1 : L]) is said to be
achievable subject to covariance distortion constraints (Di �
0, i ∈ [1 : L]) if there exists a sequence of encoding functions
(φ(n)

i , i ∈ [1 : L]) and decoding functions (ϕ(n)
i , i ∈ [1 : L])

such that

lim sup
n→∞

1
n

log
∣∣∣M(n)

i

∣∣∣ ≤ Ri, i ∈ [1 : L], (6)

lim sup
n→∞

1
n

n∑
t=1

E

[(
X(t) − X̂i(t)

)(
X(t) − X̂i(t)

)T
]

� Di,

i ∈ [1 : L]. (7)

The rate region R∗(Di, i ∈ [1 : L]) is defined as the set
of all such achievable rate tuples.

The following theorem states a computable characterization
of R∗(Di, i ∈ [1 : L]), which is the main result of this paper.

Theorem 1: R∗(Di, i ∈ [1 : L]) = R(Di, i ∈ [1 : L]),
where R(Di, i ∈ [1 : L]) is the convex hull of the set of
(Ri, i ∈ [1 : L]) such that

R1 ≥ 1
2

log
|K−1

0 + K−1
1 + B1|

|K−1
0 + K−1

1 | , (8)

i∑
j=1

Rj ≥ 1
2

log
|K−1

0 + K−1
1 + B1|

|K−1
0 + K−1

1 |

+
i∑

j=2

1
2

log
|K−1

0 + K−1
j +

∑j
k=1 Bk|

|K−1
0 + K−1

j +
∑j−1

k=1 Bk|
,

i ∈ [2 : L], (9)

for some (Bi, i ∈ [1 : L]) satisfying

Bi 	 0, i ∈ [1 : L], (10)
i∑

j=1

Bj 	 D−1
i − K−1

0 − K−1
i , i ∈ [1 : L]. (11)

The proof of Theorem 1 can be found in Section IV, and
it relies critically on the extremal inequality established in
Section III.
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III. AN EXTREMAL INEQUALITY

Theorem 2: Given μ1 ≥ μ2 ≥ · · · ≥ μL ≥ 0, let (B∗
i , i ∈

[1 : L]) be any positive semi-definite matrices such that

i∑
j=1

B∗
j 	 D−1

i − K−1
0 − K−1

i , i ∈ [1 : L], (12)

and

μi

2

⎛⎝K−1
0 + K−1

i +
i∑

j=1

B∗
j

⎞⎠−1

− μi+1

2

⎛⎝K−1
0 + K−1

i+1 +
i∑

j=1

B∗
j

⎞⎠−1

=Ψi − Ψi+1 + Λi,

i ∈ [1 : L − 1], (13)

μL

2

⎛⎝K−1
0 + K−1

L +
L∑

j=1

B∗
j

⎞⎠−1

= ΨL + ΛL, (14)

B∗
i Ψi = 0, i ∈ [1 : L],

(15)⎛⎝K−1
0 + K−1

i +
i∑

j=1

B∗
j − D−1

i

⎞⎠Λi = 0, i ∈ [1 : L],

(16)

for some positive semi-definite matrices (Ψi, i ∈ [1 : L]) and
(Λi, i ∈ [1 : L]). For any random objects (Wi, i ∈ [1 : L])
satisfying the Markov chain contraint

(Wi, i ∈ [1 : L]) → X → YL → YL−1 → . . . → Y1 (17)

and the covariance distortion constraints

cov(X |Yi, Wj , j ∈ [1 : i]) � Di, i ∈ [1 : L], (18)

the following extremal inequality holds:
L−1∑
i=1

(μih(Yi|Wj , j ∈ [1 : i]) − μi+1h(Yi+1|Wj , j ∈ [1 : i])

−(μi − μi+1)h(X |Wj , j ∈ [1 : i]))
+ μLh(YL|Wj , j ∈ [1 : L]) − μLh(X |Wj , j ∈ [1 : L])

≥
L−1∑
i=1

⎛⎝−μi+1

2
log

∣∣∣∣∣∣Ki+1

⎛⎝K−1
0 + K−1

i+1 +
i∑

j=1

B∗
j

⎞⎠∣∣∣∣∣∣
+

μi

2
log

∣∣∣∣∣∣Ki

⎛⎝K−1
0 + K−1

i +
i∑

j=1

B∗
j

⎞⎠∣∣∣∣∣∣
⎞⎠

+
μL

2
log

∣∣∣∣∣∣KL

⎛⎝K−1
0 + K−1

L +
L∑

j=1

B∗
j

⎞⎠∣∣∣∣∣∣ . (19)

Remark 1: For the special case L = 2, Λ1 = 0, and
μ1 = μ2 = 1, the extremal inequality (19) can be regarded as a
variant of [17, Theorem 5], the original proof of which relies
on the enhancement argument developed in [41]. However,
when L > 2, the enhancement argument appears to be inad-
equate for resolving the difficulty caused by the introduction

of (Ψi, i ∈ [1 : L]) and (Λi, i ∈ [1 : L]). We shall overcome
this difficulty via a judicious application of the monotone path
argument and the doubling trick.

Remark 2: The doubling trick and the monotone path
argument are two widely used approaches for establishing
Gaussian extremal inequalities. Inspired by the change mea-
sure argument in the proof of Costa’s entropy power inequality
by Watanabe and Oohama [31] and the monotone path proof
of Courtade’s strong entropy power inequality in [39], we pro-
pose an integrated approach, which appears to be more flexible
and informative. Specifically, it will be seen that the doubling
trick yields a novel monotone path construction, which enables
us to leverage the standard perturbation techniques [26], [42]
to prove the optimality of the Gaussian solution.

For notational simplicity, we define

Δ−1
i � K−1

0 +
i∑

j=1

B∗
j , i ∈ [1 : L]. (20)

The proof of Theorem 2 is divided into four steps.

A. Constructing the Monotone Path

We first construct 3L zero-mean Gaussian random vectors

XG
1 , . . . , XG

L , Y G
1 , . . . , Y G

L , Ỹ G
2 , . . . , Ỹ G

L+1,

which are independent of (Xi, Yi, Wi, i ∈ [1 : L]). Specifi-
cally, they are defined as follows.

1) : Let XG
L , WG

i , i ∈ [2 : L], be mutually indepen-
dent Gaussian random vectors with covariance matrices ΔL,
Δi−1 − Δi, i ∈ [2 : L], respectively. We define

XG
i = XG

i+1 + WG
i+1, i ∈ [1 : L − 1]. (21)

It is easy to see that

XG
i ∼ N (0,Δi) , i ∈ [1 : L]. (22)

2) : Let NG
i − NG

i+1, i ∈ [1 : L], be mutually inde-
pendent Gaussian random vectors with covariance matrices
Ki − Ki+1, i ∈ [1 : L], respectively.2 We assume that
(NG

i , i ∈ [1 : L + 1]) is independent of (XG
i , i ∈ [1 : L]).

Define

Y G
i = XG

i + NG
i , i ∈ [1 : L], (23)

Ỹ G
i = XG

i−1 + NG
i , i ∈ [2 : L + 1]. (24)

It is clear that

Y G
i ∼ N (0,Δi + Ki) , i ∈ [1 : L], (25)

Ỹ G
i ∼ N (0,Δi−1 + Ki) , i ∈ [2 : L + 1]. (26)

Using the covariance preserved transform (see, e.g., [43]),
we define

Xi,γ =
√

1 − γX +
√

γXG
i , i ∈ [1 : L], (27)

Yi,γ =
√

1 − γYi +
√

γY G
i , i ∈ [1 : L], (28)

Ỹi,γ =
√

1 − γYi +
√

γỸ G
i , i ∈ [2 : L + 1], 3 (29)

2Here NG
L+1 is a null random vector with covariance matrix KL+1 = 0.

3Here YL+1 = X and ỸL+1,γ = XL,γ .
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Y ∗
i,γ =

√
γYi −

√
1 − γY G

i , i ∈ [1 : L], (30)

for any γ ∈ (0, 1).
Consider the following function:

g(γ) =
L−1∑
i=1

(
μih(Yi,γ |Y ∗

i,γ , Wj , j ∈ [1 : i])

− μi+1h(Ỹi+1,γ |Y ∗
i,γ , Wj , j ∈ [1 : i])

− (μi − μi+1)h(Xi,γ |Y ∗
i,γ , Wj , j ∈ [1 : i])

)
+ μLh(YL,γ |Y ∗

L,γ , Wj , j ∈ [1 : L])
− μLh(XL,γ|Y ∗

L,γ , Wj , j ∈ [1 : L]). (31)

Notice that g(0) coincides with the left-hand side of (19)
while g(1) coincides with the right-hand side of (19). There-
fore, it suffices to show that g(γ) decreases monotonically
along the path parameterized by γ, i.e.,

d

dγ
g(γ) ≤ 0, γ ∈ (0, 1). (32)

Remark 3: The construction of random variable pairs
(Yi,γ , Y ∗

i,γ), i ∈ [1 : L], is inspired by the doubling trick
in [38]. Indeed, we have (Yi,γ , Y ∗

i,γ) = (Yi,−Y G
i ) when γ = 0

and (Yi,γ , Y ∗
i,γ) = (Y G

i , Yi) when γ = 1, which implies that
Y ∗

i,γ is independent of Yi,γ at the starting and ending points
of the path. However, different from the doubling trick which
only focuses on the tensorization properties at some special
points, we consider a continuously parameterized tensorization
process, which makes it possible to reveal the convex-like
property of the associated optimization problem. The proposed
perturbation method is also different from that in [26], [42] as
it works in the product probability space instead of the original
space. A similar construction can be found in [39].

B. Derivative of g(γ)

In this step, we utilize a vector generalization of I-MMSE
relationship from [44]. First rewrite (31) as

g(γ) =
L−1∑
i=1

(
μih(Yi,γ , Y ∗

i,γ |Wj , j ∈ [1 : i])

− μi+1h(Ỹi+1,γ , Y ∗
i,γ |Wj , j ∈ [1 : i])

− (μi − μi+1)h(Xi,γ , Y ∗
i,γ |Wj , j ∈ [1 : i])

)
+ μLh(YL,γ , Y ∗

L,γ |Wj , j ∈ [1 : L])
− μLh(XL,γ , Y ∗

L,γ |Wj , j ∈ [1 : L]). (33)

In view of (28) and (30), it can be verified that

h
(
Yi,γ , Y ∗

i,γ

∣∣∣Wj , j ∈ [1 : i]
)

= h
(√

1 − γYi +
√

γY G
i ,

√
γYi −

√
1 − γY G

i

∣∣∣Wj ,

j ∈ [1 : i]
)

(34)

= h
(
Yi, Y

G
i

∣∣∣Wj , j ∈ [1 : i]
)

, i ∈ [1 : L]. (35)

Since Yi and Y G
i do not depend on γ, it follows that

d

dγ
h
(
Yi, Y

G
i

∣∣∣Wj , j ∈ [1 : i]
)

= 0, i ∈ [1 : L]. (36)

Moreover, as shown in Appendices B and C,

d

dγ
h
(
Xi,γ , Y ∗

i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2(1 − γ)
tr
{
(Δ−1

i + K−1
i )−1(

J
(
Xi,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
− Δ−1

i

)}
, i ∈ [1 : L].

