Tutorial 7

Problem 1. A $50-\Omega$ lossless transmission line is terminated by a load impedance $Z_{L}=50-j 75 \Omega$. If the incident power is 100 mW , find the power dissipated by the load.
Solution: The reflection coefficient is

$$
\begin{aligned}
& \Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{50-j 75-50}{50-j 75+50}=0.36-j 0.48=0.6 e^{-j 0.93} \\
& P_{t}=\left(1-|\Gamma|^{2}\right) P_{i n}=\left(1-0.6^{2}\right) 100=64 \mathrm{~mW}
\end{aligned}
$$

Problem 2. The characteristics of a certain lossless transmission line are $Z_{0}=50 \Omega$ and $\gamma=0+j 0.2 \pi \mathrm{~m}^{-1}$ at $f=60 \mathrm{MHz}$
(a) Find L and C for the line;
(b) A load $Z_{L}=60+j 80 \Omega$ is located at $z=0$. What is the shortest distance from the load to a point at which $Z_{i n}=R_{i n}+j 0$?

Solution:

(a)

$$
\begin{aligned}
& Z=R+j \omega L=j \omega L \quad Y=G+j \omega C=j \omega C \\
& \gamma=\sqrt{Z Y}=j \omega \sqrt{L C} \Rightarrow \sqrt{L C}=\frac{\gamma}{j \omega} \\
& Z_{0}=\sqrt{\frac{Z}{Y}}=\sqrt{\frac{L}{C}} \\
& L=\sqrt{L C} \cdot \sqrt{\frac{L}{C}}=\frac{\gamma}{j \omega} Z_{0}=\frac{0+j 0.2 \pi}{j 2 \pi \times 60 \times 10^{6}} \times 50=8.333 \times 10^{-8} \mathrm{H} / \mathrm{m}=83.33 \mathrm{nH} / \mathrm{m} \\
& \mathrm{C}=\frac{\sqrt{L C}}{\sqrt{L / C}}=\frac{\gamma}{j \omega Z_{0}}=\frac{0+j 0.2 \pi}{j 2 \pi \times 60 \times 10^{6} \times 50}=3.333 \times 10^{-11} \mathrm{~F} / \mathrm{m}=33.33 \mathrm{pF} / \mathrm{m}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& Z_{i n}=Z_{0} \frac{Z_{L}+j Z_{0} \tan (\beta z)}{Z_{0}+j Z_{L} \tan (\beta z)}=50 \frac{(60+j 80)+j 50 \tan (\beta z)}{50+j(60+j 80) \tan (\beta z)} \\
& =50 \frac{60+j(80+50 \tan (\beta z))}{50-80 \tan (\beta z)+j 60 \tan (\beta z)}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Im}\left(Z_{i n}\right)=50 \frac{(80+50 \tan (\beta z))(50-80 \tan (\beta z))-60 \times 60 \tan (\beta z)}{(50-80 \tan (\beta z))^{2}+(60 \tan (\beta z))^{2}}=0 \\
& \Rightarrow \tan ^{2}(\beta z)+1.875 \tan (\beta z)-1=0 \\
& \Rightarrow \tan (\beta z)=\frac{-1.875 \pm \sqrt{1.875^{2}+4}}{2}=0.4332 \text { or }-2.3082 \\
& \Rightarrow \beta z \pm n \pi=0.4088 \text { or }-1.1620 \\
& \Rightarrow z=0.65 \pm 5 n \text { or }-18494 \pm 5 n \\
& z_{\min }=-1.8494 \mathrm{~m}\left(z_{\min }<0\right)
\end{aligned}
$$

Problem 3. A sinusoidal voltage source drives the series combination of an impedance, $Z_{g}=50-j 50 \Omega$, and a lossless transmission line of length L, shorted at the load end.

The line characteristic impedance is 50Ω, and wavelength λ is measured on the line. (a) Determine, in terms of wavelength, the shortest line length that will result in the voltage source driving a total impedance of 50Ω. (b) Will other line lengths meet the requirements of part (a)? If so, what are they?

Solution:

$$
Z_{\text {tot }}=Z_{g}+Z_{i n}=50-50 j+Z_{i n}=50 \Rightarrow Z_{i n}=50 j \Omega
$$

$Z_{L}=0, Z_{0}=50 \Omega \Rightarrow$
$Z_{\text {in }}=Z_{0} \frac{Z_{L} \cos (\beta l)+j Z_{0} \sin (\beta l)}{Z_{0} \cos (\beta l)+j Z_{L} \sin (\beta l)}=j 50 \tan (\beta l)=j 50 \Rightarrow \tan (\beta l)=1$
$\beta l=\frac{2 \pi}{\lambda} l=\frac{\pi}{4}+n \pi, n=0,1,2 \cdots \Rightarrow l=\frac{\lambda}{8}+n \frac{\lambda}{2}, n=0,1,2 \cdots$
$l_{\text {min }}=\frac{\lambda}{8}$

