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Abstract—Video frame interpolation aims at synthesizing
intermediate frames from nearby source frames while maintaining
spatial and temporal consistencies. The existing deep-learning-
based video frame interpolation methods can be roughly divided
into two categories: flow-based methods and kernel-based methods.
The performance of flow-based methods is often jeopardized
by the inaccuracy of flow map estimation due to oversimplified
motion models, while that of kernel-based methods tends to
be constrained by the rigidity of kernel shape. To address
these performance-limiting issues, a novel mechanism named
generalized deformable convolution is proposed, which can
effectively learn motion information in a data-driven manner
and freely select sampling points in space-time. We further
develop a new video frame interpolation method based on this
mechanism. Our extensive experiments demonstrate that the
new method performs favorably against the state-of-the-art,
especially when dealing with complex motions. Code is available
at https://github.com/zhshi0816/GDConvNet.

Index Terms—Generalized deformable convolution, video frame
interpolation.

I. INTRODUCTION

IN RECENT years, owing to the hardware development
and the availability of large-scale datasets, deep learning

has achieved promising results in many computer vision and
multimedia tasks [1] including, among others, super-resolution
[2]–[4], optical flow estimation [5], [6], image dehazing [7],
[8], action recognition [9], and video frame interpolation (VFI)
[10]–[13]. VFI is a classic problem in the multimedia area
and has received significant attention with the rapid growth of
streaming videos. It aims at synthesizing intermediate frames
from nearby sources while maintaining spatial and temporal
consistencies. VFI has two main use cases; one is to perform
error concealment at the decoder side [10], [11], and the other
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one is to increase the frame rate of a given video for better vi-
sual performance [12], [13]. In general, VFI methods can be
roughly divided into two categories: flow-based methods and
kernel-based methods.

Flow-based methods generate the value of each pixel in the
target intermediate frame by finding an associated optical flow.
Accurate estimation of the flow map is essential for producing
desirable VFI results. However, in some cases with complex
motions, it is hard to obtain an accurate flow map regardless
whether traditional methods [14]–[16] or deep-learning-based
methods [6], [17]–[19] are employed. Flow-based methods [1],
[11], [20]–[22] typically adopt a linear model with the over-
simplified assumption of uniform motion between neighboring
frames. Recently, a more sophisticated approach was proposed
in [23] for estimating motion trajectories, where the naive lin-
ear model is replaced by a more accurate quadratic model that
can take advantage of latent motion information by simulta-
neously exploiting four consecutive frames. Nevertheless, it is
conceivable that the complexities and irregularities of real-world
motions cannot be completely captured by a simple mathemati-
cal model. Moreover, the pixel-level displacement performed in
flow-based methods is inherently inadequate for handling dif-
fusion and dispersion effects, especially when such effects are
not negligible over the time interval between two consecutive
frames.

Kernel-based methods directly generate the target intermedi-
ate frame by applying spatially-adaptive convolution kernels to
the given frames. They circumvent the need for flow map esti-
mation and consequently are not susceptible to the associated
issues. On the other hand, the rigidity of the kernel shape [24],
[25] severely limits the types of motions that such methods can
handle. Indeed, one may need to choose a very large kernel size
to ensure enough coverage, which is highly inefficient. As a
partial remedy, reference [21] proposes adaptive deployment of
convolution kernels guided by flow maps, but nevertheless, the
receptive field is still constrained by the predetermined kernel
shape. More recently, reference [12] introduces a new approach
known as AdaCoF, which utilizes spatially-adaptive deformable
convolution (DConv) to select suitable sampling points needed
for synthesizing each target pixel. Although this approach elim-
inates the constraint on the kernel shape in the spatial domain, it
does not fully exploit the degrees of freedom available in whole
space-time.

In summary, flow-based methods and kernel-based methods
have their respective limitations. For flow-based methods, even
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Fig. 1. Illustration of (a) conventional convolution with 3× 3× 4 = 36 sam-
pling points, (b) GDConv with the same number of sampling points, and
(c) visualization of interpolating one frame with GDConv.

with the aid of sophisticated mathematical models, flow map
estimation is still a challenging task due to the intricacies of
inter-frame motion trajectories. For kernel-based methods, the
predetermined kernel shape lacks the flexibility to cope with a
great variety of motions in terms of range and pattern. While
recent innovations have alleviated the rigidity issue to a certain
extent, much remains to be done.

The main contribution of this paper is a new approach to
VFI that overcomes the hurdles of the aforementioned methods
and retains their desirable properties. The key mechanism un-
derlying the proposed approach is generalized deformable con-
volution (GDConv). An illustration of the difference between
conventional convolution and our GDConv in terms of the free-
dom to select sampling points can be found in Fig. 1(a) and (b).
Fig. 1(c) provides a rough idea of how GDConv can be leveraged
for VFI: each pixel (e.g., the blue one) in the target intermediate
frame is synthesized based on the corresponding sampling points
(the red ones). It is worth noting that as the sampling points are al-
lowed to move freely in the continuous space-time, the receptive
field of GDConv is basically unconstrained, making it possible
to handle all kinds of motions (say, large motions). Moreover,
GDConv does not directly adopt a predetermined mathematical
model (e.g., linear or quadratic model) for motion estimation.
Instead, it is trained to learn real-world motion trajectories and
patterns via a data-driven approach. In our design, GDConv is
encapsulated in a generalized deformable convolution module
(GDCM). We integrate two GDCMs with several other mod-
ules, including the source extraction module (SEM), the con-
text extraction module (CEM) and the post-processing module
(PM), to form a generalized deformable convolution network

Fig. 2. Illustration of (a) conventional convolution, (b) AdaCoF, (c) basic GD-
Conv, (d) advanced GDConv with T = 1. Here target pixels, sampling points,
support points, and neighboring grid points are denoted by yellow, red, green,
and blue dots, respectively. For AdaCoF, the value of each sampling point is
specified via bilinear interpolation of its four neighboring grid points. For basic
GDConv, the value of each sampling point is determined by its two support
points via linear interpolation, or equivalently, by its eight associated grid points
via trilinear interpolation. Advanced GDConv further removes the constraint that
the support points need to be spatially aligned with the corresponding sampling
point and allows more general numerical interpolation methods.

