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Abstract— We address the problem of communication through
a finite-state machine with Markov property. The techniques
from the theory of Markov decision processes are used to
determine of the feedback capacity of this type of machines.
We also consider the scenario that several users share a machine
via TDMA. The capacity region for this scenario is established.
Moreover, we adopt a game-theoretic viewpoint to interpret the
operational meaning of the rate vectors in the capacity region.

Index Terms— Game theory, Nash equilibrium, Markov deci-
sion processes, finite-state machine, feedback, TDMA.

I. I NTRODUCTION

Model 1 (Fig. 1) was first studied in [1]. It was shown in
[1] that its feedback capacity and the optimal input policy
can be computed via dynamic programming. Model 2 (Fig. 2)
was first introduced in [2], in which, among other things, the
feedback capacity was shown to be attainable by Markov input
policy. The feedback capacity of Model 2 was determined in
[3] for the binary output case and in [4] for the general case. It
was realized in [4] that Model 1 can be converted to Model 2.
So the results in [2-4] are applicable to Model 1. Here we show
that Model 2 can also be converted to Model 1, i.e., Model
1 and Model 2 are equivalent. To facilitate the demonstration,
we introduce a third model: Model 3 (Fig. 3) and show that
all these three models are equivalent.
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Fig. 1. Model 1.

Proposition 1: Model 1, 2 and 3 are equivalent.
Proof: Model 3 contains Model 1 since we

can let P (Yk, Sk+1|Xk, Yk−1, Sk) = P1 (Yk|Xk, Sk) ·
P2 (Sk+1|Xk, Sk). Model 2 contains Model 3 since we
can let Vk = (Yk, Sk+1) and Q (Vk |Xk, Vk−1 ) =
P (Yk, Sk+1 |Xk, Yk−1, Sk ). Model 1 contains Model 2 since
we can letSk+1 = Vk, Q(Vk|Xk, Vk−1) = P (Sk+1 |Xk, Sk ),
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Message Estimate of
message

kVkX  

1kV −  

Encoder Decoder 
Channel 
( )1 ,k k kP Y X S  

State 
( )2 1 ,k k kP S X S+  

W Ŵ  
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Fig. 2. Model 2.
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Fig. 3. Model 3.

and∀xk, sk, P1(Yk = c|Xk = xk, Sk = sk) = 1 where c is a
constant.

Let xk, yk, sk be the realization ofXk, Yk and Sk respec-
tively. Throughout this paper, we assumexk ∈ X , yk ∈ Y and
sk ∈ S where|X |, |Y| and|S| are finite. Without loss of gener-
ality, we supposesX = {1, 2, . . . , |X |}, Y = {1, 2, . . . , |Y|}
and S = {1, 2, . . . , |S|}. Also, we only consider stationary
machines, i.e.,P1(·|·, ·) and P2(·|·, ·) (Model 1), Q(·|·, ·)
(Model 2) andP (·, ·|·, ·, ·) (Model 3) do not depend onk.

In this paper, we mainly focus on Model 1 since it reveals
more inner structure of finite-state machines.

The paper is organized as follows. In the next section, we
give a detailed discussion of single user system. We determine
its feedback capacity on the basis of the classification of
Markov decision processes. We show that under a very general
condition, the optimal information transmission scheme can be
decomposed in two steps: 1. Control, 2. Communication; and
we only need to design coding scheme for one initial state
instead of developing different coding schemes for different
initial states. In section III, we consider the scenario that
several users share a finite-state machine via TDMA. We show
that there exists a tradeoff among the information transmission
rates of different users. We establish the capacity region for
this multi-user TDMA system. A game-theoretic viewpoint
is adopted to interpret the operational meaning of the rate
vectors in the capacity region. Finally we discuss the biological
implication of our model, which serves as the conclusion.



