\qquad Signature \qquad

Elec Eng 3FK4

Dr. S. Kumar
DAY CLASS
DURATION OF EXAMINATION: 2.5 Hours
MCMASTER UNIVERSITY FINAL EXAMINATION
14 December, 2015
THIS EXAMINATION PAPER INCLUDES $\underline{7}$ PAGES AND $\underline{7}$ QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

Aids allowed: Use of Casio FX-991 calculator only is allowed. No books or papers of any kind.

Answer: Answer all questions.
Answer questions in Answer Booklet/s provided.
Marking: Marks are shown at the end of each question.
This paper must be returned with your answers.

START OF EXAM QUESTIONS

1. Find the amplitude of the displacement current density:
(a) adjacent to an automobile antenna where the magnetic field intensity of an FM signal is $H_{x}=0.25 \cos \left[3.12\left(3 \times 10^{8} t-y\right)\right] \mathrm{A} / \mathrm{m}$;
(b) in the air space at a point within a large power distribution transformer where $\mathbf{B}=1.2 \cos \left[1.257 \times 10^{-6}\left(3 \times 10^{8} t-x\right)\right] \overrightarrow{\mathbf{y}} \mathrm{T} ;$
(c) within a large, oil-filled power capacitor where $\varepsilon_{r}=5$ and $\mathbf{E}=0.5 \cos \left[1.257 \times 10^{-6}\left(3 \times 10^{8} t-z \sqrt{5}\right)\right] \overrightarrow{\mathbf{x}} \mathrm{MV} / \mathrm{m}$;
(d) in a metallic conductor at 60 Hz , if $\varepsilon=\varepsilon_{0}, \mu=\mu_{0}, \sigma=5.8 \times 10^{7} \mathrm{~S} / \mathrm{m}$, and conduction current density
$\mathbf{J}=2 \sin (377 t-117.1 z) \overrightarrow{\mathbf{x}} \mathrm{MA} / \mathrm{m}^{2}$.
Comment on the magnitudes of conduction current density and displacement current density in this example.
2. With reference to the sliding bar shown in Figure 1, let the length of the sliding bar $d=7 \mathrm{~cm}$, magnetic flux density $\mathbf{B}=0.3 \overrightarrow{\mathbf{z}} \quad \mathrm{~T}$, and velocity of the sliding bar $\mathbf{v}=0.1 e^{20 y} \overrightarrow{\mathbf{y}} \mathrm{~m} / \mathrm{s}$. Let $\mathrm{y}=0 \mathrm{~m}$ at $\mathrm{t}=0 \mathrm{~s}$. Find
(a) $\mathbf{v}(t=0 \mathrm{~s})$;
(b) $y(t=0.1 s)$;
(c) $\mathbf{v}(t=0.1 \mathrm{~s})$;
(d) Voltage V_{12} at $\mathrm{t}=0.1 \mathrm{~s}$.

Figure 9.1 An example illustrating the application of Faraday's law to the case of a constant magnetic flux density B and a moving path. The shorting bar moves to the right with a velocity v , and the circuit is completed through the two rails and an extremely small high-resistance voltmeter. The voltmeter reading is $V_{12}=-B v d$.

Fig. 1

3. Draw an equivalent circuit of a transmission line and show that
$\frac{d V_{s}}{d z}=-(R+j \omega L) I_{s}$,
$\frac{d I_{s}}{d z}=-(G+j \omega C) V_{s}$
5.5 marks
4. Explain the meaning of impedance matching. Suppose you need to connect two dissimilar lines of characteristic impedances Z_{01} and Z_{02}. You need to insert a short transmission line so that there is no reflected wave going towards the source. Find the length and characteristic impedance of the short line. Assume that the line 2 (with the impedance Z_{02}) is connected to a load impedance that is matched to the line 2.
5.5 marks
5. In Figure 2, characteristic impedance $Z_{0}=50 \Omega ; R_{g}=R_{L}=Z_{0} / 3$. The battery voltage is $V_{0}=10 \mathrm{~V}$. The switch is closed at time $t=0$. The length of the transmission line is l and the speed of the voltage wave is v. Draw the voltage and current reflection diagrams. Determine the line voltage and the line current at
$z=3 l / 4$ as functions of time (include terms up to $\left.V_{2}^{-}\left(I_{2}^{-}\right)\right)$. Plot the line voltage and line current at $z=3 l / 4$ as functions of time. What are the steady state load voltage and load current?

Fig. 2
6. In a good conductor, the electric field amplitude decreases exponentially with distance, as given by
$E_{x}=A \exp (-\alpha z) \cos (\omega t-\beta z)$,
$j k=\alpha+j \beta$,
$k^{2}=-j \omega \mu(\sigma+j \omega \varepsilon)$.
Show that
$\alpha=\beta=\sqrt{\pi f \mu \sigma}$
and derive an expression for skin depth, δ.
7. Explain the meaning of:
(i) Voltage standing wave ratio (VSWR). How would you calculate the characteristic impedance of a transmission line using the measured VSWR and the location of first maximum/minimum?
(ii) Speed and propagation constant (= wave number) of a plane wave (solution of Maxwell's equations)
(iii) Perfect dielectric, lossy dielectric, good conductor and perfect conductor.