(GDConvNet) for VFI. Our extensive experimental results
demonstrate that owing to the effective design, the proposed GD-
ConvNet performs favorably against the current state-of-the-art.

II. GENERALIZED DEFORMABLE CONVOLUTION NETWORK

The overall architecture of GDConvNet is shown in Fig. 3.
Given a video clip that consists of T + 1 source frames1

I0, I1, . . . , IT , the task of GDConvNet is to synthesize an in-
termediate frame It, t ∈ [0, T ]. To this end, it first generates
source features through SEM and extracts context maps C0, C1,
. . ., CT through CEM from I0, I1, . . ., IT . The input frames
and context maps are then warped by two separate GDCMs ac-
cording to the same source features. Finally, the warped frame
I ′t and the warped context map C ′t are fed into the PM to pro-
duce the VFI result Ît, which is an approximation2 of It. The
proposed network accomplishes the VFI task by employing a
novel GDConv mechanism. Now we proceed to give a detailed

1For notional simplicity, we assume that the source frames are equally spaced
in time. However, the proposed framework can in fact handle the unequal spacing
case as well.

2The accuracy of this approximation can be evaluated by using objective
image quality metrics (to be detailed later) or subjective criteria.
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Fig. 3. Illustration of the architecture of GDConvNet with T = 3. Here I0, . . . , I3 are input frames and C0, . . . , C3 are their respective context maps;�xi
n and

�yin are spatial offsets (horizontal and vertical) for support point;�xn,�yn and�zn are spatial offsets and temporal parameters for sampling points;�mn is
the modulation terms; I ′t is a tentative prediction of the target frame It while C ′t denotes the predicted context map of It; Ît is the final output.

description of each module in Fig. 3, with a special emphasis on
the GDCM where the GDConv mechanism is realized.

A. Generalized Deformable Convolution Module

The input to the GDCM consists of the T + 1 source frames
I0, I1, · · · , IT (or the context maps C0, C1, · · · , CT ) and the
source features. As shown in Fig. 3, three different kinds of
feature maps, which represent three different types of adaptive
parameters, are generated through three different convolution
layers, respectively. They are then fed to GDConv along with
the source frames I0, I1, · · · , IT (or the context maps C0, C1,
· · · , CT ) to synthesize I ′t (or C ′t). Since the two GDCMs are
almost identical, here we only describe the upper one in detail.
Moreover, as the operations on the three color channels are the
same, we simply regard Ii as a single-channel image. For ease of
exposition, we first give a brief review of VFI techniques based
on conventional convolution [24] and AdaCoF [12], and then
outline the improvements offered by the proposed GDConv.

Conventional convolution is employed in [24] for VFI. This
can be formulated as:

I ′t(x, y) =
T∑

i=0

M∑

m=1

W i
m(x, y) · Ii(x+ xm, y + ym), (1)

where W i
m(x, y) is a spatially-adaptive convolution weight,

and {(xm, ym)}Nm=1 is a collection of pre-defined convolu-
tion sampling offsets. Fig. 2(a) provides an illustration for
the special case with T = 1, M = 9 and {(xm, ym)}Mm=1 =
{(−1,−1), (−1, 0), . . . , (1, 1)}. Ideally, the object (pixel)
movement should be confined within the coverage of the con-
volution kernel. As such, in the presence of large motions, this
approach is memory-inefficient due to the need for a large num-
ber of sampling points to ensure sufficient coverage.

The inefficiency of conventional convolution is largely a con-
sequence of the pre-defined kernel shape (typically, a rect-
angular grid). AdaCoF [12] addresses this issue by adopting
spatially-adaptive deformable convolution, resulting in the fol-
lowing formulation:

I ′t(x, y) =
T∑

i=0

M∑

m=1

W i
m(x, y) · Ii(x+�αi

m, y +�βi
m), (2)

where {(�αi
m,�βi

m)}Mm=1 is a collection of adaptive sampling
offsets. In the case where �αi

m and �βi
m are not integers,

Ii(x+�αi
m, y +�βi

m) is specified through bilinear interpola-
tion. As a result of the introduction of adaptive sampling offsets,
the kernel shape becomes adjustable, as shown in Fig. 2(b). For
this reason, AdaCoF is able to cope with large motions using a
relatively small number of sampling points. On the other hand,
AdaCoF only exploits the degrees of freedom in the spatial do-
main. As a result, the sampling points are evenly split among
the input frames. However, this is clearly suboptimal since the
frames that are closer to the target intermediate frame in the
temporal domain are more relevant and consequently should be
allocated with more sampling points.

We shall develop a mechanism that enables flexible allocation
of the sampling points across the input frames. In fact, we go
one step further by allowing the sampling points to be freely
distributed in whole space-time. The key idea is to associate each
sampling point with an adaptive temporal parameter zn ∈ [0, T ],
leading to the following formulation:

I ′t(x, y) =
N∑

n=1

Wn(x, y) · I(x+�xn, y +�yn, zn). (3)

Here, I is a function (defined on a 3D space) obtained via
a judicious extension of I0, I1, · · · , IT to be detailed below
(see Fig. 4 for an illustration of the special case in which
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Fig. 4. Construction of function I for the special case T = 3 with a sampling
point (x+�xn, y +�yn, zn), its associated support points (x+�xi

n, y +
�yin, i), i ∈ {0, 1, 2, 3}, and their neighboring grid points highlighted in red,
green, and blue, respectively.