II. THE FEEDBACK CAPACITY OF SINGLE-USERSYSTEM

Definition 1: An (n, M, ε, s1) feedback code function for
Model 1 consists of

1) An encoding functionfs1 that maps the set of messages
W = {1, 2, . . . ,M} to machine input words of block-
length n through a sequence of functions{fs1,k}n

k=1

that depend only on the messageW ∈ W, the machine
outputs up to timek − 1 and the machine states up to
time k, i.e.,

Xk = fs1,k(W,Y k−1
1 , Sk

2 ) (1)

2) A decoding functiongs1 that maps a received sequence
of n pairs of machine output and machine state to the

message setgs1 :
n∏
1

(Y × S) → W such that the

average probability of decoding error satisfies

Pe
∆=

1
M

M∑
w=1

P (Ŵ 6= w|W = w,S1 = s1) 6 ε, (2)

whereŴ = gs1(Y
n
1 , Sn+1

2 ).
Note: Both the encoding functionfs1 and decoding function

gs1 depend on the initial states1. Although it may seem to
be more general to let the encoding function and decoding
functions also depend ony0

−∞, s0
−∞, we will see later that

this does not increases the capacity sinces1 is a sufficient
statistic.

Definition 2: Rs1 is an ε-achievable rate given the initial
states1 if for every δ > 0 there exists, for all sufficiently
large n, an (n, M, ε, s1) code function such that1n log M >
Rs1 − δ. Rs1 is achievable if it isε-achievable for allε > 0.
The supremum of all achievable ratesRs1 is defined as the
feedback capacityCfd

s1
given the initial states1.

Theorem 1 (Converse Coding Theorem):Given the initial
state s1, information transmission with an arbitrary small
expected frequency of errors is not possible ifR >

lim sup
n→∞

Cs1,n

n .

Here, Cs1,n = max
p(Xn

1 )∈P∗(Xn
1 )

[I(X1;Y1, S2|S1 = s1) +
n∑

k=2

I(Xk;Yk, Sk+1|Sk)] and P∗(Xn
1 ) is the set of Markov

input policy, i.e., the conditional distribution onXn
1 of the

form P (Xk|Xk−1
1 , Y k−1

1 , Sk
1 ) = P (Xk|Sk), k = 1, 2, . . . , n.

Proof: Throughout the proof we implicitly assume that
P (S1 = s1) = 1 and thus useS1 instead ofs1.

Let W be the message random variable. By Fano’s inequal-
ity,

H(W |Y n
0 , Sn+1

1 ) 6 h(Pe) + Pe log M.

Since

H(W |Y n
1 , Sn+1

1 ) = H(W )− I(W ;Y n
0 , Sn+1

1 )
= log M − I(W ;Y n

0 , Sn+1
1 ),

we have

(1− Pe) log M 6 h(Pe) + I(W ;Y n
0 , Sn+1

1 ),

which we rewrite as

1
n

log M 6
h(Pe) + I(W ;Y n

0 , Sn+1
1 )

n(1− Pe)
.

As n →∞, Pe → 0. Hence, the feedback capacity

Cfd
s1

= lim sup
n→∞

1
n

log M

6 lim sup
n→∞

max
p(Xn

1 )

1
n

I(W ;Y n
0 , Sn+1

1 ).

We have

I(W ;Y n
0 , Sn+1

1 )=H(Y n
0 , Sn+1

1 )
−H(Y n

0 , Sn+1
1 |W )

=
n∑

k=1

[H(Yk, Sk+1|Y k−1
0 , Sk

1 )

−H(Yk, Sk+1|W,Y k−1
0 , Sk

1 )]

6
n∑

k=1

[H(Yk, Sk+1|Sk)

−H(Yk, Sk+1|W,Xk, Y k−1
0 , Sk

1 )]
(a)
=

n∑
k=1

[H(Yk, Sk+1|Sk)

−H(Yk, Sk+1|Xk, Sk)]

=
n∑

k=1

I(Xk;Yk, Sk+1|Sk) (3)

where (a) holds because, when conditioned on the inputXk

and the current stateSk, the outputYk and next stateSk+1

become independent of the messageW , the earlier outputs
Y k−1

0 and the earlier statesSk−1
1 . Hence we have

Cfd
s1

6 lim sup
n→∞

max
p(Xn

1 )

1
n

I(W ;Y n
0 , Sn+1

1 )

6 lim sup
n→∞

max
p(Xn

1 )

1
n

n∑
k=1

I(Xk;Yk, Sk+1|Sk)

(b)
= lim sup

n→∞
max

p(Xn
1 )∈P∗(Xn

1 )

1
n

n∑
k=1

I(Xk;Yk, Sk+1|Sk)(4)

where (b) follows by the dominance of Markov policy, see
e.g. [5].

