Quiz 2

A sinusoidal voltage source of frequency 1 GHz drives the series combination of an impedance, $Z_{g}=50-j 14.8941 \Omega$, and a lossless transmission line of length L and a load impedance, $Z_{L}=25 \Omega$. The speed of the voltage wave in the transmission line is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and the line characteristic impedance is 50Ω. Determine the shortest line length L that will result in the voltage source driving a total impedance $\left(=Z_{g}+Z_{i n}\right)$ of 78.0846Ω.

Note: If you get a complex number with its real part less than 10^{-2}, ignore the real part and proceed with the imaginary part.

Wave impedance,

$$
Z_{w}(z)=Z_{0} \frac{Z_{L}-j Z_{0} \tan (\beta z)}{Z_{0}-j Z_{L} \tan (\beta z)}
$$

$$
\begin{aligned}
& \beta=\frac{2 \pi}{\lambda}=\text { wave number } \\
& \text { speed, } v=\lambda f
\end{aligned}
$$

$$
\begin{aligned}
& \beta=\frac{2 \pi}{\lambda}=\frac{2 \pi f}{v}=10 \pi \mathrm{rad} . \\
& Z_{i n}=Z_{0} \frac{Z_{L}-j Z_{0} \tan (\beta l)}{Z_{0}-j Z_{L} \tan (\beta l)} \\
& Z_{T}=Z_{g}+Z_{i n}=Z_{g}+Z_{0} \frac{Z_{L}-j Z_{0} \tan (\beta l)}{Z_{0}-j Z_{L} \tan (\beta l)} \\
& \frac{Z_{T}}{Z_{0}}\left(Z_{0}-j Z_{L} \tan (\beta l)\right)=\frac{Z_{g}}{Z_{0}}\left(Z_{0}-j Z_{L} \tan (\beta l)\right)+Z_{L}-j Z_{0} \tan (\beta l) \\
& Z_{T}-j \frac{Z_{T} Z_{L}}{Z_{0}} \tan (\beta l)=Z_{g}-j \frac{Z_{g} Z_{L}}{Z_{0}} \tan (\beta l)+Z_{L}-j Z_{0} \tan (\beta l) \\
& Z_{T}-Z_{g}-Z_{L}=j\left(\frac{Z_{T} Z_{L}}{Z_{0}}-\frac{Z_{g} Z_{L}}{Z_{0}}-Z_{0}\right) \tan (\beta l) \\
& 78.0846-(50-j 14.894)-25=j(39.04-25+j 7.447-50) \tan (\beta l) \\
& \tan (\beta l)=\frac{3.0846+j 14.894}{-7.447-j 35.96}=-0.414-j 1.473 * 10^{-6}
\end{aligned}
$$

The Imaginary part is ignored as $1.473 * 10^{-6} \ll 10^{-2}$

$$
\tan (10 \pi l)=-0.414 \rightarrow l_{\min }=0.0125 m
$$

Note

If the formula $Z_{w}(z)=Z_{0} \frac{Z_{L}-j Z_{0} \tan (\beta z)}{Z_{0}-j Z_{L} \tan (\beta z)}$ with negative sign is used then z is a positive number and show the length.

For the original formula $Z_{w}(z)=Z_{0} \frac{Z_{L}+j Z_{0} \tan (\beta z)}{Z_{0}+j Z_{L} \tan (\beta z)}$ with positive sign z is the point with reference to the $\mathrm{z}=0$ mostly at load end. Therefore z can be negative.