T = 3). Note that zn is allowed to be any real number in
[0, T ] to facilitate end-to-end training. If zn is an integer,
we set I(x+�xn, y +�yn, zn) = Izn(x+�xn, y +�yn).
(Following [12], [26], [27], in the case where �xn and �yn
are not integers, Izn(x+�xn, y +�yn) is specified via bilin-
ear interpolation of four neighboring grid points.) It can be seen
that (3) reduces to (2) when N = (T + 1)M and each value in
{0, 1, . . . , T} is taken by the same number of zn. Now it re-
mains to deal with non-integer valued zn, which occurs when
the associated sampling point is not exactly located on an input
frame. One simple solution is to set I(x+�xn, y +�yn, zn)
as (�zn� − zn) · (I(x+�xn, y +�yn, �zn�) + (zn − �zn�) ·
I(x+�xn, y +�yn, �zn�). (See Fig. 2(c) for an illustra-
tion of the special case in which T = 1.) More generally,
we attach a set of support points (x+�xi

n, y +�yin, i), i ∈
{0, 1, . . . , T}, to each sampling point (x+�xn, y +�yn, zn),
and use their values I(x+�xi

n, y +�yin, i) (denoted as sin for
short), i ∈ {0, 1, . . . , T}, and their relative positions, to specify
I(x+�xn, y +�yn, zn) (denoted as sn for short) via a nu-
merical interpolation function G:

sn = G(�xn,�yn, zn, {sin,�xi
n,�yin}Ti=0). (4)

Illustrations of special cases withT = 1 andT = 3 can be found
in Fig. 2(d) and Fig. 4, respectively. Note that each support point
has its own adaptive spatial offset (�xi

n,�yin), which is not
necessarily the same as (�xn,�yn). Moreover, there is con-
siderable freedom in the choice of G as long as the differentia-
bility condition needed for end-to-end training is satisfied. We
will discuss several candidate numerical interpolation methods
in Section IV-C. Finally, inspired by modulated deformable con-
volution [27], we rewrite (3) in the following equivalent form:

I ′t(x, y) =
N∑

n=1

Wn · I(x+�xn, y +�yn, zn) · �mn(x, y),

(5)
where�mn(x, y) ∈ [0, 1] is an adaptive modulation term.

As illustrated in Fig. 3, three types of feature maps are gener-
ated in GDCM via three different convolution layers. The first
2(T + 1)N feature maps represent the spatial offsets (horizon-
tal and vertical) for the support points (i.e.,�xi

n,�yin), and the
next 3N feature maps represent the spatial offsets and temporal
parameters for the sampling points (i.e.,�xn,�yn, zn), and the

Fig. 5. Illustration of the architecture of SEM.

lastN feature maps represent the modulation terms (i.e.,�mn).
We set the initial values of the adaptive parameters�xn,�yn,
zn,�mn,�xi

n and�yin as 0, 0, 0, 1, 0, and 0, respectively.

B. Other Modules

Now we proceed to give a brief description of the remaining
modules in the proposed GDConvNet.

Source Extraction Module: As shown in Fig. 5, we adopt
the FPN backbone [28] to generate hierarchical features. In the
bottom-up pathway, there are three levels (each consisting of two
residual blocks and one convolution layer) and the associated
feature maps (which are of different scales) are denoted as S1,
S2, andS3. The inputP3 to the top level of the top-down pathway
is generated from S3 through a pyramid pooling module [29].
P3 is then upsampled and merged with S2 via element-wise
addition to generate P2, which is further upsampled and merged
with S1 to generate P1. Finally, P2 and P3 are upsampled and
concatenated with P1 to form the output.

Context Extraction Module: It is demonstrated in [30] that
context information is very important for VFI. We use one con-
volution layer and two residual blocks [31] to sequentially ex-
tract contextual features. A SEblock [32] is then used to rear-
range these feature maps, and finally its output is smoothed by
a convolution layer.

Post-Processing Module: To refine the warped image, we
adopt the GridDehazeNet architecture [33], where each row
is associated with a different scale and contains five RDB
blocks [34], while each column can be considered as a bridge
connecting different scales through downsampling or upsam-
pling modules. (which decrease or increase the size of feature
maps by a factor of two.) Instead of employing the hard atten-
tion mechanism in [33], we use SEBlocks [32] to adaptively
rebalance the incoming information flows at the junctions of
GridDehazeNet.

III. UNDERSTANDING GENERALIZED DEFORMABLE

CONVOLUTION IN VFI

In this section, we shall place generalized deformable con-
volution in a board context and explain why it is an effective
mechanism for VFI.

A. Related Works

Generalized deformable convolution is conceptually related
to several existing ideas in the literature.
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Deformable Convolution: There are many works on vari-
ants of conventional convolution with improved performance,
including active convolution [35], dynamic filter [36], atrous
convolution [37], among others. A culminating achievement of
this line of research is deformable convolution [26], [27]. Our
generalized deformable convolution degenerates to conventional
deformable convolution [26], [27] if the temporal dimension is
not present, and its basic form, shown in Fig. 2(c), can be viewed
as a 3D-version of deformable convolution.

Non-Local Network: In deep learning, non-locality means that
the receptive field is not restricted to a certain local region and
can capture long-range context information. The receptive field
of conventional convolution is typically a fixed grid and conse-
quently is local in nature. Significant efforts have been devoted
to addressing this issue [29], [37]–[39]. Arguably the most suc-
cessful one is [39], which takes all possible spatial positions into
consideration. However, this comes at the cost of high mem-
ory usage. In contrast, generalized deformable convolution is
memory-efficient as it is able to achieve non-local coverage and
capture long-range context information with a relatively small
kernel by adaptively and intelligently selecting sampling points
in space-time.

Attention Mechanism: An attention mechanism enables dif-
ferentiated treatment of different input features according to their
relative importance, which has shown to yield significant perfor-
mance gain in many vision tasks. Traditionally, it can be divided
into spatial-wise attention [40] and channel-wise/temporal-wise
attention [32]. Recently, there have also been attempts [41], [42]
to combine these two types of attention. Nevertheless, in these
approaches the spatial-wise and channel-wise/temporal-wise at-
tention maps are still generated separately. It is interesting to note
that generalized deformable convolution offers a natural way to
consolidate these two types of attention by suitably modulating
the sampling points at different locations in space-time.