Note: From the above theorem, we can see that there is no
loss of generality to search for the optimal input policy inside
the set of Markov policies, i.e.,Xk only needs to depend only
on Sk. The feedbackYk is thus useless.

Now we begin to computelim sup
n→∞

Cs1,n

n on the basis of the

classification of Markov decision processes. See [5] for the
detailed discussion of the classification schemes.

(i) Weak communicating(there exists a closed set of states
S ′ ⊆ S, with each state inS ′ accessible from every
other state in that set under some deterministic stationary
input policy, plus a possibly empty set of states which



is transient under every input policy):

lim sup
n→∞

Cs1,n

n
=

max
p(Xk|Sk)∈P∗∗

∑
s∈S′

µsI(Xk;Yk, Sk+1|Sk = s). (5)

where P∗∗ is the set of all stationary Markov input
policies under which there is a single ergodic chain in
the state spaceS and{µs}s∈S′ is the induced stationary
distribution of{Sk, k = 1, 2, . . .} on S ′.
Note: this result has been obtained partially in [3, 4] and
implicitly in [1].

(ii ) Multichain (the transition matrix corresponding to at
least one stationary policy contains two or more closed
irreducible recurrent classes): It is possible but rather
intricate to determinelim sup

n→∞

Cs1,n

n in this class. The

derivation is thus omitted. We just mention that in gen-
eral multichain model can be decomposed into several
disjoint communicating model.

Since (5) come from the converse coding theorem, it is an
upper bound onCfd

s1
. But actually (5) is achievable if our

model is in Class (i). This follows from evaluating the general
feedback capacity formula in [1]. SoCfd

s1
is determined if our

model is in Class (i). It is interesting to see that in Class (i)
, Cfd

s1
does not depend ons1. Actually this phenomenon can

be explained by an intuitive argument which is stated in the
following theorem.

Theorem 2:Let Pπ
i denote the probability measure induced

by the initial stateS1 = i, the input policy π and the
conditional probability associated with the machine. Letαj =
min{k : Sk = j, k = 1, 2, . . .}. If there exists a input policyπ
under whichPπ

i (αj < ∞) = 1, thenCfd
i > Cfd

j . (Note: this
theorem is not restricted to our machine model.)

Proof: (Sketch) We can first drive the machine state from
i to j, which can be done within finite steps with probablity
one, and then use the optimal coding scheme designed for
initial state j. As n → ∞, such a strategy asymptotically
achieves rateCfd

j . Since this strategy is not necessarily
optimal for initial statei, we can conclude thatCfd

i ≥ Cfd
j .

The above theorem suggests that in general the transmission
scheme can be decomposed into two steps. AssumeCfd

ŝ =
max
s∈S

Cfd
s and from anys ∈ S, there exists an input policy

under which the machine can be driven to stateŝ using
finite steps with probability one (Note: by Theorem 2 this
assumption actually implies thatCfd

s′ = Cfd
s′′ ∀s′, s′′ ∈ S).

So if the initial state is not̂s, we can first drive the machine
to stateŝ and then use the optimal coding scheme designed
for the initial stateŝ. The advantage of doing this is that now
we only need to design a coding scheme for one initial state
instead of developing different coding schemes for different
initial states.