(37)
d

dγ
h
(
Ỹi+1,γ , Y ∗

i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2(1 − γ)
tr
{((

Δ−1
i + K−1

i

)−1 − (Δ−1
i + K−1

i+1

)−1
)

( (
Δ−1

i + K−1
i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

) − Δ−1
i (Δi + Ki+1)Δ−1

i

)}
,

i ∈ [1 : L − 1]. (38)

Combining (35), (36), (37), and (38) gives

− 2(1 − γ)
d

dγ
g(γ)

=
L−1∑
i=1

tr
{(

μi+1

(
Δ−1

i +K−1
i

)−1−μi+1

(
Δ−1

i + K−1
i+1

)−1
)

((
Δ−1

i + K−1
i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

) − Δ−1
i (Δi + Ki+1)Δ−1

i

)}
+

L−1∑
i=1

tr
{
(μi − μi+1)(Δ−1

i + K−1
i )−1

(
J
(
Xi,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
− Δ−1

i

)}
+ tr

{
μL(Δ−1

L + K−1
L )(

J
(
XL,γ

∣∣∣Y ∗
L,γ , Wj , j ∈ [1 : L]

)
− Δ−1

L

)}
. (39)

Hence, for the purpose of proving (32), it suffices to show
that (39) is greater than or equal to 0.

C. Lower Bound of (39)

In this step, we establish a lower bound of (39) with
the Karush-Kuhn-Tucker (KKT) conditions in (13) and (14)
properly incorporated.

Define L1(γ), L2(γ) and L3(γ), as shown in (40a)–(40c),
at the bottom of the next page. We aim to show

−2(1 − γ)
d

dγ
g(γ) ≥ L1(γ) + L2(γ) + L3(γ). (41)

First notice that the covariance matrix of random vector( √
1 − γNi+1 +

√
γNG

i+1√
γNi −√

1 − γNG
i

)
is given by (

Ki+1 0
0 Ki

)
. (42)

So
√

1 − γNi+1 +
√

γNG
i+1 is independent of√

γNi − √
1 − γNG

i , which, together with (30), implies
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that
√

1 − γNi+1 +
√

γNG
i+1 is independent of Y ∗

i,γ as well.
For i ∈ [1 : L − 1], we have

Ỹi+1,γ = Xi,γ +
√

1 − γNi+1 +
√

γNG
i+1. (43)

In view of the fact that
√

1 − γNi+1 +
√

γNG
i+1 is indepen-

dent of Xi,γ , the Fisher information inequality (see Lemma 5
in Appendix A) can be invoked to show(

Δ−1
i + K−1

i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

) − Δ−1
i (Δi + Ki+1)Δ−1

i

=
(
I + Δ−1

i Ki+1

)
J
(
Xi,γ +

√
1 − γNi+1 +

√
γNG

i+1

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
(
Ki+1Δ−1

i + I
)− Δ−1

i Ki+1Δ−1
i − Δ−1

i (44)

� J
(
Xi,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
+ Δ−1

i Ki+1J
(√

1 − γNi+1 +
√

γNG
i+1

)
Ki+1Δ−1

i

− Δ−1
i Ki+1Δ−1

i − Δ−1
i (45)

= J
(
Xi,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
− Δ−1

i . (46)

Since Ki � Ki+1, it follows that(
Δ−1

i + K−1
i

)−1 − (Δ−1
i + K−1

i+1

)−1 � 0. (47)

Therefore,

− 2(1 − γ)
d

dγ
g(γ)

≥
L−1∑
i=1

tr
{(

μi

(
Δ−1

i + K−1
i

)−1−μi+1

(
Δ−1

i + K−1
i+1

)−1
)

( (
Δ−1

i + K−1
i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

) − Δ−1
i (Δi + Ki+1)Δ−1

i

)}
− tr

{
μL(Δ−1

L + K−1
L )

(
J
(
XL,γ

∣∣∣Y ∗
L,γ , Wj , j ∈ [1 : L]

)
− Δ−1

L

)}
(48)

=
L−1∑
i=1

tr
{

(Ψi − Ψi+1 + Λi)
( (

Δ−1
i + K−1

i+1

)
Ki+1

J
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

)

− Δ−1
i (Δi + Ki+1)Δ−1

i

)}
+ tr

{
(ΨL + ΛL)

(
J
(
ỸL+1,γ

∣∣∣Y ∗
L,γ , Wj , j ∈ [1 : L]

)
− Δ−1

L

)}
(49)

=
L−1∑
i=1

tr
{

(Ψi − Ψi+1)
( (

Δ−1
i + K−1

i+1

)
Ki+1

J
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

)
− Δ−1

i (Δi + Ki+1)Δ−1
i

)}
+ tr

{
ΨL

(
J
(
ỸL+1,γ

∣∣∣Y ∗
L,γ , Wj , j ∈ [1 : L]

)
− Δ−1

L

)}
+

L∑
i=1

tr
{
Λi

( (
Δ−1

i + K−1
i+1

)
Ki+1

J
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

)
−Δ−1

i (Δi + Ki+1)Δ−1
i

)}
(50)

= tr
{
Ψ1

((
Δ−1

1 + K−1
2

)
K2J

(
Ỹ2,γ

∣∣∣Y ∗
1,γ , W1

)
K2

(
Δ−1

1 + K−1
2

) − Δ−1
1 (Δ1 + K2)Δ−1

1

)}
+

L∑
i=2

tr
{
Ψi

( (
Δ−1

i + K−1
i+1

)
Ki+1

J
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

)
− (Δ−1

i−1+K−1
i

)
KiJ

(
Ỹi,γ

∣∣∣Y ∗
i−1,γ , Wj , j ∈ [1 : i − 1]

)
Ki

(
Δ−1

i−1 + K−1
i

)− Δ−1
i (Δi + Ki+1)Δ−1

i

+Δ−1
i−1 (Δi−1 + Ki)Δ−1

i−1

)}
+

L∑
i=1

tr
{
Λi

( (
Δ−1

i + K−1
i+1

)
Ki+1

J
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

)
−Δ−1

i (Δi + Ki+1)Δ−1
i

)}
(51)

≥ L1(γ) + L2(γ) + L3(γ). (52)

where (49) is due to the KKT properties in (13) and (14),
(50) is due to the fact that KL+1 = 0, (51) follows by

L1(γ) = tr
{
Ψ1

((
Δ−1

1 + K−1
2

)
K2J

(
Ỹ2,γ

∣∣∣Y ∗
1,γ , W1

)
K2

(
Δ−1

1 + K−1
2

) − Δ−1
1 (Δ1 + K2)Δ−1

1

)}
(40a)

L2(γ) =
L∑

i=2

tr
{
Ψi

( (
Δ−1

i + K−1
i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

)
− (Δ−1

i−1 + K−1
i

)
KiJ

(
Ỹi,γ

∣∣∣Y ∗
i−1,γ , Wj , j ∈ [1 : i − 1]

)
Ki

(
Δ−1

i−1 + K−1
i

)
− Δ−1

i (Δi + Ki+1)Δ−1
i + Δ−1

i−1 (Δi−1 + Ki)Δ−1
i−1

)}
(40b)

L3(γ) =
L∑

i=1

tr
{
Λi

( (
Δ−1

i + K−1
i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

)
− Δ−1

i (Δi + Ki+1)Δ−1
i

)}
(40c)
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algebraic manipulations, and (52) is due to the definition of
L1(γ), L2(γ) and L3(γ) in (40a)-(40c).

Now it suffices to show that L1(γ), L2(γ) and L3(γ) are
all lower bounded by 0.

D. Lower Bound of L1(γ)

From (188) in Appendix C,(
Δ−1

1 + K−1
2

)
K2J

(
Ỹ2,γ

∣∣∣Y ∗
1,γ , W1

)
K2

(
Δ−1

1 + K−1
2

)
− Δ−1

1 (Δ1 + K2)Δ−1
1

=
1−γ

γ
Δ−1

1 (Δ1 + K2)
(
(Δ1 + K2)

−1 + (K1 − K2)
−1
)

((
(Δ1 + K2)

−1 + (K1 − K2)
−1
)−1

− 1
γ

cov
(
Y2

∣∣∣Ỹ2,γ , Y ∗
1,γ , W1

))
(
(Δ1 + K2)

−1 + (K1 − K2)
−1
)

(Δ1 + K2)Δ−1
1 .

(53)

Combining the data processing inequality for MMSE (see
Lemma 8 in Appendix A) and (176) gives

cov
(
Y2

∣∣∣Ỹ2,γ , Y ∗
1,γ , W1

)
� cov

(
Y2

∣∣∣Ỹ2,γ , Y ∗
1,γ

)
(54)

=
(

(K0 + K2)
−1 +

1 − γ

γ
(Δ1 + K2)

−1

+
1
γ

(K1 − K2)
−1

)−1

. (55)

Substituting (55) into (53) yields the following lower bound:(
Δ−1

1 + K−1
2

)
K2J

(
Ỹ2,γ

∣∣∣Y ∗
1,γ , W1

)
K2

(
Δ−1

1 + K−1
2

)
− Δ−1

1 (Δ1 + K2)Δ−1
1

	 (1 − γ)2

γ2
Δ−1

1 (Δ1 + K2)(
(Δ1 + K2)

−1 + (K1 − K2)
−1
)

( γ

1 − γ

(
(Δ1 + K2)

−1 + (K1 − K2)
−1
)−1

− 1
1 − γ

(
(K0 + K2)

−1 +
1 − γ

γ
(Δ1 + K2)

−1

+
1
γ

(K1 − K2)
−1
)−1)

(
(Δ1 + K2)

−1 + (K1 − K2)
−1
)

(Δ1 + K2)Δ−1
1

(56)

=
1−γ

γ
Δ−1

1 (Δ1 + K2)
(
(Δ1+K2)

−1 + (K1 − K2)
−1
)

(
(K0 + K2)

−1 +
1 − γ

γ
(Δ1 + K2)

−1

+
1
γ

(K1−K2)
−1

)−1 (
(K0+K2)

−1 − (Δ1 + K2)
−1
)

(Δ1 + K2)Δ−1
1 (57)

=
1−γ

γ
Δ−1

1 (Δ1 + K2)
(
(Δ1+K2)

−1 + (K1 − K2)
−1
)

(
(K0 + K2)

−1 +
1 − γ

γ
(Δ1 + K2)

−1

+
1
γ

(K1 − K2)
−1

)−1

(K0 + K2)
−1 (Δ1 − K0)Δ−1

1

(58)

=
1− γ

γ
Δ−1

1 (Δ1+K2)
(
(Δ1 + K2)

−1 + (K1 − K2)
−1
)

(
(K0 + K2)

−1 +
1 − γ

γ
(Δ1 + K2)

−1

+
1
γ

(K1 − K2)
−1

)−1

(K0 + K2)
−1

K−1
0(

K−1
0 − Δ−1

1

)
. (59)

From the complementary slackness condition in (15), i.e.,

B∗
1Ψ1 =

(
K−1

0 − Δ−1
1

)
Ψ1 = 0, (60)

we have

tr
{
Ψ1

((
Δ−1

1 + K−1
2

)
K2J

(
Ỹ2,γ

∣∣∣Y ∗
1,γ , W1

)
K2

(
Δ−1

1 + K−1
2

) − Δ−1
1 (Δ1 + K2)Δ−1

1

)}
(61)

≥ tr
{1 − γ

γ
Δ−1

1 (Δ1 + K2)(
(Δ1 + K2)

−1 + (K1 − K2)
−1
)(

(K0 + K2)
−1

+
1 − γ

γ
(Δ1 + K2)

−1 +
1
γ

(K1 − K2)
−1
)−1

(K0 + K2)
−1 K−1

0

(
K−1

0 − Δ−1
1

)
Ψ1

}
= 0. (62)

This proves that L1(γ) is lower bounded by 0.