Non-Linearity: The conventional approach to increasing the
non-linearity of convolutional neural networks [43]–[45] is
by stacking more non-linear modules [45], [46]. However, it
has been recognized that a more effective approach is to al-
low the functionalities of constituent modules to be input-
dependent [32], [40], [47]. From this perspective, generalized
deformable convolution converts a linear convolution operation
into a highly non-linear operation by adaptively adjusting its ker-
nel according to the input, and by doing so it yields enhanced
learning capabilities.

B. Comparison With State-of-the-Art VFI Algorithms

The state-of-the-art VFI methods can be divided into two cat-
egories: flow-based methods and kernel-based methods. For il-
lustrative purposes, we shall consider the simple scenario where
two source frames I1 and I2 are used to predict one target frame
I1.5, unless specified otherwise.

Flow-based: These methods admit a common mathematical
formulation as follows:

I ′1.5←1(x, y) = I1(x+�u1, y +�v1), (6)

Fig. 6. Illustration of (a) flow-based VFI pipeline and (b) kernel-based VFI
pipeline.

or

I ′1.5←2(x, y) = I2(x+�u2, y +�v2), (7)

where (�u1,�v1) and (�u2,�v2) are respectively optical
flow fields from I1.5 to I1 and I2, while I ′1.5←1 and I ′1.5←2 de-
note the warped images from each direction. The pipeline of
flow-based methods is illustrated in Fig. 6(a). First, two input
frames are used to estimate optical flow maps, typically with the
help of traditional optical flow estimation methods [14]–[16]
or convolution neural network [6], [17]–[19]. The input frames
are then warped according to these optical flow maps. Finally,
blending and post-processing operations are performed to gener-
ate the final output. The linear motion model is widely adopted
in flow map estimation. However, this model is not accurate
for describing accelerated and curvilinear motions. To handle
such complex motions, a quadratic model is proposed in [23],
where (�u1,�v1) and (�u2,�v2) are estimated based on four
frames I0, I1, I2, and I3 instead of just I1 and I2. To understand
the connection with our method, it is instructive to consider a
special case of (5) with N = 1, where z1 = 1, (�x1,�y1) =
(�x1

1,�y11), or z1 = 2, (�x1,�y1) = (�x2
1,�y21):

I ′1.5←1(x, y) = W1 · I(x+�x1, y +�y1, 1) · �m1

= W1 · I1(x+�x1
1, y +�y11) · �m1, (8)

Or

I ′1.5←2(x, y) = W1 · I(x+�x1, y +�y1, 2) · �m1

= W1 · I2(x+�x2
1, y +�y21) · �m1. (9)

One can readily recover (6) and (7) from (8) and (9)
by setting W1 = �m1 = 1 and interpreting (�xi

1,�yi1) as
(�ui,�vi), i = 1, 2. Similarly to the case with (�u1,�v1) and
(�u2,�v2) in [23], the estimation of the offsets (�x1

1,�y11)
and (�x2

1,�y21) can also benefit from more than two source
frames. More importantly, in our method, the offset estima-
tion does not directly resort to any predetermined mathematical
model and is carried out in a completely data-driven manner.
As such, it can cope with real-world motions more flexibly and
accurately. Furthermore, for the general version of our method,
the number of sampling points can be set to be greater than 1
(i.e., N > 1), which, together with the freedom in choosing the
space-time coordinates of the sampling points and the relaxation
of the constraint (�xn,�yn) = (�xi

n,�yin), makes it possi-
ble to capture complex diffusion and dispersion effects. Finally,
we would like to point out that the space-time numerical interpo-
lation operation in our method plays a role similar to that of the
blending operation in some existing flow-based methods [13],
[20], [22] (see also Fig. 6(a)), but requires fewer parameters, as
it is performed at the sampling point level.
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Kernel-based: These methods [24], [25], [43] generate two
sets of spatially-adaptive convolution kernels and use them to
convolve with source frame patches to get the predicted target
frames I ′1.5←1, I ′1.5←2 from two sides, which are then blended
at the pixel level to get final VFI result:

Î1.5(x, y) = I ′1.5←1(x, y) + I ′1.5←2(x, y)

= K1(x, y) ∗ I1(x, y) +K2(x, y) ∗ I2(x, y). (10)

The pipeline of kernel-based methods is shown in Fig. 6(b).
Note that in the presence of complex motions, the technique
in [24] and [25] need to adopt large kernels (specifically, the
size of convolutional kernels used in [24] and [25] are 41× 41
and 51× 51, respectively) to ensure sufficient coverage, which
is inflexible and memory-inefficient. AdaCoF [12] addresses
this issue by adopting deformable convolution. Nevertheless,
the sampling points in AdaCoF are only spatially adaptive. In
contrast, the proposed method can make more effective use of
the sampling points by freely exploring space-time (not just in
the spatial domain). As such, it often suffices to employ small
kernels, even when dealing with very complex motions. Our
method also has the additional advantage of blending images at
the sampling point level (in the form of space-time numerical
interpolation), which is more efficient than blending at the pixel
level in kernel-based methods.

IV. FOUR-FRAME VFI EXPERIMENTS

Due to its flexibility, our method can leverage an arbitrary
number of frames for VFI. Here we focus on the four-frame
VFI case. The experimental results for two-frame VFI will be
presented in Section V.

A. Implementation Details

We use four source frames I0, I1, I2, and I3 to synthesize the
target frame I1.5. In GDConv, the number of sampling points
for each warped pixel is set to 25. The loss function, the training
dataset, and the training strategy are described below.