Now let’s return to (5) to get an intuitive feeling. It’s
well-known [6, 7] that when the state process is ergodic and

independent of the input and output processes,

Cfd
s1

=
|S|∑
s=1

µs max
p(X|S=s)

I(X;Y |S = s), ∀s1 ∈ S (6)

It’s easy to see that (6) can be reduced from (5) if we let
P2(Sk+1|Xk, Sk) = P2(Sk+1|Sk) and let Markov process
{Sk, k = 1, 2, . . .} be irreducible. The difference between (5)
and (6) suggests that

(a) when the state process is unaffected by the input and
output processes, we should maximize the mutual infor-
mation for each state;

(b) when the state process can be affected by the input
and/or output process, the greedy method in (a) is
generally not optimal since by maximizing the mutual
information for each state, the machine may be driven
to the states with low mutual information too frequently.
So the joint optimization (i.e., optimize the mutual
information for each state and the induced stationary
distribution jointly) should be used.

Let’s consider the following example (Fig. 4).
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Let P (Xk = 1|Sk = 0) = p, then the equilibrium distri-

bution of {Sk, k = 1, 2, . . .} is (µ0, µ1) =
(

1
1+p , p

1+p

)
and

the induced transmission rate is11+ph(p) which is maximized

when p = p∗ = 3−
√

5
2 ≈ 0.38 with corresponding value

1
1+p∗ h(p∗) ≈ 0.69 bits per machine use. Note:p∗ < 1

2 . The
information rate induced by settingp = 1

2 is 2
3 (bits per

machine use) which is less than0.69 (bits per machine use).

III. TDMA MULTI-USER SYSTEM

In this section, we consider the model shown in Fig. 5.
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Fig. 5. Two-user system.



Two transmitter-receiver pairs share a finite-state machine
via TDMA. Transmitteri wants to convey messageWi to Re-
ceiveri, i = 1, 2. W1 andW2 are assumed to be independent.
Transmitter 1 can use the machine in the odd time slots while
Transmitter 2 can use the machine in the even time slots. Each
transmitter observes, in a causal way, the realization of the
machine state process in its transmission slots. Receiver 1 tries
to recover messageW1 based on all the machine outputs in the
odd time slots and all the machine states upon the decoding
time. Receiver 2 tries to recover messageW2 based on all the
machine outputs in the even time slots and all the machine
states upon the decoding time. Except through observing the
machine state realization in their transmission slot, Transmitter
1 and Transmitter 2 are not allowed to convene. So one does
not know beforehand what is the message that the other wants
to transmit. Now the question is what are the rate pairs that
these two users can achieve. Here we regard a transmitter-
receiver pair as a user.

This question is completely trivial when the machine state
process is ergodic and unaffected by the machine input and
output processes. In that case, since there is no interference,
each user can achieve the half capacity of the single-user
system but no more. So the capacity region is given by (see
Fig. 6)

Ri 6
1
2
C i = 1, 2, (7)

where C =
|S|∑
s=1

µs max
p(X|S=s)

I(X;Y |S = s) is the feedback

capacity of single-user system.
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Fig. 6 

But when the state process can be affected by the input, the above result does not hold 
anymore. Let’s consider the two-user system with the machine specified by Fig. 4. 
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Fig. 6. Capacity region for two-user TDMA system with no interference.

But when the state process can be affected by the input,
the above result does not hold anymore. Let’s consider the
two-user system with the machine specified by Fig. 4. Since
whenSk = 1, Sk+1 is always zero no matter what the input
is, we only need to specify the input policies of User 1 and 2
whenSk = 0. Suppose User 1 chooses the policyπ1:P (Xk =
0|Sk = 0) = P (Xk = 1|Sk = 0) = 1

2 (k = 1, 3, . . .) while
User 2 chooses the policyπ2:P (Xk = 0|Sk = 0) = 1 (k =
2, 4, . . .). Clearly, underπ1 andπ2, P (Sk = 0, k = 3, 5, . . .) =
1. So Transmitter 1 always faces the good state (i.e., state 0)
and can transmit 1 bit of information in each of its transmission
slot while Transmitter 2 can not transmit any information at
all. So underπ1 and π2, the rate pair

(
1
2 , 0

)
is achievable.

