Tutorial 1

Problem 1: Within a certain region, $\varepsilon=10^{-11} \mathrm{~F} / \mathrm{m}$ and $\mu=10^{-5} \mathrm{H} / \mathrm{m}$. If $B_{x}=2 \times 10^{-4} \cos 10^{5} t \sin 10^{-3} y \mathrm{~T}:$
(a) use $\nabla \times \mathbf{H}=\varepsilon \frac{\partial \mathbf{E}}{\partial t}$ to find \mathbf{E};
(b) find the total magnetic flux passing through the surface $x=0,0<y<40 \mathrm{~m}$,
$0<z<2 \mathrm{~m}$, at $t=1 \mu s ;$
(c) find the value of the closed line integral of \mathbf{E} around the perimeter of the given surface.

Solution:

(a) $H_{x}=\frac{B_{x}}{\mu}=\frac{2 \times 10^{-4} \cos 10^{5} t \sin 10^{-3} y}{10^{-5}}=20 \cos 10^{5} t \sin 10^{-3} y \quad \mathrm{~A} / \mathrm{m}$
$\nabla \times \mathbf{H}=-\frac{\partial H_{x}}{\partial y} \overrightarrow{\mathbf{z}}+\frac{\partial H_{x}}{\partial z} \overrightarrow{\mathbf{y}}=-0.02 \cos 10^{5} t \cos 10^{-3} y \overrightarrow{\mathbf{z}} \quad \mathrm{~A} / \mathrm{m}^{2}$
$\frac{\partial \mathbf{E}}{\partial t}=\frac{\nabla \times \mathbf{H}}{\varepsilon}=\frac{-0.02 \cos 10^{5} t \cos 10^{-3} y \overrightarrow{\mathbf{z}}}{10^{-11}}=-2 \times 10^{9} \cos 10^{5} t \cos 10^{-3} y \overrightarrow{\mathbf{z}} \quad \mathrm{~V} / \mathrm{ms}$
$\mathbf{E}=\int \frac{\partial \mathbf{E}}{\partial t} d t=-2 \times 10^{4} \sin 10^{5} t \cos 10^{-3} y \overrightarrow{\mathbf{z}} \quad \mathrm{~V} / \mathrm{m}$
(b) We assume that the integral surface direction (direction of $d \mathbf{S}$)is $+\vec{x}$, same as the flux density.

$$
\begin{aligned}
\Phi & =\iint_{S} \mathbf{B} \cdot d \mathbf{S}=\int_{0}^{40} \int_{0}^{2} B_{x} d z d y=\int_{0}^{2} d z \int_{0}^{40} 2 \times 10^{-4} \cos 10^{5} t \sin 10^{-3} y d y \\
& =2 \times 2 \times 10^{-4} \cos 10^{5} t \times\left.\left(-\frac{\cos 10^{-3} y}{10^{-3}}\right)\right|_{0} ^{40}=3.1996 \times 10^{-4} \cos 10^{5} t \quad \mathrm{~Wb}
\end{aligned}
$$

$\Phi(t=1 \mu s)=3.1996 \times 10^{-4} \cos \left(10^{5} \times 10^{-6}\right)=3.18 \times 10^{-4} \quad \mathrm{~Wb}$
(c) The line integral is taken along the counter clockwise direction (right hand rule based on the surface direction).

$$
\begin{aligned}
\oint_{L} \mathbf{E} \cdot d \mathbf{l} & =\int_{0}^{2} E_{z}(y=40) d z+\int_{2}^{0} E_{z}(y=0) d z \\
& =\int_{0}^{2}\left(-2 \times 10^{4} \sin 10^{5} t \cos (0.04)+2 \times 10^{4} \sin 10^{5} t\right) d z \\
& =2 \times 2 \times 10^{4} \sin 10^{5} t(-\cos (0.04)+1) \\
& =2 \times 2 \times 10^{4} \sin \left(10^{5} \times 10^{-6}\right) \times(1-\cos (0.04))=3.19 \quad V
\end{aligned}
$$

Or

$$
\begin{aligned}
\oint_{L} \mathbf{E} \cdot d \mathbf{l} & =e m f=-\frac{d \Phi}{d t} \\
& =3.1996 \times 10^{-4} \times 10^{5} \times \sin \left(10^{5} t\right)=3.1996 \times 10 \times \sin \left(10^{5} \times 10^{-6}\right)=3.19 \quad V
\end{aligned}
$$

Note that in the case of electrostatics, line integral about the closed loop is zero. However, in the case of time-vary field, the system is not conservative due to the presence of external magnetic source.