Loss Function: In addition to the supervision provided at
the output end, we introduce intermediate supervision to en-
sure proper training of the GDCM (which is the key component
of GDConvNet). Note that without intermediate supervision, we
have no direct control of the training of the GDCM due to the
fact that the downstream post-processing module, which is a
relatively large and complex network, tends to dilute the im-
pact of the supervisory signal. The overall loss function can be
formulated as:

L = Lr + λLw

=
∑

x

||Ît(x)− IGT (x)||1 + λ
∑

x

||I ′t(x)− IGT (x)||1,
(11)

where IGT is the ground-truth frame, and λ is a hyper-parameter
to balance the warped loss Lw and the refined loss Lr. (Exper-
imentally, we found that λ = 0.5 yields the best performance.)
We use the �1 norm instead of the �2 norm because the latter is
known to produce blurry results in image synthesis tasks. Fol-
lowing [12], [21], [22], [48], we use the Charbonnier Function

Φ(x) =
√
x2 + ε2 to smoothly approximate the �1 norm and set

ε = 10−6.
Training DataSet: The Vimeo90 k Septuplet training

dataset [13] is used to train our model. This training dataset
is composed of 64 612 seven-frame sequences with a resolution
of 256× 448. We use the first, the third, the fifth, and the sev-
enth frames (corresponding to I0, I1, I2, and I3 in our notation,
respectively) of each sequence to predict the fourth one (cor-
responding to I1.5). We randomly crop image patches of size
256× 256 for training. Horizontal and vertical flipping, as well
as temporal order reversal, are performed for data augmentation.

Training Strategy: Different from [13], [21], [22], our network
can be trained from scratch without relying on any pre-trained
model. We adopt the Adam optimizer [49], where β1 and β2

are set as the default values 0.9 and 0.999, respectively. We set
the training batch size as 8 and train our network for 14 epochs
(nearly 11 300 iterations) in total. The initial learning rate is
set as 10−3, and the learning rate is reduced by a factor of two
every 4 epochs for the first 8 epochs and by a factor of five every
2 epochs for the last 6 epochs. The training is carried out on
four NVIDIA GTX 1080Ti GPUs, and takes about 58 hours to
converge.

B. Evaluation Datasets

The following three datasets are used for performance evalu-
ation.

Vimeo90 K Septuplet Test Set [13]: This dataset consists of
7824 video sequences, each with 7 frames. As in the case of
the Vimeo90 K Septuplet training dataset, the first, the third, the
fifth, and the seventh frames of each sequence are leveraged to
synthesize the fourth one. The image resolution of this dataset
is 256× 448.

Gopro Dataset [50]: This dataset is composed of 33 high-
resolution videos recorded by hand-held cameras. The frame
rate of each video is 240 fps, and the image resolution is 720×
1280. The dataset was released in an image format, consisting
of a total of 35 782 images. We successively group every 25
consecutive images as a test sequence, and resize the images to
360× 480. Finally, 1392 test sequences are selected. For each
sequence, the first, the ninth, the seventeenth, and the twenty-
fifth frames (corresponding to I0, I1, I2, and I3, respectively)
are used to synthesize the thirteenth frame (corresponding to
I1.5). This dataset is rich with non-linear camera motions and
dynamic object motions, posing significant challenges to VFI
methods in these respects.

Adobe240 Dataset [51]: This dataset consists of 133 240 fps
videos in total, where the resolution of each video is 720× 1280.
These videos are recorded by hand-held cameras, and mainly
contain outdoor scenes. Different from the Gopro dataset, this
dataset is released in a video format. We extract 7479 non-
overlapped test sequences, each with 25 frames. This dataset
is rich with large motions. Indeed, it has the largest average
pixel displacement among the three datasets under considera-
tion according to Table I. Therefore, it can be used to examine
the strength of a VFI method in handling such motions.
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TABLE I
THE STATISTICS OF PIXEL DISPLACEMENT WITHIN DIFFERENT DATASETS. THIS

TABLE SHOWS THE AVERAGE PIXEL DISPLACEMENT, THE PERCENTAGE OF

PIXELS WITH DISPLACEMENT LARGER THAN 15, 20, AND 25 RESPECTIVELY

FOR THREE DATASETS

C. Numerical Interpolation Methods

As described in Section II-A, a numerical interpolation func-
tion G is used to specify the value sn = I(x+�xn, y +
�yn, zn) of a sampling point in accordance with its position
and the corresponding support points sin = I(x+�xi

n, y +
�yin, i), i ∈ {0, 1, . . . , T}, when it does not exactly lie on an
input frame (i.e., when zn is not an integer). In principle, any
numerical interpolation function satisfying the differentiability
condition can be leveraged for this purpose. However, different
numerical interpolation functions may generate different values
for the same sampling point and consequently lead to differ-
ent final outputs. Therefore, it is important to understand how
the choice of the numerical interpolation function affects the
overall system performance. To this end, we investigate the fol-
lowing representatives: linear interpolation, 3D and 1D versions
of inverse-distance-weighted interpolation, and polynomial in-
terpolation.

1) Linear Interpolation: This is one of the simplest interpo-
lation methods. It can be be formulated as:

sn =

T∑

i=0

max(0, 1− |zn − i|) · sin. (12)

Note that even if T > 1, only two adjacent support points are
taken into consideration in (12) for interpolating sn. (The max-
imum operation suppresses the contribution of other support
points.) We regard this interpolation method as the baseline in
comparisons.

2) 3D Version of Inverse-Distance-Weighted Interpolation
(3D Inv): In contrast to linear interpolation, this method makes
use of all support points (see Fig. 4) as follows:

sn =

∑T
i=0 wi · sin∑T

i=0 wi

, (13)

where wi = 1/((dix)
2 + (diy)

2 + (diz)
2), dix = |�xn −

�xi
n|/H , diy = |�yn −�yin|/W , and diz = |zn − i|/T .

The quantitative comparisons in Table II indicate that leverag-
ing all support points instead of just two adjacent points yields
better performance. Table III shows the means of (dix)

2, (diy)
2,

and (diz)
2 (averaged over i), denoted as (dx)2, (dy)2 and (dz)

2,
respectively. It is clear that (dx)2 and (dy)

2 are about two orders
of magnitude smaller than (dz)

2. This implies that it might
suffice to set the weights based on the temporal information
alone, which naturally suggests the following interpolation
method.