Since the role of User 1 and User 2 can be interchanged, the

rate pair
(
0, 1

2

)
is also achievable. It is interesting to note that

1
2 > 0.694

2 , i.e., although only transmitting half of time, one of
the users can achieve the transmission rate higher than half of
the capacity of the single-user case, which is fundamentally
different from (7). Of course, this is obtained by sacrificing
the transmission rate of the other user. Now a natural question
is to ask whether there exist some other rate pairs that are also
achievable.

Let’s still consider the previous example. Suppose User 1
chooses the policyπ1(p): P (Xk = 1|Sk = 0) = p (k =
1, 3, . . .) while User 2 chooses the policyπ2(q):P (Xk =
1|Sk = 0) = q (k = 2, 4, . . .). Under π1(p) and
π2(q), the state process{Sk}∞k=1 is in general a nonho-
mogeneous Markov chain since the state transition matrix

P (Sk+1 | Sk) is T1 =
[
1− p 1

p 0

]
when k is odd and is

T2 =
[
1− q 1

q 0

]
when k is even. But it’s interesting to

see that{S2k−1}∞k=1 is a homogeneous Markov chain with

transition matrixT2T1 =
[
1− q + pq 1− q
q(1− p) q

]
and{S2k}∞k=1

is a homogeneous Markov chain with transition matrixT1T2 =[
1− p + pq 1− p
p(1− q) p

]
. Because matrix multiplication is not

commutative,T1T2 6= T2T1 in general.{S2k−1}∞k=1 is irre-
ducible whenp, q 6= 1 and has a unique stationary distribution
(µ′0, µ

′
1) =

(
1−q
1−qp , q(1−p)

1−qp

)
.{S2k}∞k=1 is irreducible when

p, q 6= 1 and has a unique stationary distribution(µ′′0 , µ′′1) =(
1−p
1−qp , p(1−q)

1−qp

)
. So the limiting average transmission rate of

User 1 is 1
2µ′0h (p) (per machine use) while the limiting

average transmission rate of User 2 is1
2µ′′0h (q) (per machine

use). This gives the following achievable rate pair:(
1
2

1− q

1− qp
h (p) ,

1
2

1− p

1− qp
h (q)

)
which is plotted in Fig. 7
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This example suggests that for the general case, the follow-
ing rate region:

{(R1, R2) :

0 ≤ Ri ≤
1
2

|S|∑
s=1

µi,s(~p1, ~p2)Ipi,s(Xk;Yk, Sk+1|Sk = s)

i = 1, 2, ∀~p1, ~p2} (8)



is achievable. Here
1) ~pi = (pi,1, pi,2, . . . , pi,|S|) (i = 1, 2) with each entry

being a probability measure onX ;
2) ~µi(~p1, ~p2) = (µi,1(~p1, ~p2) , µi,2(~p1, ~p2), . . .

,µi,|S|(~p1, ~p2)) (i = 1, 2) is the stationary distribution
of the Markov chain governed by the transition matrix
T(i mod 2)+1Ti, where Tm (m = 1, 2) is an |S| × |S|
matrix whose(i, j) entry is

|X |∑
l=1

P2(Sk+1 = i|Xk = l, Sk = j)pm,j(Xk = l) (9)

3) Ipi,s(Xk;Yk, Sk+1|Sk = s) is the mutual information
betweenXk and(Yk, Sk+1) when the current state iss
and the input distribution ispi,s.

But there are some technical problems since under certain
input policy, the Markov chain governed by the transition
matrix T1T2 or T2T1 may not be irreducible and it’s in general
not easy to check. Here we give a sufficient condition under
which the Markov chain governed by the finite product of
transition matrix is always irreducible no matter what the input
distribution is.

Definition 3 (Strong irreducibility):Let

T̃ (i, j) = min
l∈{1,2,...|X |}

P2(Sk+1 = j|Xk = l, Sk = i)

We say there exists a directed edge from statei to statej
if T̃ (i, j) > 0. We say a Markov chain{Sk, k = 1, 2, . . .} is
strongly irreducible if for any two statesi andj (i can be equal
toj), there exists a directed path fromi to j. For simplicity, we
just sayT̃ , the |S|×|S| matrix whose(i, j) entry isT̃ (i, j), is
strongly irreducible, sincẽT contains all the information that
determines whether the Markov chain{Sk, k = 1, 2, . . .} is
strongly irreducible or not.