E. Lower Bound of L2(γ)

To the end of showing that (40b) is lower bounded by 0,
we introduce

N ′
i+1 �

√
1 − γ (Ni − Ni+1) +

√
γ
(
NG

i − NG
i+1

)
,

i ∈ [1 : L]. (63)

Note that N ′
i+1 is a Gaussian random vector with covariance

matrix Ki − Ki+1 and is independent of (Ỹi+1,γ , Y ∗
i,γ).

Moreover,

Ỹi,γ = Ỹi+1,γ + N ′
i+1, i ∈ [2 : L]. (64)

In view of the fact that N ′
i+1 is independent of Y ∗

i,γ , we can
invoke the Fisher information inequality (see Lemma 5 in
Appendix A) to show(

Δ−1
i−1 + K−1

i

)
KiJ

(
Ỹi,γ

∣∣∣Y ∗
i−1,γ , Wj , j ∈ [1 : i − 1]

)
Ki

(
K−1

i + Δ−1
i−1

)
=
(
Δ−1

i−1Ki+I
)
J
(
Ỹi+1,γ +N ′

i+1

∣∣∣Y ∗
i−1,γ , Wj , j∈ [1 : i−1]

)
(
I + KiΔ−1

i−1

)
� (Δ−1

i−1Ki+1 + I
)
J
(
Ỹi+1,γ

∣∣∣Y ∗
i−1,γ , Wj , j ∈ [1 : i − 1]

)
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(
I + Ki+1Δ−1

i−1

)
+ Δ−1

i−1 (Ki − Ki+1)Δ−1
i−1

� (Δ−1
i−1Ki+1 + I

)
J
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
(
I + Ki+1Δ−1

i−1

)
+ Δ−1

i−1 (Ki − Ki+1)Δ−1
i−1 (65)

=
(
Δ−1

i−1 + K−1
i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
K−1

i+1+Δ−1
i−1

)
+Δ−1

i−1 (Ki − Ki+1)Δ−1
i−1. (66)

In particular, (65) can be verified as follows. Let

N∗
i =

√
γ(Ni−1 − Ni) −

√
1 − γ(NG

i−1−NG
i ), i∈ [2 : L].

Notice that N∗
i is a Gaussian random vector with covariance

matrix Ki−1−Ki and is independent of (X, Ỹi+1,γ , Y ∗
i,γ). It is

easy to check

Y ∗
i−1,γ = Y ∗

i,γ + N∗
i , i ∈ [2 : L].

From the data processing inequality for Fisher information
(see Lemma 7 in Appendix A), we have

J
(
Ỹi+1,γ

∣∣∣Y ∗
i−1,γ , Wj , j ∈ [1 : i]

)
= J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ + N∗

i , Wj , j ∈ [1 : i]
)

� J
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
,

which, together with the matrix inequality UT (A− B)U 	 0
for A 	 B, gives (65).

Meanwhile, due to the complementary slackness condition
in (15), i.e.,

B∗
i Ψi =

(
Δ−1

i − Δ−1
i−1

)
Ψi = 0, i ∈ [2 : L], (67)

we have

tr
{
Ψi

( (
Δ−1

i +K−1
i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

)− (Δ−1
i−1 + K−1

i

)
Ki

J
(
Ỹi,γ

∣∣∣Y ∗
i−1,γ , Wj , j ∈ [1 : i − 1]

)
Ki

(
Δ−1

i−1 + K−1
i

)
− Δ−1

i (Δi+Ki+1)Δ−1
i +Δ−1

i−1 (Δi−1+Ki)Δ−1
i−1

)}
= tr

{
Ψi

( (
Δ−1

i−1 + K−1
i+1

)
Ki+1

J
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i−1 + K−1
i+1

)
− (Δ−1

i−1 + K−1
i

)
KiJ

(
Ỹi,γ

∣∣∣Y ∗
i−1,γ , Wj , j ∈ [1 : i−1]

)
Ki

(
Δ−1

i−1 + K−1
i

)
+ Δ−1

i−1 (Ki − Ki+1)Δ−1
i−1

)}
≥ 0, i ∈ [2 : L]. (68)

This proves that L2(γ) is lower bounded by 0.

F. Lower Bound of L3(γ)

To the end of showing that L3(γ) is lower bounded by 0,
we introduce

N ′′
i+1 � √

γ (Ni − Ni+1) −
√

1 − γ
(
NG

i − NG
i+1

)
,

i ∈ [1 : L]. (69)

Note that N ′′
i+1 is a Gaussian random vector with covariance

matrix Ki −Ki+1 and is independent of (Yi+1, Ỹ
G
i+1). It can

be verified that

cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y ∗
i,γ , Wj , j ∈ [1 : i]

)
= cov

(
Yi+1

∣∣∣√1 − γỸi+1,γ +
√

γY ∗
i,γ , Ỹi+1,γ , Wj , j∈ [1 : i]

)
(70)

= cov
(
Yi+1

∣∣∣(1 − γ)Yi+1 +
√

γ(1 − γ)Ỹ G
i+1 + γYi

−
√

γ(1 − γ)Y G
i , Ỹi+1,γ , Wj , j ∈ [1 : i]

)
(71)

= cov
(

Yi+1

∣∣∣Yi+1 +
√

γN ′′
i+1, Yi+1 +

√
γ

1 − γ
Ỹ G

i+1,

Wj , j ∈ [1 : i]) (72)

� cov
(
Yi+1

∣∣∣ (1−γ

γ
(Δi + Ki+1)

−1+
1
γ

(Ki − Ki+1)
−1

)
Yi+1 +

√
1 − γ

γ
(Δi + Ki+1)

−1
Ỹ G

i+1

+
√

1
γ

(Ki − Ki+1)
−1 N ′′

i+1, Wj , j ∈ [1 : i]
)

.

(73)

where (73) is due to the data processing inequality for MMSE
(see Lemma 8 in Appendix A).

For the sake of simplifying notation, we introduce

P i+1 �
(

1 − γ

γ
(Δi + Ki+1)

−1 +
1
γ

(Ki − Ki+1)
−1

)−1

,

SG
i+1 �P i+1

(√
1 − γ

γ
(Δi + Ki+1)

−1 Ỹ G
i+1

+
√

1
γ

(Ki − Ki+1)
−1 N ′′

i+1

)
. (74)

Now (73) can be rewritten as follows

cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y ∗
i,γ , Wj , j ∈ [1 : i]

)−1

	 cov
(
Yi+1

∣∣∣Yi+1 + SG
i+1, Wj , j ∈ [1 : i]

)−1

.

By the theory of linear MMSE estimation, it can be verified
that

Ni − Ni+1 = SG
i+1 + T G

i+1,

where T G
i+1 is a Gaussian random vector with covariance

matrix Ki−Ki+1−P i+1 and is independent of SG
i+1. We can

invoke Lemma 6 in Appendix A to show that

cov
(
Yi+1

∣∣∣Yi+1 + SG
i+1, Wj , j ∈ [1 : i]

)−1

	 cov
(
Yi+1

∣∣∣Yi+1 + SG
i+1 + T G

i+1, Wj , j ∈ [1 : i]
)−1

− (Ki − Ki+1)
−1 + P−1

i+1

= cov
(
Yi+1

∣∣∣Yi, Wj , j ∈ [1 : i]
)−1

+
1 − γ

γ

(
(Δi + Ki+1)

−1 + (Ki − Ki+1)
−1
)

, (75)

where (75) follows by the definition of P i+1 in (74). We then
bound the two terms in (75) separately.
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1) : Note that the following Markov chain condition holds:

(Wj , j ∈ [1 : i]) → X → Yi+1 → Yi. (76)

Since X , Yi, and Yi+1) are jointly Gaussian, it follows that

E [Yi+1|X, Yi] (77)

= (Ki − Ki+1)K−1
i X + Ki+1K

−1
i Yi. (78)

Furthermore, we have

Yi+1 = (Ki − Ki+1)K−1
i

(
X + Ñi+1

)
+ Ki+1K

−1
i Yi,

(79)

where Ñi+1 is a zero-mean Gaussian random vector with
covariance matrix

K̃i+1 =
(
K−1

i+1 − K−1
i

)−1 � 0, (80)

and is independent of (X, Yi). Therefore,

cov
(
Yi+1

∣∣∣Yi, Wj , j ∈ [1 : i]
)

= cov
(
(Ki − Ki+1)K−1

i

(
X+Ñi+1

) ∣∣∣Yi, Wj , j ∈ [1 : i]
)

� (Ki − Ki+1)K−1
i

(
Di +

(
K−1

i+1 − K−1
i

)−1
)

K−1
i

(Ki − Ki+1) , (81)

where (81) is because of covariance distortion constraint
cov(X |Yi, Wj , j ∈ [1 : i]) � Di in (18).

2) : It can be verified that(
(Δi + Ki+1)

−1 + (Ki − Ki+1)
−1
)−1

=
(
K−1

i+1 − (Ki+1 − Ki)
−1 − K−1

i+1 + (Δi+Ki+1)
−1
)−1

= Ki+1

((
K−1

i+1 − K−1
i

)−1−(Δ−1
i + K−1

i+1

)−1
)−1

Ki+1

(82)

= Ki+1

(
K−1

i+1 − K−1
i

)((
Δ−1

i + K−1
i

)−1
+
(
K−1

i+1 − K−1
i

)−1
)

(
K−1

i+1 − K−1
i

)
Ki+1 (83)

� (Ki − Ki+1)K−1
i

(
Di +

(
K−1

i+1 − K−1
i

)−1
)

K−1
i

(Ki − Ki+1) , (84)

where (82) follows by the matrix inversion identities

K−1
i+1 − (Ki+1 − Ki)

−1 = Ki+1

(
K−1

i+1−K−1
i

)
Ki+1,

K−1
i+1 − (Δi + Ki+1)

−1 = Ki+1

(
Δi + K−1

i+1

)
Ki+1,

(83) follows by the matrix inversion identity((
K−1

i+1 − K−1
i

)−1 − (Δ−1
i + K−1

i+1

)−1
)−1

=
(
K−1

i+1−K−1
i

) ((
Δ−1

i +K−1
i

)−1
+
(
K−1

i+1 − K−1
i

)−1
)

(
K−1

i+1 − K−1
i

)
,

and (84) is because of Δ−1
i + K−1

i 	 D−1
i in (12).

Substituting (81) and (84) into (75) yields

cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y ∗
i,γ , Wj , j ∈ [1 : i]

)

� cov
(
Yi+1

∣∣∣Yi+1 + SG
i+1, Wj , j ∈ [1 : i]

)
�
(

cov
(
Yi+1

∣∣∣Yi, Wj , j ∈ [1 : i]
)−1

+
1 − γ

γ

(
(Δi + Ki+1)

−1 + (Ki − Ki+1)
−1
))−1

� γ (Ki − Ki+1)K−1
i

(
Di +

(
K−1

i+1 − K−1
i

)−1
)

K−1
i

(Ki − Ki+1) .