Fig. 7. Illustration of (a) 1D version of inverse distance weighted interpolation
and (b) polynomial interpolation with support points highlighted in red. Here
s0n = 0.6, s1n = 0.8, s2n = 0.05, and s3n = 0.4, respectively.

3) 1D Version of Inverse-Distance-Weighted Interpolation
(1D Inv): Setting wi = 1/(diz)

2 in (13) leads to the 1D ver-
sion of inverse distance weighted interpolation (see Fig. 7(a) for
an example with T = 3). The quantitative results of this inter-
polation method are shown in Table II. Somewhat surprisingly,
the 1D version slightly outperforms its 3D counterpart. The rea-
son is that focusing on the dominant dimension enables more
effective use of the training data and consequently yields more
accurate VFI results. This suggests that it might be possible to
further improve the performance by employing more advanced
1D interpolation methods.

4) Polynomial Interpolation (Poly): This method uses a
polynomial function of degree T to perform interpolation. More
specifically, we have:

G = a0 + a1zn + · · ·+ aT z
T
n , z ∈ [0, T ], (14)

where the coefficients a0, a1, · · · , and aT can be uniquely deter-
mined by jointly solving T + 1 linear equations G|zn=i = sin,
i ∈ {0, 1, . . . , T}. It should be emphasized that sampling points
and their associated support points are still selected in 3D
space-time even if a 1D interpolation method is adopted; as
such, the overall method is intrinsically 3D.

Fig. 7(b) provides an example of polynomial interpolation
with T = 3. In contrast to 1D Inv, polynomial interpolation is
able to generate values beyond the upper and lower limits of sin,
i ∈ {0, 1, . . . , T}. This extra freedom might be the reason why
polynomial interpolation leads to 0.5 dB improvement over 1D
Inv as shown in Table II.

To provide supporting evidence for our conjecture, we count
the number of sampling points whose values are beyond the
upper or lower limit. As shown in Table IV, for the upper GDCM
used to synthesize intermediate frame I ′t, there are 10.8% and
22.6% sampling points beyond the upper limit and lower limit
respectively. As for the lower GDCM used to predict the context
map C ′t, 9.3% and 10.0% points are beyond the upper limit and
the lower limit, respectively. We then clamp those values to their
associated limits and reevaluate the model on the test datasets.
As shown in Table II, indeed, forcing the values of sampling
points to stay in the range set by support points jeopardizes the
performance.

Fig. 8 provides visual examples of the results. It can be seen
that compared to 1D inv, standard polynomial interpolation pro-
vides a better reconstruction in the texture regions, which usu-
ally contain a fair amount of sampling points beyond limits. In
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TABLE II
QUANTITATIVE COMPARISONS OF GDCONVNET WITH DIFFERENT NUMERICAL INTERPOLATION METHODS ON VIEMO-90 K TEST DATASET, GOPRO

DATASET, AND ADOBE240 DATASET

TABLE III
MEAN OF THE SQUARED DISTANCE

TABLE IV
THE STATISTICAL DISTRIBUTION OF SAMPLING POINTS BEYOND LIMITS

Fig. 8. Visualization of (a) ground truth, (b) error residual (ER) map gen-
erated by GDConvNet with standard polynomial, (c) error residual map gen-
erated by GDConvNet with clamped polynomial, and (d) distribution map of
sampling points beyond limits. The error residual map is calculated by ER =
MSE1_inv −MSEpoly , where MSE1_inv denotes the mean squared error
map between the ground truth and the result generated by GDConvNet with 1D
Inv, and MSEpoly is similarly defined for polynomial interpolation.

contrast, clamped polynomial interpolation performs consider-
ably worse than the standard one in these regions. Similar phe-
nomena can be observed for images in different datasets. In
summary, polynomial interpolation is able to generate sampling
points beyond upper and lower limits, and these sampling points
contribute positively to the synthesis of the texture regions of the
images, which helps to improve the overall performance.

D. Comparison With the State-of-the-Art

We compare our best-performing GDConvNet (Ours-Poly)
with the state-of-the-art VFI algorithms on the aforementioned

three evaluation datasets. Specifically, the following ones are
chosen for comparison: the phase-based method (Phase) [52],
separable adaptive convolution (SepConv) [25], deep voxel flow
(DVF) [19], SuperSlomo (Slomo) [20], quadratic video interpo-
lation (QVI) [23], and adaptive collaboration of flows (Ada-
CoF) [12]. Since these methods just use two frames (I1, I2) to
synthesize the target frame,3 we also provide a degraded ver-
sion of our method (Ours-Poly*) with 4 frames (I0, I1, I2, I3)
for offset generation and 2 frames (I1, I2) for target frame pre-
diction. For fair comparison, DVF, Slomo, QVI, and AdaCoF
are retrained on our training dataset. As the SepConv training
code is not available, we choose to directly evaluate the original
SepConv model.

In Table V, we quantitatively compare our method with the
state-of-the-art methods on the evaluation datasets under two
well-known objective image quality metrics, PSNR and SSIM.
It can be seen that although it suffers from some performance
degradation with respect to Ours-Poly, Ours-Poly* still performs
on par with QVI (which is 6 times as large as Ours-Poly* in terms
of model size) and surpasses other methods by a visible margin.
As for Ours-Poly, it shows a significant improvement over its
degraded counterpart due to the complete freedom in exploiting
the given frames, and ranks consistently at the top in Table V
(except for the Gopro dataset on which it comes in a close second
in terms of the SSIM value). Overall, our method has a clear
advantage under joint consideration of cost and performance.

Fig. 9 shows some qualitative comparisons. It can be seen that
our method produces clearer and sharper results. For example, on
the first row, our method is capable of generating smooth edges
around the hand compared with that of Phase, DVF, SepConv,
Slomo, QVI, and AdaCoF.