Definition 4 (Strong aperiodicity):Where the “length” of a
path is the number of edges comprising the path, letDi be the
set of lengths of all the possible closed paths from statei to
state i. Let di be the greatest common divisor ofDi. di is
called the period of statei.

The following result says that period is a class property.
Lemma 1: If the Markov chain {Sk, k = 1, 2, . . .} is

strongly irreducible, thendi = dj for any i and j. (See [4].)
So for a strongly irreducible Markov chain{Sk, k =

1, 2, . . .}, all the states have the same period, which we shall
by d. We say a strongly irreducible Markov chain{Sk, k =
1, 2, . . .}is strongly aperiodic ifd = 1. For simplicity, we just
say thatT̃ is strongly irreducible and strongly aperiodic.

Definition 5: For any two matricesA = (ai,j) ∈
Rm×n,B = (bi,j) ∈ Rm×n, we sayA > B if ai,j > bi,j

for all i and j.
Theorem 3:For any positive integerm, and input distribu-

tion ~p1, ~p2, . . . , ~pm, defineTi, i = 1, 2, . . . ,m as in (9). IfT̃ is
strongly irreducible with periodd andGCD(m, d) = 1, then

the Markov chain governed by the transition matrix
m∏

i=1

Ti is

irreducible.

Proof: It’s easy to see that
m∏

i=1

Ti > T̃m. Since T̃ is

strongly irreducible, every row of̃T should have at least one
positive element. So we can scale every row ofT̃ to make
it to be a transition matrixT in which the summation of the
elements on every row is 1. Clearly,T is irreducible with the
same period as̃T and we haveTm(i, j) = 0 ⇔ T̃m(i, j) = 0.

Given a r × r real matrix M , we say a directed graph
G with r vertices is generated byM if M(i, j) > 0 ⇔
there is a directed edge from vertexi to vertex j. So the
graph generated byTm is identical to the graph generated

by T̃m. Since
m∏

i=1

Ti > T̃m, the graph generated bỹTm is a

subgraph of the one generated by
m∏

i=1

Ti. Since the Markov

chain governed by the transition matrixT is irreducible with
period d and GCD(m, d) = 1, the Markov chain governed
by the transition matrixTm is also reducible. Since the
irreducibility of a Markov chain is fully determined by the
directed graph generated by its transition matrix, we can say
a directed graph is irreducible if its associated Markov chain
is. It’s easy to see that a directed graph is irreducible if it
contains an irreducible subgraph whose vertex set is same

as the original graph. Hence, the graph generated by
m∏

i=1

Ti

is irreducible and we can conclude that the Markov chain
governed by the transition matrix

m∏
i=1

Ti is irreducible.

Corollary 1: For any positive integerm, any input distri-
bution ~p1, ~p2, . . . , ~pm, define Ti, i = 1, 2, . . . ,m as in (9).

The Markov chain governed by the transition matrix
m∏

i=1

Ti

is irreducible and aperiodic if̃T is strongly irreducible and
strongly aperiodic.

Proof: Since T̃ is a periodic, by Definition 4, we have
d = 1. The “irreducible” part in the corollary now follows by
Theorem 3 sinceGCD(m, d) = GCD (m, 1) = 1. For the
“aperiodic” part, observe that̃T is strongly aperiodic⇒ T is

aperiodic⇒ Tm is aperiodic⇒
m∏

i=1

Ti is aperiodic.

By Theorem 3, (8) can be generalized to m-user case.
Although the analysis in this section is rather heuristic, it

can be converted into a rigorous random coding argument.
Furthermore, since the capacity regionC is convex and closed,
we have

C =
⋂

0≤λ≤1

{(R1, R2) : λR1 + (1− λ)R2 ≤ Σλ}

whereΣλ = max
(R1,R2)∈C

λR1 + (1− λ)R2.

Σλ can be computed in a way similar to that in Theorem 1. It
turns out that the achievable rate region given by (8) is exactly
the capacity region. See [8] for the details.