In view of (188), we have(
Δ−1

i + K−1
i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

)− Δ−1
i (Δi + Ki+1)Δ−1

i

= Δ−1
i (Δi + Ki+1)

(
J
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
− (Δi + Ki+1)

−1
)

(Δi + Ki+1)Δ−1
i (85)

=
1 − γ

γ
Δ−1

i (Δi + Ki+1)(
(Δi + Ki+1)

−1 + (Ki − Ki+1)
−1
)

((
(Δi + Ki+1)

−1 + (Ki − Ki+1)
−1
)−1

− 1
γ

cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y ∗
i,γ , Wj , j ∈ [1 : i]

))
(
(Δi + Ki+1)

−1 + (Ki − Ki+1)
−1
)

(Δi + Ki+1)Δ−1
i (86)

	 1 − γ

γ

(
Δ−1

i + K−1
i

) ((
Δ−1

i + K−1
i

)−1 − Di

)
(
Δ−1

i + K−1
i

)
(87)

=
1 − γ

γ

(
Δ−1

i + K−1
i

)
Di

(
D−1

i − Δ−1
i − K−1

i

)
. (88)

From the complementary slackness condition in (16), i.e.,(
Δ−1

i + K−1
i − D−1

i

)
Λi = 0, i ∈ [1 : L], (89)

we have

tr
{
Λi

((
Δ−1

i +K−1
i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

)− 1
γ
Δ−1

i (Δi + Ki+1)Δ−1
i

)}
≥ tr

{
1 − γ

γ
Λi

(
Δ−1

i + K−1
i

)
Di

(
D−1

i − Δ−1
i − K−1

i

)}
(90)

= 0, i ∈ [1 : L]. (91)

This proves that L3(γ) is lower bounded by 0.

IV. PROOF OF THEOREM 1

The proof of Theorem 1 is divided into three steps. We first
adapt the argument in [9], [10] to show that every rate tuple
in R(Di, i ∈ [1 : L]) is achievable, i.e., R(Di, i ∈ [1 :
L]) ⊆ R∗(Di, i ∈ [1 : L]). We then study the supporting
hyperplanes of R(Di, i ∈ [1 : L]) and characterize the
optimal solution of the relevant minimization problem via
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KKT analysis. Finally we derive a matching converse by
leveraging the extremal inequality in Theorem 2.

A. Achievability

It is easy to adapt the achevability argument in [9], [10] to
prove the following result.

Lemma 1: (Ri, i ∈ [1 : L]) ∈ R∗(Di, i ∈ [1 : L]) if
there exist auxiliary random vectors (Wi, i ∈ [1 : L]) jointly
Gaussian with (X, Yi, i ∈ [1 : L]) satisfying

• the Markov chain constraint

(Wi, i ∈ [1 : L]) → X → YL → YL−1 → . . . → Y1,

(92)

• the rate constraints

R1 ≥ I(X ; W1|Y1), (93)
i∑

j=1

Rj ≥ I(X ; W1|Y1)

+
i∑

j=2

I(X ; Wj |Wj−1, . . . , W1, Yj),

i ∈ [2 : L], (94)

• the covariance distortion constraints

cov(X |Yi, Wj , j ∈ [1 : i]) � Di, i ∈ [1 : L]. (95)

Equipped with Lemma 1, we proceed to show that every
rate tuple in R(Di, i ∈ [1 : L]) is achievable. First choose
auxiliary Gaussian random vectors (Wi, i ∈ [1 : L]) such that

cov(X |Wj , j ∈ [1 : i]) =

⎛⎝K−1
0 +

i∑
j=1

Bj

⎞⎠−1

, i ∈ [1 : L].

(96)

It can be verified that

h(X |Yi, Wj , j ∈ [1 : i])

=
1
2

log

∣∣∣∣∣∣∣(2πe)

⎛⎝K−1
0 + K−1

i +
i∑

j=1

Bj

⎞⎠−1
∣∣∣∣∣∣∣ ,

i ∈ [1 : L], (97)

h(X |Yi+1, Wj , j ∈ [1 : i])

=
1
2

log

∣∣∣∣∣∣∣(2πe)

⎛⎝K−1
0 + K−1

i+1 +
i∑

j=1

Bj

⎞⎠−1
∣∣∣∣∣∣∣ ,

i ∈ [1 : L − 1]. (98)

Moreover, we have

h(X |Yi) = h(X |X + Ni) =
1
2

log
∣∣∣(2πe)

(
K−1

0 +K−1
i

)−1
∣∣∣ ,

i ∈ [1 : L], (99)

cov (X |Yi, Wj , j ∈ [1 : i]) =

⎛⎝K−1
0 + K−1

i +
i∑

j=1

Bj

⎞⎠−1

,

i ∈ [1 : L]. (100)

Now one can readily prove R(Di, i ∈ [1 : L]) ⊆
R∗(Di, i ∈ [1 : L]) by invoking Lemma 1 and a timesharing
argument.

B. Supporting Hyperplane Characterization

Since R(Di, i ∈ [1 : L]) is convex, it is completely
specified by its supporting hyperplanes. The characterization
of the supporting hyperplanes boils down to solving the
following optimization problem

R∗ � inf
(R1,...,RL)∈R(Di,i∈[1:L])

L∑
i=1

μiRi, (101)

where μ1 ≥ μ2 ≥ . . . ≥ μL ≥ 0. It is clear that

R∗ = min
(Bi,i∈[1:L])

μ1

2
log

|K−1
0 + K−1

1 + B1|
|K−1

0 + K−1
1 |

+
L∑

i=2

μi

2
log

|K−1
0 + K−1

i +
∑i

j=1 Bj |
|K−1

0 + K−1
i +

∑i−1
j=1 Bj |

(102)

subject to Bi 	 0, i ∈ [1; L],
i∑

j=1

Bj 	 D−1
i − K−1

0 − K−1
i , i ∈ [1; L].

Theorem 3: The minimizer (B∗
i , i ∈ [1 : L]) of (102) must

satisfy

μi

2

⎛⎝K−1
0 + K−1

i +
i∑

j=1

B∗
j

⎞⎠−1

− μi+1

2

⎛⎝K−1
0 +K−1

i+1 +
i∑

j=1

B∗
j

⎞⎠−1

= Ψi − Ψi+1 + Λi,

i ∈ [1 : L − 1], (103)

μL

2

⎛⎝K−1
0 + K−1

L +
L∑

j=1

B∗
j

⎞⎠−1

= ΨL + ΛL, (104)

for some positive semi-definite matrices (Ψi, i ∈ [1 : L]) and
(Λi, i ∈ [1 : L]) such that

B∗
i Ψi = 0, i ∈ [1 : L],

(105)⎛⎝K−1
0 + K−1

i +
i∑

j=1

B∗
j − D−1

i

⎞⎠Λi = 0, i ∈ [1 : L].

(106)

Proof: The Lagrangian of (102) is given by

μ1

2
log

|K−1
0 + K−1

1 + B1|
|K−1

0 + K−1
1 |

+
L∑

i=2

μi

2
log

|K−1
0 + K−1

i +
∑i

j=1 Bj |
|K−1

0 + K−1
i +

∑i−1
j=1 Bj |

−
L∑

i=1

tr{BiΨi + (K−1
0 + K−1

i − D−1
i +

i∑
j=1

Bj)Λi},

(107)
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where positive semi-definite matrices (Ψi, i ∈ [1 : L]) and
(Λi, i ∈ [1 : L]) serve as Lagrange multipliers. Note that
(103)-(106) follow directly form the KKT conditions. The
proof is complete by verifying a set of constraint qualifications
in [45, Sections 4-5].

Remark 4: It is worth noting that (103)-(106) in Theorem 3
correspond exactly to (13)-(16) in Theorem 2.

C. Converse

It is easy to adapt the converse argument in [9], [10] to
prove the following result.

Lemma 2: For any (Ri, i ∈ [1 : L]) ∈ R∗(Di, i ∈ [1 : L])
and any ε > 0, there exist auxiliary random objects jointly
distributed with (X, Yi, i ∈ [1 : L]) satisfying

• the Markov chain constraint

(Wi, i ∈ [1 : L]) → X → YL → YL−1 → . . . → Y1,

(108)

• the rate constraints

R1 + ε ≥ I(X ; W1|Y1), (109)
i∑

j=1

(Rj + ε)

≥ I(X ; W1|Y1) +
i∑

j=2

I(X ; Wj |Wj−1, . . . , W1, Yj),

i ∈ [2 : L], (110)

• the covariance distortion constraints

cov(X |Yi, Wj , j ∈ [1 : i]) � Di + εI, i ∈ [1 : L].
(111)

Now we proceed to show that R∗(Di, i ∈ [1 : L]) ⊆
R(Di, i ∈ [1 : L]). For any (R1, . . . , RL) ∈ R∗(Di, i ∈ [1 :
L]) and any ε > 0, it follows by Lemma 2, Theorem 3, and
Theorem 2 that

L∑
i=1

μi(Ri + ε)

≥ μ1I(X ; W1|Y1) +
L∑

i=2

μiI(X ; Wi|Wj , Yi, j ∈ [1 : i − 1])

(112)

= μ1h(X |Y1) +
L−1∑
i=1

(μih(Yi|Wj , j ∈ [1 : i]) − μih(Yi|X)

−μi+1h(Yi+1|Wj , j ∈ [1 : i])+μi+1h(Yi+1|X)
−(μi − μi+1)h(X |Wj , j ∈ [1 : i]))
+ μLh(YL|Wj , j ∈ [1 : L])−μLh(YL|X)
− μLh(X |Wj , j ∈ [1 : L]) (113)

≥ −μ1

2
log
∣∣(2πe)−1

(
K−1

0 + K−1
i

)∣∣+ L−1∑
i=1

⎛⎝− μi+1

2

log

∣∣∣∣∣∣(2πe)−1

⎛⎝K−1
0 + K−1

i+1 +
i∑

j=1

B∗
j (ε)

⎞⎠∣∣∣∣∣∣

+
μi

2
log

∣∣∣∣∣∣(2πe)−1

⎛⎝K−1
0 + K−1

i +
i∑

j=1

B∗
j (ε)

⎞⎠∣∣∣∣∣∣
⎞⎠

+
μL

2
log

∣∣∣∣∣∣(2πe)−1

⎛⎝K−1
0 + K−1

L +
L∑

j=1

B∗
j (ε)

⎞⎠∣∣∣∣∣∣ ,
(114)

where (B∗
i (ε), i ∈ [1 : L]) denotes the minimizer of (102)

with (Di, i ∈ [1 : L]) replaced by (Di + εI, i ∈ [1 : L]).
Now one can readily show

L∑
i=1

μiRi ≥ R∗ (115)

via a simple limiting argument. This completes the proof of
Theorem 1.

V. CONCLUSION

We have studied the problem of successive refinement
for Wyner-Ziv coding with degraded side information and
obtained a computable characterization of the rate region in
the quadratic vector Gaussian setting. From the technical per-
spective, our main contribution is a new extremal inequality,
which is established via a refined monotone path argument
inspired by the doubling trick in [38]. The proof of Gaussian
optimality also arises in functional inequalities such as the
Brascamp-Lieb inequality [46] and Young’s inequality [43].
Apart from the doubling trick and the monotone path argu-
ment, many other techniques (e.g., rearrangement [47] and
optimal transport [48]) can also be used for establishing such
inequalities. It is an active research topic to investigate the
connections among these inequalities and identify a unifying
theme. Moreover, a deeping understanding of the geometric
nature of these problems will likely shed light on the feasibility
of the relevant techniques.