Figure 1
Problem 2 With reference to the sliding bar shown in Figure 2, let $\mathrm{d}=7 \mathrm{~cm}, \mathbf{B}=0.3 \overrightarrow{\mathbf{z}}$ T , and $\mathbf{v}=0.1 \grave{\mathbf{y}} e^{20 y} \mathrm{~m} / \mathrm{s}$. Let $\mathrm{y}=0$ at $\mathrm{t}=0$. Find
(a) $v(t=0)$;
(b) $y(t=0.1)$;
(c) $v(t=0.1)$;
(d) V_{12} at $\mathrm{t}=0.1$

Solution:

(a) $v(t=0)=0.1 e^{20 \times 0}=0.1 \mathrm{~m} / \mathrm{s}$
(b)
$v=0.1 e^{20 y}=\frac{d y}{d t} \Rightarrow e^{-20 y} d y=0.1 d t \Rightarrow \int_{0}^{y} e^{-20 y} d y=\left.\int_{0}^{t} 0.1 d t \Rightarrow \frac{e^{-20 y}}{-20}\right|_{0} ^{y}=\left.0.1 t\right|_{0} ^{t}$
$\Rightarrow e^{-20 y}-1=-2 t \Rightarrow y=-\frac{1}{20} \ln (1-2 t)$
$y(t=0.1)=-0.05 \times \ln (1-2 \times 0.1)=0.0112 m$
(c) $v=\frac{d y}{d t}=-\frac{1}{20} \frac{d}{d t} \ln (1-2 t)=\frac{1}{10(1-2 t)}$
$v(t=0.1)=\frac{1}{10(1-2 \times 0.1)}=0.125 \mathrm{~m} / \mathrm{s}$
(d) $V_{12}=e m f=-\frac{d \Phi}{d t}=-B_{0} \frac{d y}{d t} d=-B_{0} v d=-0.3 \times 0.125 \times 0.07=-0.002625 \mathrm{~V}$

Figure 9.1 An example illustrating the application of Faraday's law to the case of a constant magnetic flux density B and a moving path. The shorting bar moves to the right with a velocity v , and the circuit is completed through the two rails and an extremely small high-resistance voltmeter. The voltmeter reading is $V_{12}=-B v d$.

Figure 2
Problem 3 A rectangular loop of wire containing a high-resistance voltmeter has corners initially at $(\mathrm{a} / 2, \mathrm{~b} / 2,0),(-\mathrm{a} / 2, \mathrm{~b} / 2,0),(-\mathrm{a} / 2,-\mathrm{b} / 2,0)$, and $(\mathrm{a} / 2,-\mathrm{b} / 2,0)$. The loop begins to rotate about the x axis at constant angular velocity ω, with the first-named corner moving in the $+\overrightarrow{\mathbf{z}}$ direction at $\mathrm{t}=0$. Assume a uniform magnetic flux density $\mathbf{B}=B_{0} \overrightarrow{\mathbf{z}}$. Determine the induced emf in the rotating loop and specify the direction of the current.

Solution:

Assume the direction of the loop wire's surface is $+\overrightarrow{\mathbf{z}}$ at $\mathrm{t}=0$, then the angle between surface direction vector and the flux density should be $\theta=\omega t$, then

$$
\Phi=\int_{S} \mathbf{B} \cdot d \mathbf{S}=B_{0} S \cos (\theta)=B_{0} a b \cos (\omega t) \Rightarrow e m f=-\frac{d \Phi}{d t}=B_{0} a b \omega \sin (\omega t) \quad \mathrm{V}
$$

Decide the direction of current with Lenz's law: if an induced current flows, its direction is always such that it will oppose the change which produced it. In Figure 4:

1) When θ changes from 0 to $\pi / 2$, original flux through the loop decreases, this change of flux will generate a current, and the current will generate a flux to oppose the decreasing, so the induced flux must have the +z direction component. From the right hand rule, the current should be A->B->C->D.
2) When θ changes from $\pi / 2$ to π, original flux through the loop increases, this change of flux will generate a current, and the current will generate a flux to oppose the increasing, so the induced flux must have the -z direction component. From the right hand rule, the current should be $\mathrm{A}->\mathrm{B}->\mathrm{C}->\mathrm{D}$.
3) When θ changes from π to $3 \pi / 2$, original flux through the loop decreases, this change of flux will generate a current, and the current will generate a flux to oppose the decreasing, so the induced flux must have the +z component. From the right hand rule, the current should be A->D->C->B.
4) When θ changes from $3 \pi / 2$ to π, original flux through the loop increases, this change of flux will generate a current, and the current will generate a flux to oppose the increasing, so the induced flux must have the -z component. From the right hand rule, the current should be A->D->C->B.

Figure 3

Figure 4