From the above analysis, we can see that the procedure to
find the capacity region, especially to find the boundary of the
capacity region, is same as those standard procedures in the
stochastic game theory. Actually our problem can be converted
into the following form:



In a stochastic game with two players, where the reward
function is the sum of weighted long term directed mutual
information of each player, what kind of input policies should
these two players choose in order to maximize the reward
function?

In the above, we assume that two users will cooperate since
they have a single objective. A natural question is to ask if the
individual users have objectives that are in conflict with each
other, e.g. each user only cares about the transmission rate
of himself, whether they will still cooperate. The answer is
“Yes”. The rigorous analysis is omitted due to the page count
constraint. Interested readers could see [8] for the details. A
similar problem in the setting of the Gaussian multiaccess
channel is addressed in [9].

We can also address the problem from the viewpoint of non-
cooperative game theory. For simplicity, here we only discuss a
simple example. The conclusion actually holds for much more
general setting. Again let’s consider the two-user system with
the machine specified by Fig.4. We know that if User 1 chooses
the policy π1:P (Xk = 1|Sk = 0) = p (k = 1, 3, . . .) and
User 2 chooses the policyπ2:P (Xk = 1|Sk = 0) = q (k =
2, 4, . . .), then the corresponding achievable rate pair is(

1
2

1− q

1− qp
h (p) ,

1
2

1− p

1− qp
h (q)

)
By Brower’s fixed point theorem, there existsp∗ andq∗ such
that

1
2

1− q∗

1− q∗p∗
h (p∗) = max

p

{
1
2

1− q∗

1− q∗p
h (p)

}
1
2

1− p∗

1− q∗p∗
h (q∗) = max

q

{
1
2

1− p∗

1− qp∗
h (q)

}
Here the policy pair(p∗, q∗) may not be unique. For each
p∗ and q∗, the associated rate pair is a Nash equilibrium for
rate allocation. By numerical method, we can get that for our
example, there are two solutions:p∗ = q∗ = 1 andp∗ = q∗ =
0.696. The resulting rate pairs are(R∗

1 = 0, R∗
2 = 0) and

(R∗
1 = 0.261, R∗

2 = 0.261) respectively. See Fig. 8.
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2Ŵ  

Decoder 1 

Decoder 2 

,tS t∀  

tY ,  
2 1t n= −  

2t n=  
tY , 

R2 

R1 0.5 

0.5 

(.261,.261) 
Nash Equilibrium 

(0,0) 

Fig. 8. Nash equilibrium in the capacity region.

The operational meaning of the Nash-equilibrium rate pair
and the corresponding coding scheme is that:

If one user adheres to the current coding scheme, then
it’s impossible for the other user to achieve the reliable
communication at a rate higher than that supported by the
current coding scheme.

This is important in the interference communication sce-
nario. Suppose two users agree to communicate at a rate pair

on the boundary of the capacity region and one user adheres
to the contract. But the other user may secretly break the
contract and design a coding scheme which can support a
transmission rate higher than his current one. This action may
hurt the communication performance of the user who adheres
to the contract. However, if the agreement is made at the Nash-
equilibrium rate pair, then the user that adheres to the contract
don’t need to worry since the other user is not able to increase
his communication rate by breaking the contract and thus will
not have the incentive to do so. Note also that we assume both
users are selfish but not evil, i.e., the objective of each user
is to maximize his own transmission rate, not to deprive the
transmission rate of the other.

IV. CONCLUSION

Our model requires that both transmitter and receiver know
the state information, which seems unrealistic for most of real
communication systems. But in some biological systems, this
assumption can be justified. See Fig. 9
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Fig. 9. A communication model for a biological system

The main feature of Fig. 9 is that both the encoder and
decoder are inside the machine. In such a case, the state of
the machine is not only the state of the channel between the
encoder and the decoder, but also the state of the encoder and
decoder themselves. We can imagine that when such a system
is well-designed, which is fulfilled by evolution and natural
selection for biological system, the encoder and the decoder
can be matched to the channel between them.
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