For the quadratic scalar Gaussian case of the side informa-
tion scalable source coding problem, Tian and Diggavi [49]
proved the optimality of the Gaussian solution even when
the side informations at the receivers are not degraded along
the same successive coding order (see [8] for a related result
regarding a Heegard-Berger problem with two sources and
degraded reconstruction sets). Specifically, this is accom-
plished by ranking the auxiliary random variables through the
comparisons of the relevant distortions. However, the vector
Gaussian case is considerably more challenging as covariance
distortions might not have a linear order, and so far there are
only some partial solutions [50]. Our proof technique does not
require such comparisons and thus is potentially better suited
to the non-degraded side information setting. On the other
hand, the absence of a suitable single-letter outer bound for
this general setting is a major hurdle for our approach. It is
conceivable that one may overcome this difficulty by exploit-
ing certain implicit Markov structures extracted from the KKT
conditions of extremal Gaussian solutions for the achievability
scheme.
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APPENDIX A
PRELIMINARIES ON FISHER INFORMATION AND MMSE

Here is a summary of some basic properties of Fisher
information and MMSE, which will be used extensively in
the proof of extremal inequality (19).

We begin with the definition of conditional Fisher informa-
tion matrix and MMSE matrix.

Definition 2: Let (X, U) be a pair of jointly distributed ran-
dom vectors with differentiable conditional probability density
function:

f(x|u) � f(xi, i ∈ [1 : m]|u). (116)

The vector-valued score function is defined as

∇ log f(x|u)=
[
∂ log f(x|u)

∂x1
, · · · ,

∂ log f(x|u)
∂xm

]T

. (117)

The conditional Fisher information of X respect to U is
given by

J(X |U) = E

[
(∇ log f(x|u)) · (∇ log f(x|u))T

]
. (118)

Definition 3: Let (X, Y, U) be a set of jointly distributed
random vectors. The conditional covariance matrix of X given
(Y, U) is defined as

cov(X |Y, U) = E

[
(X − E[X |Y, U ]) · (X − E[X |Y, U ])T

]
.

(119)

Lemma 3 (Matrix Version of de Bruijn’s Identity): Let
(X, U) be a pair of jointly distributed random vectors, and
N ∼ N(0,Σ) be a Gaussian random vector independent of
(X, U). Then

∇Σh(X + N |U) =
1
2
J(X + N |U). (120)

Lemma 3 is a conditional version of [51, Theorem 1],
which provides a link between differential entropy and Fisher
information.

Lemma 4: Let (X, U) be a pair of jointly distributed ran-
dom vectors, and N ∼ N (0,Σ) be a Gaussian random vector
independent of (X, U). Then

J(X + N |U)+Σ−1 cov(X |X + N, U)Σ−1 =Σ−1. (121)

The complementary identity in Lemma 4 provides a link
between Fisher information and MMSE, and its proof can be
found in [51, Corollary 1].

Lemma 5: Let (X, Y, U) be a set of jointly distributed
random vectors. Assume that X and Y are conditionally
independent given U . Then for any square matrix A and B,

(A + B)J(X + Y |U)(A + B)T

� AJ(X |U)AT + BJ(Y |U)BT . (122)

Proof: From the conditional version of matrix Fisher
information inequality in [42, Appendix II], we have

J(X+Y |U) � KJ(X |U)KT + (I − K)J(Y |U)(I−K)T ,

(123)

for any square matrix K. Setting

K = (A + B)−1A (124)

proves (122).

Lemma 6: Let X be a Gaussian random vector and U be
an arbitrary random vector. Let N1 and N2 be two zero-mean
Gaussian random vectors, independent of (X, U), with covari-
ance matrices Σ1 and Σ2, respectively. If

Σ2 � Σ1 � 0, (125)

then

cov
(
X
∣∣X+N1, U

)−1−Σ−1
1 	cov

(
X
∣∣X+N2, U

)−1−Σ−1
2 .

(126)

Lemma 6 can be proved by combining the Cramér-Rao
inequality and the complementary identity in Lemma 4. See
[39, Lemma 4] for details.

Lemma 7 (Data Processing Inequality for Fisher Informa-
tion): Let (X, U, V ) be a set of jointly distributed random
vectors. Assume that U → V → X form a Markov chain.
Then

J(X |U) � J(X |V ). (127)

Lemma 7 is analogous to [52, Lemma 3], and can be easily
proved using the chain rule of Fisher information matrix [52,
Lemma 1].

Lemma 8 (Data Processing Inequality for MMSE): Let
(X, U, V ) be a set of jointly distributed random vectors.
Assume U → V → X form a Markov chain. Then

cov(X |U) 	 cov(X |V ). (128)

See [53, Proposition 5] for a detailed proof of Lemma 8.

APPENDIX B
DERIVATIVE OF THE BIVARIATE DIFFERENTIAL ENTROPY

h
(
Xi,γ , Y ∗

i,γ |Wj , j ∈ [1 : i]
)

In view of (27) and (30), we have

h
(
Xi,γ , Y ∗

i,γ |Wj , j ∈ [1 : i]
)

(129)

= h
(√

1 − γX +
√

γXG
i ,

√
γYi −

√
1 − γY G

i |
Wj , j ∈ [1 : i]

)
(130)

= h

(
X +

√
γ

1 − γ
XG

i , Yi −
√

1 − γ

γ
Y G

i

∣∣∣Wj , j ∈ [1 : i]
)

+
n

2
log γ +

n

2
log(1 − γ). (131)

Recall from (23) that

Y G
i = XG

i + NG
i . (132)

The covariance matrix of( √
γ/(1 − γ)XG

i

−√(1 − γ)/γY G
i

)
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is given by

Σi,∗ �
(

γ
1−γ Δi −Δi

−Δi
1−γ

γ (Δi + Ki)

)
. (133)

It is easy to verify that

Σ−1
i,∗ =

(
1−γ

γ (Δ−1
i + K−1

i ) K−1
i

K−1
i

γ
1−γ K−1

i

)
(134)

and

∇γΣi,∗ =

(
1

(1−γ)2Δi 0
0 − 1

γ2 (Δi + Ki)

)
. (135)

Combining (134) and (135) gives

tr
{
(∇γΣi,∗)Σ−1

i,∗
}

= 0, (136)

Σ−1
i,∗ (∇γΣi,∗)Σ−1

i,∗ =

(
− 1

γ2 (Δ−1
i + K−1

i ) 0
0 1

(1−γ)2 K−1
i

)
.

(137)

By invoking the chain rule of matrix calculus and Lemma 3
in Appendix A, we have

d

dγ
h
(
Xi,γ , Y ∗

i,γ |Wj , j ∈ [1 : i]
)

=
d

dγ

{
h

(
X +

√
γ

1 − γ
XG

i , Yi −
√

1 − γ

γ
Y G

i

∣∣∣
Wj , j ∈ [1 : i]

)
+

n

2
log γ +

n

2
log(1 − γ)

}
(138)

=
1
2

tr
{

(∇γΣi,∗)J

((√
1

1−γ XT
i,γ

√
1
γ Y ∗

i,γ
T
)T ∣∣∣

Wj , j ∈ [1 : i]
)}

+
n

2

(
1
γ
− 1

1 − γ

)
. (139)

It can be verified

tr
{

(∇γΣi,∗)

J

((√
1

1−γ XT
i,γ

√
1
γ Y ∗

i,γ
T
)T ∣∣∣Wj , j ∈ [1 : i]

)}
= tr

{
(∇γΣi,∗)Σ−1

i,∗ − Σ−1
i,∗ (∇γΣi,∗)Σ−1

i,∗

cov
((

XT Y T
i

)T ∣∣∣X +
√

γ

1 − γ
XG

i ,

Yi −
√

1 − γ

γ
Y G

i , Wj , j ∈ [1 : i]
)}

(140)

= tr
{(− 1

γ2 (Δ−1
i + K−1

i ) 0
0 1

(1−γ)2 K−1
i

)

cov
((

XT Y T
i

)T ∣∣∣X +
√

γ

1 − γ
XG

i ,

Yi −
√

1 − γ

γ
Y G

i , Wj , j ∈ [1 : i]
)}

, (141)

where (140) follows by Lemma 4 in Appendix A, and (141)
is due to (136) and (137). Notice that

cov
((

XT Y T
i

)T ∣∣∣X +
√

γ

1 − γ
XG

i , Yi −
√

1 − γ

γ
Y G

i

)

=

((
K0 K0

K0 K0 + Ki

)−1

+ Σ−1
i,∗

)−1

(142)

=
((

K−1
0 + K−1

i −K−1
i

−K−1
i K−1

i

)

+

(
1−γ

γ (Δ−1
i + K−1

i ) K−1
i

K−1
i

γ
1−γ K−1

i

))−1

(143)

=

((
K−1

0 + 1−γ
γ Δ−1

i + 1
γ K−1

i

)−1

0
0 (1 − γ)Ki

)
.

(144)

Thus, we have the Markov chain

(Wj , j ∈ [1 : i]) → X →(
X +

√
γ

1 − γ
XG

i , Yi −
√

1 − γ

γ
Y G

i

)
→ Yi. (145)

As a consequence,

cov
((

XT Y T
i

)T ∣∣∣Xi,γ , Y ∗
i,γ , Wj , j ∈ [1 : i]

)
=

(
cov

(
X
∣∣∣Xi,γ , Yi,γ , Wj , j ∈ [1 : i]

)
0

0 (1 − γ)Ki

)
.

(146)

By combining (139), (141) and (146), we obtain

d

dγ
h
(
Xi,γ , Y ∗

i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1
2

tr

{(
− 1

γ2 (Δ−1
i + K−1

i ) 0
0 1

(1−γ)2 K−1
i

)
(

cov
(
X
∣∣∣Xi,γ , Y ∗

i,γ , Wj , j ∈ [1 : i]
)

0
0 (1 − γ)Ki

)}

+
n

2

(
1
γ
− 1

1 − γ

)
(147)

= − 1
2γ

tr
{

1
γ

(Δ−1
i + K−1

i )

cov
(
X
∣∣∣Xi,γ , Y ∗

i,γ , Wj , j ∈ [1 : i]
)

− I

}
(148)

= − 1
2γ

tr
{

(Δ−1
i + K−1

i )(
1
γ

cov
(
X
∣∣∣Xi,γ , Y ∗

i,γ , Wj , j ∈ [1 : i]
)

− (Δ−1
i + K−1

i )−1

)}
. (149)

On the other hand, it follows by the theory of linear MMSE
estimation that

√
γXG

i = −
√

γ(1 − γ)
(
Δ−1

i + (1 − γ)K−1
i

)−1
K−1

i(√
γNi −

√
1 − γY G

i

)
+
√

γX̂G
i , (150)

where X̂i,γ is a Gaussian random vector with mean zero and
covariance matrix

(
Δ−1

i + (1 − γ)K−1
i

)−1
, and is indepen-

dent of
√

γNi −√
1 − γY G

i . Thus, we have

Xi,γ =
√

1 − γX +
√

γXG
i (151)
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=
√

1 − γX −
√

γ(1 − γ)
(
Δ−1

i + (1 − γ)K−1
i

)−1

K−1
i

(√
γNi −

√
1 − γY G

i

)
+
√

γX̂G
i (152)

=
√

1 − γ
(
Δ−1

i + (1 − γ)K−1
i

)−1 (
Δ−1

i + K−1
i

)
X +

√
γX̂G

i

−
√

γ(1 − γ)
(
Δ−1

i + (1 − γ)K−1
i

)−1
K−1

i Y ∗
i,γ .