E. Ablation Study

In our ablation studies, we adopt polynomial interpolation
and consider a simplified version of GDConvNet in which the
CEM and the associated GDCM, as well as the PM, are removed.
This simplification greatly reduces the training time and, more
importantly, enables us to focus on the most essential aspects of
GDConvNet.

1) Generalized Deformable Convolution Module: In order
to validate the effectiveness of our design, we compare the pro-
posed GDConv with DConv (more precisely, spatially-adaptive

3Although 4 frames are employed in QVI, only 2 of them are directly involved
in predicting the target frame.
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TABLE V
QUANTITATIVE COMPARISONS OF DIFFERENT VFI METHODS ON VIMEO90 K SEPTULET TEST SET, GOPRO DATASET AND ADOBE240 DATASET, WHERE THE FIRST

PLACE AND SECOND PLACE ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

Fig. 9. Qualitative comparisons of different VFI algorithms.

DConv or modulated DConv) adopted by [12], as well as several
variants of GDConv.

Superiority of GDConv over DConv: As mentioned earlier,
the proposed GDConv is able to fully exploit the given source
frames in accordance with their relevance to the target inter-
mediate frame in terms of temporal distance. In contrast, the
performance of DConv is limited by the inflexibility in choos-
ing the number of sampling points from each source frame. For
instance, consider the case where 4 consecutive frames are used
for VFI and the convolution kernel size is set to 3. DConv is

constrained to select 9 sampling points from each frame. This is
inefficient from the perspective of resource allocation since the
source frames closer to the target intermediate frame in time are
conceivably more informative and should receive more atten-
tion. In this sense, the proposed GDConv is more desirable as
it is endowed with complete freedom to select sampling points
in space-time. Specifically, in GDConv, the number of sampling
points in each frame is adjustable according to the significance
of that frame in synthesis. More importantly, sampling points
are not even required to lie exactly on the source frames, and are
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Fig. 10. Visualization of sampling points in GDCM when t = 1.5. Here ((a), (b)), ((c), (d)), ((e), (f)), and ((g), (h)) illustrate two different pixels in a same target
intermediate frame and their associated sampling points respectively. It can be seen that sampling points are not exclusively located between I1 and I2. Indeed,
there are some between I1 and I2, and some between I2 and I3. This indicates that the information from I1 and I2 is more significant for synthesizing It, but I0
and I3 also contribute to the synthesized result. .

TABLE VI
COMPARISONS OF DCONV, GDCONV WITH DIFFERENT NUMBERS OF

SAMPLING POINTS, AND SOME VARIANTS OF GDCONV

allowed to be anywhere in the spatio-temporal domain specified
by their associated parameters �xn, �yn and zn (see Fig. 10
for some visual results). This mechanism is especially important
for VFI since it is better suited to cope with complex and irreg-
ular inter-frame motions. In Table VI, we provide quantitative
comparisons of DConv and GDConv. Here the number of input
source frames is 4. In GDConv, the number of sampling points
is set to 36. For fair comparison, the kernel size in DConv is
chosen to be 3; thus, there are 3× 3× 4 = 36 sampling points
in total, as well. It is evident that the proposed GDConv achieves
better performance in terms of the PSNR and SSIM metrics.

Importance of Spatio-Temporal Freedom: We consider the
following 4 variants of GDConv to illustrate the importance of
spatio-temporal freedom for sampling points.

a) No spatio-temporal freedom: (�xi
n,�yin), i ∈ {0, 1, 2, 3},

are identical and fixed to be a distinct point in a 5× 5 grid
{(−2,−2), (−2,−1), . . . , (2, 2)}}, and zn = 1.5.

b) Limited spatial freedom, no temporal freedom:
(�xi

n,�yin), i ∈ {0, 1, 2, 3}, are identical but adaptive,
and zn = 1.5.

c) Limited spatial freedom, complete temporal freedom:
(�xi

n,�yin), i ∈ {0, 1, 2, 3}, are identical but adaptive, and zn
is adaptive.

d) Complete spatial freedom, no temporal freedom:
(�xi

n,�yin), i ∈ {0, 1, 2, 3}, can be different from each other
and are individually adaptive, and zn = 1.5.

e) Complete spatio-temporal freedom: (�xi
n,�yin), i ∈

{0, 1, 2, 3}, can be different from each other and are individ-
ually adaptive, and zn is also adaptive.

The results of the experiment are shown in Table VI. One
can easily find that the performance rises progressively with the
availability of every additional degree of freedom. It is worth
noting that the temporal parameter zn is better interpreted as
being effective time instead of physical time. Indeed, forcing
zn = 1.5 limits the degrees of freedom and jeopardizes the per-
formance.

Choice of the Number of Sampling Points: We further in-
vestigate how to choose the number of sampling points in
GDConv. As shown in Table VI, as the number of sampling
points increases, the performance improves initially, but be-
comes saturated eventually. In particular, using more than 36
sampling points does not further enhance the quality of synthe-
sized frames.

2) Input Length and Offset Generation: So far, except for
the degraded version in Section IV-D, we have assumed that
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TABLE VII
COMPARISONS FOR DIFFERENT NUMBERS OF REFERENCE FRAMES (WITH THE

NUMBER OF GENERATION FRAMES SET TO BE THE SAME AS THAT OF

REFERENCE FRAME)