(153)

The complementary Fisher information representation of
cov

(
X
∣∣∣Xi,γ , Y ∗

i,γ , Wj , j ∈ [1 : i]
)

can thereby be expressed
as

cov
(
X
∣∣∣Xi,γ , Y ∗

i,γ , Wj , j ∈ [1 : i]
)

(154)

= cov
(
X
∣∣∣√1−γ

(
Δ−1

i +(1 − γ)K−1
i

)−1 (
Δ−1

i + K−1
i

)
X +

√
γX̂G

i , Y ∗
i,γ , Wj , j ∈ [1 : i]

)
(155)

=
γ

1 − γ

(
Δ−1

i + K−1
i

)−1
(
Δ−1

i +
(
1 − γ

)
K−1

i

−γJ
(
Xi,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)) (
Δ−1

i + K−1
i

)−1
.

(156)

Equivalently, we can write(
Δ−1

i + K−1
i

)( 1
γ

cov
(
X
∣∣∣Xi,γ , Ỹ ∗

i,γ , Wj , j ∈ [1 : L]
)

− (Δ−1
i + K−1

i )−1

)(
Δ−1

i + K−1
i

)
(157)

=
γ

1 − γ
Δ−1

i − γ

1 − γ
J
(
Xi,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
.

(158)

Finally, substituting (158) into (149) gives

d

dγ
h
(
Xi,γ , Y ∗

i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2(1 − γ)
tr
{
(Δ−1

i + K−1
i )−1(

J
(
Xi,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
− Δ−1

i

)}
. (159)

APPENDIX C
DERIVATIVE OF THE BIVARIATE DIFFERENTIAL ENTROPY

h
(
Ỹi+1,γ , Y ∗

i,γ |Wj , j ∈ [1 : i]
)

In view of (29) and (30),

h
(
Ỹi+1,γ , Y ∗

i,γ |Wj , j ∈ [1 : i]
)

(160)

= h
(√

1 − γYi+1 +
√

γỸ G
i+1,

√
γYi −

√
1 − γY G

i

∣∣∣
Wj , j ∈ [1 : i]

)
(161)

= h

(
Yi+1 +

√
γ

1 − γ
Ỹ G

i+1, Yi −
√

1 − γ

γ
Y G

i

∣∣∣
Wj , j ∈ [1 : i]

)
+

n

2
log γ +

n

2
log(1 − γ). (162)

By the definition of Y G
i and Ỹ G

i+1 in (23) and (24) as well
as the construction of

(
NG

i , i ∈ [1 : L]
)
, we can write

Y G
i = Ỹ G

i+1 +
(
NG

i − NG
i+1

)
, (163)

where NG
i −NG

i+1 is a Gaussian random vector with covariance
matrix Ki − Ki+1, and is independent of Ỹ G

i+1. Therefore,
the covariance matrix of( √

γ/(1 − γ)Ỹ G
i+1

−√(1 − γ)/γY G
i

)
is given by

Σ̃i �
(

γ
1−γ (Δi + Ki) − (Δi + Ki)
− (Δi + Ki) 1−γ

γ (Δi + Ki+1)

)
. (164)

It can be verified that

Σ̃
−1

i =

(
1−γ

γ M11 (Ki − Ki+1)
−1

(Ki − Ki+1)
−1 γ

1−γ (Ki−Ki+1)
−1

)
, (165)

where

M11 = (Δi + Ki+1)
−1 + (Ki − Ki+1)

−1
, (166)

and

∇γΣ̃i =

(
1

(1−γ)2 (Δi+Ki+1) 0
0 − 1

γ2 (Δi + Ki)

)
. (167)

Combining (165) and (167) gives

tr
{(

∇γΣ̃i

)
Σ̃

−1

i

}
= 0, (168)

Σ̃
−1

i

(
∇γΣ̃i

)
Σ̃

−1

i =

(
− 1

γ2 M11 0
0 1

(1−γ)2 (Ki−Ki+1)
−1

)
.

(169)

By invoking the chain rule of matrix calculus and Lemma 3
in Appendix A, we have

d

dγ
h
(
Ỹi+1,γ , Y ∗

i,γ |Wj , j ∈ [1 : i]
)

=
d

dγ

{
h

(
Yi+1 +

√
γ

1 − γ
Ỹ G

i+1, Yi −
√

1 − γ

γ
Y G

i

∣∣∣
Wj , j ∈ [1 : i]) +

n

2
log γ +

n

2
log(1 − γ)

}
(170)

=
1
2

tr
{(

∇γΣ̃i

)
J

((√
1

1−γ Ỹ T
i+1,γ

√
1
γ Y ∗

i,γ
T
)T ∣∣∣

Wj , j ∈ [1 : i]
)}

+
n

2

(
1
γ
− 1

1 − γ

)
(171)

It can be verified that

tr
{(

∇γΣ̃i

)
J

((√
1

1−γ Ỹ T
i+1,γ

√
1
γ Y ∗

i,γ
T
)T ∣∣∣Wj , j ∈ [1 : i]

)}
= tr

{(
∇γΣ̃i

)
Σ̃

−1

i − Σ̃
−1

i

(
∇γΣ̃i

)
Σ̃

−1

i

cov
((

Y T
i+1 Y T

i

)T ∣∣∣Yi+1 +
√

γ

1 − γ
Ỹ G

i+1,

Yi −
√

1 − γ

γ
Y G

i , Wj , j ∈ [1 : i]
)}

(172)
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= tr
{(− 1

γ2 M11 0
0 1

(1−γ)2 (Ki − Ki+1)
−1

)

cov
((

Y T
i+1 Y T

i

)T ∣∣∣Yi+1 +
√

γ

1 − γ
Ỹ G

i+1,

Yi −
√

1 − γ

γ
Y G

i , Wj , j ∈ [1 : i]
)}

, (173)

where (172) follows by Lemma 4 in Appendix A, and (173)
is due to (168) and (169). Notice that

cov
((

Y T
i+1 Y T

i

)T ∣∣∣Yi+1+
√

γ

1−γ
Ỹ G

i+1, Yi−
√

1 − γ

γ
Y G

i

)

=

((
K0 + Ki+1 K0 + Ki+1

K0 + Ki+1 K0 + Ki

)−1

+ Σ̃
−1

i

)−1

(174)

=
((

P 11 − (Ki − Ki+1)
−1

− (Ki − Ki+1)
−1 (Ki − Ki+1)

−1

)

+

(
1−γ

γ M 11 (Ki − Ki+1)
−1

(Ki − Ki+1)
−1 γ

1−γ (Ki − Ki+1)
−1

))−1

(175)

=
(

Q−1
11 0
0 (1 − γ) (Ki − Ki+1)

)
, (176)

where

P 11 = (K0 + Ki+1)
−1 + (Ki − Ki+1)

−1
, (177)

Q11 = (K0 + Ki+1)
−1 +

1 − γ

γ
(Δi + Ki+1)

−1

+
1
γ

(Ki − Ki+1)
−1

. (178)

Thus, we have the Markov chain

(Wj , j ∈ [1 : i]) → Yi+1 →(
Yi+1 +

√
γ

1 − γ
Ỹ G

i+1, Yi −
√

1 − γ

γ
Y G

i

)
→ Yi. (179)

As a consequence,

cov
((

Y T
i+1 Y T

i

)T ∣∣∣Ỹi+1,γ , Y ∗
i,γ , Wj , j ∈ [1 : i]

)
=
(

T 11 0
0 (1 − γ)(Ki − Ki+1)

)
, (180)

where

T 11 = cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y ∗
i,γ , Wj , j ∈ [1 : i]

)
. (181)

Combining (171), (173) and (180), we obtain

d

dγ
h
(
Ỹi+1,γ , Y ∗

i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1
2

tr

{(
− 1

γ2 M11 0
0 1

(1−γ)2 (Ki − Ki+1)
−1

)
(

T 11 0
0 (1 − γ)(Ki − Ki+1)

)}

+
n

2

(
1
γ
− 1

1 − γ

)
(182)

= − 1
2γ

tr
{

1
γ

M11T 11 − I

}
. (183)

On the other hand, it follows by the theory of linear MMSE
estimation that
√

γỸ G
i+1 = −

√
γ(1 − γ)

(
(Δi + Ki+1)

−1

+ (1 − γ) (Ki − Ki+1)
−1
)−1

(Ki − Ki+1)
−1(√

γNi −√
γNi+1 −

√
1 − γY G

i

)
+
√

γŶ G
i+1,

(184)

where Ŷ G
i+1 is a Gaussian random vec-

tor with mean zero and covariance matrix(
(Δi + Ki+1)

−1 + (1 − γ) (Ki − Ki+1)
−1
)−1

, and is

independent of
√

γ (Ni − Ni+1)−
√

1 − γY G
i . Thus, we have

Ỹi+1 =
√

1 − γYi+1 +
√

γỸ G
i+1

=
√

1 − γYi+1 −
√

γ(1 − γ)
(
(Δi + Ki+1)

−1

+ (1 − γ) (Ki − Ki+1)
−1
)−1

(Ki − Ki+1)
−1(√

γNi −√
γNi+1 −

√
1 − γY G

i

)
+
√

γŶ G
i+1 (185)

=
√

1 − γ
(
(Δi + Ki+1)

−1 + (1 − γ) (Ki − Ki+1)
−1
)−1

M11Yi+1 +
√

γŶ G
i+1 −

√
γ(1 − γ)

(
(Δi + Ki+1)

−1

+ (1 − γ) (Ki − Ki+1)
−1
)−1

(Ki − Ki+1)
−1

Y ∗
i,γ .

(186)

The complementary Fisher information representation
of cov

(
Yi+1

∣∣∣Ỹi+1,γ , Y ∗
i,γ , Wj , j ∈ [1 : i]

)
can be thereby

expressed as

cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y ∗
i,γ , Wj , j ∈ [1 : i]

)
=

γ

1 − γ
M−1

11

(
(Δi + Ki+1)

−1 + (1 − γ) (Ki − Ki+1)
−1

− γJ
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

))
M−1

11 . (187)

Equivalently, we can write

M11

(
1
γ

cov
(
Yi+1

∣∣∣Ỹi+1,γ , Y ∗
i,γ , Wj , j∈ [1 : i]

)
−M−1

11

)
M 11

=
γ

1 − γ
(Δi + Ki+1)

−1

− γ

1 − γ
J
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
. (188)

Substituting (188) into (183) gives

d

dγ
h
(
Ỹi+1,γ , Y ∗

i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2(1 − γ)
tr
{
M−1

11

(
J
(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
− (Δi + Ki+1)

−1
)}

. (189)

Furthermore, it follows by the Woodbury matrix inversion
lemma that(

(Δi + Ki+1)
−1 + (Ki − Ki+1)

−1
)−1

= Ki+1

(
Ki+1 − Ki+1 (Ki+1 − Ki)

−1
Ki+1 − Ki+1
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+Ki+1 (Δi+Ki+1)
−1

Ki+1

)−1

Ki+1 (190)

= Ki+1

((
K−1

i+1 − K−1
i

)−1−(Δ−1
i + K−1

i+1

)−1
)−1

Ki+1

(191)

= Ki+1

(
Δ−1

i + K−1
i+1

) ((
Δ−1

i + K−1
i

)−1

− (Δ−1
i + K−1

i+1

)−1
) (

Δ−1
i + K−1

i+1

)
Ki+1. (192)

So we can rewrite (189) as

d

dγ
h
(
Ỹi+1,γ , Y ∗

i,γ

∣∣∣Wj , j ∈ [1 : i]
)

=
1

2(1 − γ)
tr
{((

Δ−1
i + K−1

i

)−1 − (Δ−1
i + K−1

i+1

)−1
)

( (
Δ−1

i + K−1
i+1

)
Ki+1J

(
Ỹi+1,γ

∣∣∣Y ∗
i,γ , Wj , j ∈ [1 : i]

)
Ki+1

(
Δ−1

i + K−1
i+1

) − Δ−1
i (Δi + Ki+1)Δ−1

i

)}
.

(193)

APPENDIX D
PROOF OF THEOREM 1 VIA THE DOUBLING TRICK

During the reviewing process, one anonymous reviewer
provided an alternative proof of our main result based on the
doubling/rotation method, which is included here with his/her
kind permission.

A. Definitions

For the sake of simplifying notations, random vector
(X1, X2, . . . , Xi) is written as X[i] in this appendix. Let

s(W[L])

� μ1I(X ; W1|Y1) +
L∑

i=2

μiI(X ; Wi|W[i−1], Yi) (194)

=
L∑

i=1

(
μi(h(Yi|W[i]) − h(X |W[i]))

−μi+1(h(Yi+1|W[i]) − h(X |W[i]))
)

+ μL

(
h(YL|W[L]) − h(X |W[L])

)
. (195)

Introduce random variable Q such that

(Q, W[L]) → X → YL → . . . → Y1 (196)

form a Markov chain. Similarly to (194), let

s(W[L]|Q) �μ1I(X ; W1|Y1, Q)

+
L∑

i=2

μiI(X ; Wi|W[i−1], Yi, Q). (197)

We further define the lower convex envelop of s(W[L]) as

S(W[L]) � inf
p(q|x,w[L])

s(W[L]|Q). (198)

We also define

S(W[L]|Q) �
∑

q

p(q)S(W[L]|Q = q) (199)

for Q (over a finite alphabet) and its natural extension for an
arbitrary Q.

Remark 5: Since S(W[L]) is convex in p(w[L]|x), we have

S(W[L]|Q) ≥ S(W[L]) (200)

by Jensen’s inequality.
The rate-distortion problem of Theorem 1 can be reformu-

lated as finding the optimal random vectors W[L] for

V ∗(D[L]) � inf
p(w[L]|x)

S(W[L]) (201)

= inf
p(q,w[L]|x)

s(W[L]|Q), (202)

where p(w[L]|x) satisfies cov(X |Yi, W[i]) � Di for any i ∈
[1 : L].

Lemma 9: There exists a pair of random variables
(W∗,[L], Q∗) with cov(X |Yi, W∗,[i]) � Di, i ∈ [1, L], such
that

V ∗(D[L]) = s(W∗,[L]|Q∗) (203)

Proof: We can assume that the conditional law of
(X, Y[L]) has zero mean for every Q∗. Because the centering
condition on each Q∗ = q∗ does not change the mutual
information terms and hence S(W∗,[L]|Q∗) remains the same.
The existence of a minimizer and the cardinality bound on Q∗
follow by the argument in [38, Appendix II.A].

B. The Doubling Trick

Let

(Wa,[L], Wb,[L], Xa, Xb, Ya,[L], Yb,[L]) ∼
p(wa,[L], xa, ya,[L]) × p(wb,[L], xb, yb,[L]) (204)

be two i.i.d copies of (W[L], X, Y[L]) with

(Wa,[L]) → Xa → Ya,L → Ya,L−1 . . . → Ya,1, (205)

(Wb,[L]) → Xb → Yb,L → Yb,L−1 . . . → Yb,1. (206)

The above Markov chains still hold when conditioned on
(Qa, Qb) and

(Qa, Wa,[L]) → Xa → Ya,L → Ya,L−1 . . . → Ya,1, (207)

(Qb, Wb,[L]) → Xb → Yb,L → Yb,L−1 . . . → Yb,1 (208)

are also satisfied.
Given

(Xa, Xb) ∼ p(xa) × p(xb),

we define s(Wa,[L], Wb,[L]), in a similar fashion as above,

s(Wa,[L], Wb,[L])

�
L∑

i=1

(
μi(h(Ya,i, Yb,i|Wa,[i], Wb,[i])

− h(Xa, Xb|Wa,[i], Wb,[i]))

− μi+1(h(Ya,i+1, Yb,i+1|Wa,[i], Wb,[i])

−h(Xa, Xb|Wa,[i], Wb,[i]))
)
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+ μL

(
h(Ya,L, Yb,L|Wa,[L], Wb,[L])

−h(Xa, Xb|Wa,[L], Wb,[L])
)
. (209)

We also define the quantities s(Wa,[L], Wb,[L]|Qa, Qb),
S(Wa,[L], Wb,[L]), s(Wa,[L], Wb,[L]|Qa, Qb) similarly. The
proof of the following lemma can be found in Appendix D-C.

Lemma 10: The following inequality holds for
(Xa, Xb, Ya,[L], Yb,[L]) ∼ p(xa, ya,[L]) × p(xb, yb,[L]):

S(Wa,[L], Wb,[L]) ≥ S(Wa,[L]) + S(Wb,[L]). (210)

Furthermore, if a particular tuple (W∗,[L], Q∗) satisfies

s(Wa,∗,[L], Wb,∗,[L]|Qa,∗, Qb,∗)
= S(Wa,∗,[L], Wb,∗,[L]) (211)

= S(Wa,∗,[L]) + S(Wb,∗,[L]), (212)

the following facts must be true,

1)

I(Xa,∗; Xb,∗|Ya,∗,i, Yb,∗,i, Wa,∗,[i], Wb,∗,[i],

Qa,∗, Qb,∗) = 0, i ∈ [1 : L]; (213)

2)

S(Wa,∗,[L])
= s(Wa,[L]|Yb,[L], Wb,[L], Qa,∗, Qb,∗) (214)

= s(Wb,[L]|Ya,[L], Wa,[L], Qa,∗, Qb,∗), (215)

where

s(Wa,[L]|Yb,[L], Wb,[L])

�
L−1∑
i=1

(
μi(h(Ya,i|Wa,[i], Yb,i, Wb,[i])

− h(Xa|Wa,[i]), Yb,i, Wb,[i])
− μi+1(h(Ya,i+1|Wa,[i], Yb,i, Wb,[i])

− h(Xa|Wa,[i]|, Yb,i, Wb,[i]))
)

+ μL(h(Ya,L|Wa,[L], Yb,L, Wb,[L]))
− h(Xa|Wa,[L], Yb,L, Wb,[L])). (216)

s(Wb,[L]|Ya,[L], Wa,[L]), s(Wa,[L]|Yb,[L], Wb,[L], Qa,∗, Qb,∗)
and s(Wb,[L]|Ya,[L], Wa,[L], Qa,∗, Qb,∗) are defined similarly.

For simplifying notations, we denote

Z+ =
1√
2
(Za + Zb), Z− =

1√
2
(Za − Zb), (217)

where (Za, Zb) are two i.i.d copies of random variable Z . In a
similar manner, we define s(W+,[L]) as

s(W+,[L]) �μ1I(X+; W+,1|Y+,1)

+
L∑

i=2

μiI(X+,1; W+,i|W+,[i−1], Y+,i). (218)

Furthermore, s(W−,[L]), s(W+,[L], W−,[L]), S(W+,[L]),
S(W−,[L]) and S(W+,[L], W−,[L]) can be defined similarly.

The proof of the following lemma can be found in
Appendix D-D.

Lemma 11: For (W∗,[L], Q∗) ∼ p∗(w[L], q) that attains
V ∗(D[L]) and (Wa,[L], Wb,[L], Qa, Qb) ∼ p∗(wa,[L], qa) ×
p∗(wb,[L], qb), the following holds:

1)

I(X+; X−|Y+,i, Y−,i, W+,[i], W−,[i], Qa, Qb) = 0,

i ∈ [1 : L]; (219)

2)

V ∗(D[L]) = S(W+,[L]|Y−,[L]) = S(W−,[L]|Y+,[L]),
(220)

where

s(W+,[L]|Y−,[L])

�
L−1∑
i=1

(
μi(h(Y+,i|W+,[i], Y−,i) − h(X+|W+,[i]), Y−,i)

− μi+1(h(Y+,i+1|W+,[i], Y−,i) − h(X+|W+,[i]|, Y−,i))
)

+ μL(h(Y+,L|W+,[L], Y−,L)) − h(X+|W+,[L], Y−,L)),
(221)

and s(W−,[L]|Y+,[L]) is defined similarly.
Now we are in a position to establish the following result,

which will complete the proof of Gaussian optimality in
Theorem 1.

Theorem 4: There exist legitimate auxiliary random objects
W∗,[L] jointly Gaussian with (X, Y[L]) such that

V ∗(D[L]) = s(W∗,[L]). (222)

Proof: The optimal value V∗ defined in (201) can be
achieved by a suitable (W∗,[L], Q∗) ∼ p∗(w, q) according
to Lemma 9. For any pair (Xa, Xb, Ya,[L], Yb,[L]) ∼
p(xa, ya,[L]) × p(xb, yb,[L]) satisfying conditions in
Lemma 10, (Xa, Ya,[L]) and (Xb, Yb,[L]) are conditionally
independent zero mean random variables given
(W∗,a,[L], W∗,b,[L], Q∗,a, Q∗,b). So by Lemma 11, conditioned
on (Wa,[L], Wb,[L], Qa, Qb) the following Markov chains
hold:

X+ → (Y+,j , Y−,j) → X−. (223)

Since

Y+,j → (X+, Y−,j) → X−, Y−,j → (X−, Y+,j) → X+,

(224)

it follows by double Markovity that

(X+, Y+,j) → Y−,j → X−, (X−, Y−,j) → Y+,j → X+.

(225)

Next, invoking double Markovity (conditioned on
(Wa,[L], Wb,[L], Qa, Qb) with

Y+,j → X+ → X−, Y−,j → X− → X+, (226)

we can deduce that X+ and X− are independent condi-
tioned on (Wa,[L], Wb,[L], Qa, Qb). According to the property
of Gaussian random variables in [38, Theorem 3] and the
proof method in [38, Appendix I-A], we can conclude that
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(X |W[L], Q) has a Gaussian distribution. Since Q is arbitrary
and the covariance matrix of (X |W[L], Q) is the same for dif-
ferent Q, it follows that (X |W[L]) is Gaussian, which further
implies that W[L] can be assumed to be jointly Gaussian with
X . This completes the proof.