TABLE VIII
COMPARISONS FOR DIFFERENT NUMBERS OF GENERATION FRAMES (WITH THE

REFERENCE FRAMES FIXED TO BE I1 AND I2)

all 4 source frames I0, I1, I2, and I3 participate in generating
offsets (as well as zn and �mn) and in predicting the target
intermediate frame I1.5. It is interesting to study how the pro-
posed method performs if one only utilizes a subset of source
frames. In fact, our framework is flexible enough to allow the
use of different subsets of source frames for offset generation
and frame prediction separately. For clarity, we shall refer to
source frames used for generating offsets as generation frames
and those directly involved in predicting the target intermediate
frame as reference frames. For example, if we use I0, I1, I2 to
generate offsets for I1 and I2, which are subsequently leveraged
to predict I1.5, then I0, I1, I2 are generation frames while the
latter two are reference frames. We first study the scenario with
the same subset of source frames used for both purposes. It is
clear from Table VII that the VFI result improves progressively
with the increase in the number of reference frames (as well as
generation frames). We further investigate the scenario where
reference frames and generation references are not necessarily
the same. Specifically, we fix I1 and I2 to be reference frames,
and consider various combinations of generation frames. It can
be seen from Table VIII that increasing the number of genera-
tion frames leads to better performance. This is consistent with
a similar finding regarding flow-based methods: namely, it is
profitable to have three or more generation frames as that opens
the door for exploiting higher-order approximation of motion
trajectories (instead of relying on linear approximation, which
is basically the only available choice in the case with just two
generation frames). Finally, comparing the corresponding rows
in Table VII and Table VIII reveals that VFI can also benefit
from an increase in the number of reference frames (when the
number of generation frames is fixed).

F. Failure Case Analysis

Our method is trained in a purely data-driven manner to learn
motion estimation. As such, it is able to handle complex motion
patterns that cannot be characterized by simple mathematical
models. On the other hand, the success of our method depends
critically on the quality of the training dataset, which should
ideally contain extensive motion patterns to ensure sufficient

Fig. 11. Visualization of failure cases.

coverage. The performance of our method tends to degenerate
when the motion patterns encountered in the evaluation dataset
deviate significantly from those in the training dataset. Fig. 11
provides some examples where object motions are atypical with
respect to the training dataset. It can be seen that the VFI results
produced by our method are somewhat blurry (albeit still slightly
better than those of QVI, which is the best known mathematical-
model-based method).

V. TWO-FRAMES VFI EXPERIMENTS

As described earlier, our method is able to handle an arbitrary
number of frames. To substantiate this claim, here we conduct
two-frame VFI experiments (i.e., using I0 and I1 to predict I0.5).

A. Implementation Details

We adopt polynomial interpolation (or linear interpolation)
and set the number of sampling points for each warped pixel to
be 25 in GDConv. The training dataset and the training strategy
are described below.

Training Dataset: The Vimeo90 k interpolation training
dataset [13] is used to train our model. This training dataset
is composed of 51 312 triplets with resolution 256× 448. We
use the first frame and the third frame (corresponding to I0 and
I1, respectively) of each triplet to predict the second one (cor-
responding to I0.5). We randomly crop image patches of size
256× 256 for training. Horizontal and vertical flipping, as well
as temporal order reversal, are performed for data augmentation.

Training Strategy: This is the same as the four-frame case,
except that we train our network for 20 epochs in total. The
initial learning rate remains to be 10−3, and the learning rate is
reduced by a factor of two every 4 epochs for the first 12 epochs
and by a factor of five every 4 epochs for the last 8 epochs. The
whole training process takes about 3 days on our hardware.

B. Evaluation Datasets

Following [21], we evaluate the proposed GDConvNet on
three public datasets (Vimeo90 k Interpolation Test Set [13],

Authorized licensed use limited to: McMaster University. Downloaded on September 27,2023 at 20:58:49 UTC from IEEE Xplore.  Restrictions apply. 



SHI et al.: VIDEO FRAME INTERPOLATION VIA GENERALIZED DEFORMABLE CONVOLUTION 437

TABLE IX
QUANTITATIVE COMPARISONS ON VIMEO90 K INTERPOLATION TEST SET, UCF101 DATASET AND MIDDLEBURY-OTHER DATASET, WHERE THE FIRST

PLACE AND SECOND PLACE ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

UCF101 Test Dataset [53], and Middlebury-Other Dataset [54])
and compare it with the state-of-the-art.

Vimeo90 k Interpolation Test Set [13]: This dataset consists
of 3782 video sequences, each with 3 frames. As in the case of
the Vimeo90 K interpolation training dataset, the first frame and
the third frame of each sequence are leveraged to synthesize the
second one. The image resolution of this dataset is 256× 448.

UCF101 Test Dataset [53]: The UCF101 dataset contains
379 triplets with a large variety of human actions. The image
resolution of this dataset is 256× 256.

Middlebury-Other Dataset [54]: The Middlebury-Other
dataset is another commonly used benchmark for VFI, which
contains 12 triplets in total. Most of the images in this dataset
are of resolution 640× 480. Again, we use the first frame and
the third frame to predict the second one.

C. Experimental Results

We compare our GDConvNet with the state-of-the-art VFI
algorithms on the aforementioned datasets. Specifically, the fol-
lowing ones are chosen for comparison: MIND [55], DVF [19],
SepConv [25], CtxSyn [30], ToFlow [13], SuperSlomo [20],
MEMC-Net [22], DAIN [21], and AdaCoF [12].

In Table IX, we quantitatively compare our method with the
state-of-the-art on Vimeo90 k and UCF101 under PSNR and
SSIM, while Interpolation Error [44] (IE) is used as the per-
formance measure for the Middlebury-Other dataset. It can be
seen that the proposed method performs favorably against those
under consideration. Overall, our method has a clear advantage
under joint consideration of cost and performance. In particular,
although DAIN [21] also shows very competitive performance,
its model size is about 5 times that of our model. In addition,
our method can be trained from scratch, while DAIN [21] needs
to rely on a pre-trained model.

VI. CONCLUSION

In this paper, a new mechanism named generalized de-
formable convolution is proposed to tackle the VFI prob-
lem. This mechanism unifies the essential ideas underly-
ing flow-based and kernel-based methods and resolves some

performance-limiting issues. It should be noted that the pro-
posed mechanism is largely generic in nature, and is potentially
applicable to a wide range of problems, especially those involv-
ing video data (e.g., video super-resolution, enhancement, and
quality mapping). Exploring such applications is an endeavor
well worth undertaking.
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