C. Proof of Lemma 10

For any auxiliary random variables Q satisfying (196), (205)
and (206), (Qa, Qb) is denoted as Q for simplicity. We can
expand S(Wa,[L], Wb,[L]) as

S(Wa,[L], Wb,[L]) = s(Wa,[L], Wb,[L]|Q) (227)

=
L−1∑
i=1

(
(μi(h(Ya,i, Yb,i|Wa,[i], Wb,[i], Q)

− h(Xa, Xb|Wa,[i], Wb,[i], Q)) (228)

− μi+1(h(Ya,i+1, Yb,i+1|Wa,[i], Wb,[i], Q)

− h(Xa, Xb|Wa,[i], Wb,[i], Q))
)

(229)

+ μL(h(Ya,L, h(Yb,L|Wa,[L], Wb,[L], Q)
− h(Xa, Xb|Wa,[L], Wb,[L], Q)). (230)

First consider the terms in (228):

h(Ya,i, Yb,i|Wa,[i], Wb,[i], Q) − h(Xa, Xb|Wa,[i], Wb,[i], Q)
= h(Ya,i|Yb,i, Wa,[i], Wb,[i], Q)

+ h(Yb,i|Ya,i, Wa,[i], Wb,[i], Q)
+ I(Ya,i; Yb,i|Wa,[i], Wb,[i], Q)
− h(Xa|Wa,[i], Wb,[i], Q) − h(Xb|Wa,[i], Wb,[i], Q)
+ I(Xa,i; Xb,i|Wa,[i], Wb,[i], Q) (231)

= h(Ya,i|Yb,i, Wa,[i], Wb,[i], Q)
+ h(Yb,i|Ya,i, Wa,[i], Wb,[i], Q)
− h(Xa,i|Yb,i, Wa,[i], Wb,[i], Q)
− h(Xb|Ya,i, Wa,[i], Wb,[i], Q)
+ I(Xa; Xb|Wa,[i], Wb,[i], Q)
+ I(Ya,i; Yb,i|Wa,[i], Wb,[i], Q)
− I(Xa; Yb,i|Wa,[i], Wb,[i], Q)
− I(Xb; Ya,i|Wa,[i], Wb,[i], Q) (232)

= h(Ya,i|Yb,i, Wa,[i], Wb,[i], Q)
+ h(Yb,i|Ya,i, Wa,[i], Wb,[i], Q)
− h(Xa|Yb,i, Wa,[i], Wb,[i], Q)
− h(Xb|Ya,i, Wa,[i], Wb,[i], Q)
+ I(Xa; Xb|Ya,i; Yb,i, Wa,[i], Wb,[i], Q)
+ I(Ya,i; Yb,i|Xb, Wa,[i], Wb,[i], Q)
− I(Xa; Yb,i|Xb, Wa,[i], Wb,[i], Q)
− I(Ya,i; Xb|Yb,i, Xa, Wa,[i], Wb,[i], Q). (233)

In view of (205), (206) and the definition of Xa,
Xb, the following Markov chains hold (conditioned on
(Wa,[i], Wb,[i], Qa, Qb)):

Yb,i → Xb → (Xa, Ya,i), Ya,i → Xa → (Xb, Yb,i). (234)

Therefore, we have

I(Ya,i; Yb,i|Xb, Wa,[i], Wb,[i], Q)
= I(Xa; Yb,i|Xb, Wa,[i], Wb,[i], Q) (235)

= I(Ya,i; Xb|Yb,i, Xa, Wa,[i], Wb,[i], Q) (236)

= 0, (237)

which yields

h(Ya,i, Yb,i|Wa,[i], Wb,[i], Q) − h(Xa, Xb|Wa,[i], Wb,[i], Q)
= h(Ya,i|Yb,i, Wa,[i], Wb,[i], Q)

+ h(Yb,i|Ya,i, Wa,[i], Wb,[i], Q)
− h(Xa|Yb,i, Wa,[i], Wb,[i], Q)
− h(Xb|Ya,i, Wa,[i], Wb,[i], Q)
+ I(Xa; Xb|Ya,i; Yb,i, Wa,[i], Wb,[i], Q). (238)

Similarly, the terms in (229) can be simplified
using the following Markov chains (conditioned on
(Wa,[i], Wb,[i], Qa, Qb)):

Yb,i → Yb,i+1 → Xb → (Xa, Ya,i, Ya,i+1), (239)

Ya,i → Ya,i+1 → Xa → (Xb, Yb,i, Yb,i+1). (240)

Specifically, we have

h(Ya,i+1,Yb,i+1|Wa,[i], Wb,[i],Q)−h(Xa, Xb|Wa,[i], Wb,[i],Q)
= h(Ya,i+1|Wa,[i], Wb,[i], Q)

+ h(Yb,i+1|Wa,[i], Wb,[i], Q)
− h(Xa|Wa,[i], Wb,[i], Q) − h(Xb|Wa,[i], Wb,[i], Q)
+ I(Xa; Xb|Wa,[i], Wb,[i], Q)
− I(Ya,i+1; Yb,i+1|Wa,[i], Wb,[i], Q)

= h(Ya,i+1|Yb,i, Wa,[i], Wb,[i], Q)
+ h(Yb,i+1|Ya,i, Wa,[i], Wb,[i], Q)
− h(Xa|Yb,i, Wa,[i], Wb,[i], Q)
− h(Xb|Ya,i, Wa,[i], Wb,[i], Q)
+ I(Xa; Xb|Ya,i, Yb,i, Wa,[i], Wb,[i], Q)
− I(Ya,i+1; Yb,i+1|Ya,i, Yb,i, Wa,[i], Wb,[i], Q). (241)

For the terms in (230), it can be shown using the same
method that

h(Ya,L, Yb,L|Wa,[L], Wb,[L], Q)−h(Xa, Xb|Wa,[L], Wb,[L], Q)
= h(Ya,L|Wa,[L], Wb,[L], Q) + h(Yb,L|Wa,[L], Wb,[L], Q)
− h(Xa|Wa,[L], Wb,[L], Q) − h(Xb|Wa,[L], Wb,[L], Q)
+ I(Xa; Xb|Ya,L; Yb,L, Wa,[L], Wb,[L], Q). (242)

Combining (238), (241), and (242) gives

S(Wa,[L], Wb,[L])

=
L−1∑
i=1

(
μi(h(Ya,i|Yb,i, Wa,[i], Wb,[i], Q)

+ h(Yb,i|Ya,i, Wa,[i], Wb,[i], Q)
− h(Xa|Yb,i, Wa,[i], Wb,[i], Q)
− h(Xb|Ya,i, Wa,[i], Wb,[i], Q))

− μi+1(h(Ya,i+1|Yb,i, Wa,[i], Wb,[i], Q)

Authorized licensed use limited to: McMaster University. Downloaded on September 27,2023 at 20:57:30 UTC from IEEE Xplore.  Restrictions apply. 



6980 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

+ h(Yb,i+1|Ya,i, Wa,[i], Wb,[i], Q)
− h(Xa|Yb,i, Wa,[i], Wb,[i], Q)

− h(Xb|Ya,i, Wa,[i], Wb,[i], Q))
)

+ μL(h(Ya,L|Yb,L, Wa,[L], Wb,[L], Q)
+ h(Yb,L|Ya,L, Wa,[L], Wb,[L], Q)
− h(Xa|Yb,L, Wa,[L], Wb,[L], Q)
− h(Xb|Ya,L, Wa,[L], Wb,[L], Q))

+
L−1∑
i=1

(
μiI(Xa; Xb|Ya,i; Yb,i, Wa,[i], Wb,[i], Q)

− μi+1(I(Xa; Xb|Ya,i, Yb,i, Wa,[i], Wb,[i], Q)

− I(Ya,i+1; Yb,i+1|Ya,i, Yb,i, Wa,[i], Wb,[i], Q))
)

+ μLI(Xa; Xb|Ya,L; Yb,L, Wa,[L], Wb,[L], Q) (243)

= s(Wa,[L]|Yb,[L], Wb,[L], Q)
+ s(Wb,[L]|Ya,[L], Wa,[L], Q)

+
L−1∑
i=1

(
(μi − μi+1)I(Xa; Xb|Ya,i, Yb,i, Wa,[i], Wb,[i], Q)

μi+1I(Ya,i+1; Yb,i+1|Ya,i, Yb,i, Wa,[i], Wb,[i], Q)
)

+ μLI(Xa; Xb|Ya,L; Yb,L, Wa,[L], Wb,[L], Q) (244)
(a)

≥ s(Wa,[L]|Yb,[L], Wb,[L], Q) + s(Wb,[L]|Ya,[L], Wa,[L], Q)
(245)

(b)

≥ S(Wa,[L]) + S(Wb,[L]), (246)

where (a) follows from μi ≥ μi+1 and the nonnegativity of
mutual information while (b) is due to the fact that S(W[L])
is the lower convex envelope of s(W[L]) (see (198)).

D. Proof of Lemma 11

In view of the definition of V ∗(D[L]) and the assumption
that (W∗,[L], Q∗) ∼ p∗(w[L], q) attains V ∗(D[L]), we have

2V ∗(D[L])
(a)
= s(Wa,[L]|Qa) + s(Wb,[L]|Qb) (247)
(b)
= s(Wa,[L], Wb,[L]|Qa, Qb) (248)
(c)
= s(W+,[L], W−,[L]|Qa, Qb) (249)
(d)

≥ S(W+,[L], W−,[L]) (250)
(e)

≥ S(W+,[L]|Y−,[L]) + S(W−,[L]|Y+,[L]) (251)
(f)

≥ S(W+,[L]) + S(W−,[L]) (252)
(g)

≥ V ∗(D[L]) + V ∗(D[L]) = 2V ∗(D[L]). (253)

The justification for each step is given below:
(a) holds because p∗(w[L], q) achieves V ∗(D[L]).
(b) holds because of the independence of

(Xa, Ya,[L], Wa,[L], Qa) and (Xb, Yb,[L], Wb,[L], Qb).
(c) holds since differential entropy is invariant under unitary

transformation.

(d) follows from the definition of S(W[L]) in (198).
(e) is a consequence of Lemma 10 and the fact that mutual

information is preserved under bijective transformation.
It is noticed that

S(W+,[L], W−,[L])

≥
L−1∑
i=1

(
μi(h(Y+,i|Y−,i, Wa,[i], Wb,[i], Q)

+ h(Y−,i|Y+,i, Wa,[i], Wb,[i], Q)
− h(X+|Y−,i, Wa,[i], Wb,[i], Q)
− h(X−|Y+,i, Wa,[i], Wb,[i], Q))

− μi+1(h(Y+,i+1|Y−,i, Wa,[i], Wb,[i], Q)
+ h(Y−,i+1|Y+,i, Wa,[i], Wb,[i], Q)
− h(X+|Y−,i, Wa,[i], Wb,[i], Q)

− h(X−|Y+,i, Wa,[i], Wb,[i], Q))
)

+ μL(h(Y+,L|Y−,L, Wa,[L], Wb,[L], Q)
+ h(Y−,L|Y+,L, Wa,[L], Wb,[L], Q)
− h(X+|Y−,L, Wa,[L], Wb,[L], Q)
− h(X−|Y+,L, Wa,[L], Wb,[L], Q))

= s(W+,[L]|Y−,L, W−,[L], Q)
+ s(W−,[L]|Y+,L, W+,[L], Q)

≥ S(W+,[L]) + S(W−,[L]). (254)

Defining

W̃+
i = (Y−,i, Wa,[i], Wb,[i], Q) i ∈ [1 : L], (255)

W̃−
i = (Y+,i, Wa,[i], Wb,[i], Q) i ∈ [1 : L], (256)

we can observe that

cov(X+|Y+,i, W̃
+
i )

= cov(X+|Y+,i, Y−,i, Wa,[i], Wb,[i], Q) (257)

� Di, i ∈ [1 : L], (258)

cov(X−|Y−,i, W̃
−
i )

= cov(X−|Y−,i, Y+,i, Wa,[i], Wb,[i], Q) (259)

� Di, i ∈ [1 : L]. (260)

(f) follows from Remark 5.
(g) follows form the definition of V ∗(D[L]) in (201).

Since the extremes match, all inequalities should be equalities.
Therefore, the conditions in Lemma 11 must be satisfied.
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