Useful information on the following four pages

Useful information

Speed of light in vacuum c $=2.99793 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\varepsilon_{0}=$ free space permeability $=8.854 \times 10^{-12} \mathrm{H} / \mathrm{m}$
$\mu_{0}=$ free space permeability $=4 \pi \times 10^{-7} \mathrm{~F} / \mathrm{m}$

Faraday's Law:

$$
\begin{aligned}
\text { Emf } & =-\frac{d \psi}{d t} \text { where } \psi=\text { magnetic flux. } \\
\psi & =\int_{S} \vec{B} \cdot d \vec{S} \quad \operatorname{Emf}=\oint_{L} \vec{E} \cdot d \vec{L}
\end{aligned}
$$

Faraday's law in point form:
$\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
$\nabla \times \vec{E}=\left(\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}\right) \vec{x}+\left(\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}\right) \vec{y}+\left(\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}\right) \vec{z}$

Ampere's Law (Magnetostatics):

Integral form:
$\oint_{L} \vec{H} \cdot d \vec{L}=I$

Ampere-Maxwell Law

Integral form:
$\oint_{L} \vec{H} \cdot d \vec{L}=I+I_{d}$
$I_{d}=$ displacement current
Maxwell's equations:
Differential form:
$\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
Differential form:

$$
\begin{aligned}
& \nabla \times \vec{H}=\vec{J} \\
& I=\int_{s} \vec{J} \cdot \overrightarrow{d S}
\end{aligned}
$$

Differential form:

$$
\nabla \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}
$$

$\nabla \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}$

$$
\oint_{L} \vec{H} \cdot d \vec{L}=I+I_{d}
$$

$\nabla \cdot \vec{D}=\rho$
$\nabla \cdot \vec{B}=0$

$$
\begin{aligned}
& \oint_{s} \vec{D} \cdot \overrightarrow{d s}=q \\
& \oint_{s} \vec{B} \cdot \overrightarrow{d s}=0
\end{aligned}
$$

$\vec{B}=\mu \vec{H} \quad \vec{D}=\varepsilon \vec{E} \quad \vec{J}=\sigma \vec{E}$
Permittivity, $\varepsilon=\varepsilon_{0} \varepsilon_{r}$
Permeability, $\mu=\mu_{0} \mu_{r}$
Wave equation:
$\frac{\partial^{2} E_{x}}{\partial z^{2}}-\mu \varepsilon \frac{\partial^{2} E_{x}}{\partial t^{2}}=0$
Speed of EM wave in a medium, $v=\frac{1}{\sqrt{\mu \varepsilon}}$
$v=\frac{c}{n}, \quad n=\sqrt{\varepsilon_{r} \mu_{r}}$
Phasor Form:
$E_{x}=\operatorname{Re}\left\{E_{x s} \exp (j \omega t)\right\}$
$H_{y}=\operatorname{Re}\left\{H_{y s} \exp (j \omega t)\right\}$
$E_{x s}$ and $H_{y s}$ are phasors corresponding to E_{x} and H_{y}, respectively.
$\frac{d^{2} E_{\chi s}}{d z^{2}}=-k^{2} E_{\chi s}$
$k^{2}=-j \omega \mu(\sigma+j \omega \varepsilon) E_{x s}$
Propagation in dielectrics and conductors:
The plane wave in a perfect dielectric medium is given by
$E_{x}=E_{x 0} \cos (\omega t-\beta z)$
$H_{y}=H_{y 0} \cos (\omega t-\beta z)$
$\frac{E_{x 0}}{H_{y 0}}=\eta=\left(\frac{\mu}{\varepsilon}\right)^{1 / 2}$
$\frac{\omega}{\beta}=v=$ speed of EM wave
$\beta=\frac{2 \pi}{\lambda}=$ wave number
$v=\lambda f$
$\lambda_{m}=\lambda_{0} / n$
λ_{0} is the wavelength in free space, $\lambda_{m}=$ wavelength in a medium
The plane wave in a lossy dielectric medium is

$$
\begin{aligned}
& E_{x}=E_{x 0} \exp (-\alpha z) \cos (\omega t-\beta z) \\
& H_{y}=H_{y 0} \exp (-\alpha z) \cos (\omega t-\beta z) \\
& \alpha=\operatorname{Re}(j k)=\omega \sqrt{\frac{\mu \varepsilon^{\prime}}{2}}\left(\sqrt{1+\left(\frac{\varepsilon^{\prime \prime}}{\varepsilon^{\prime}}\right)^{2}}-1\right)^{1 / 2} \\
& \beta=\operatorname{Im}(j k)=\omega \sqrt{\frac{\mu \varepsilon^{\prime}}{2}}\left(\sqrt{1+\left(\frac{\varepsilon^{\prime \prime}}{\varepsilon^{\prime}}\right)^{2}}+1\right)^{1 / 2}
\end{aligned}
$$

$\frac{E_{x 0}}{H_{y 0}}=\eta=\left(\frac{\mu}{\varepsilon^{\prime}-j \varepsilon^{\prime \prime}}\right)^{1 / 2}$
The plane wave in a good conductor is
$E_{x}=E_{x 0} \exp (-\alpha z) \cos (\omega t-\beta z)$
$H_{y}=H_{y 0} \exp (-\alpha z) \cos (\omega t-\beta z)$
$\alpha=\beta=\sqrt{\pi f \mu \sigma}$
Skin depth
$\delta=1 / \alpha$
Loss tangent
$\tan \theta=\frac{\sigma}{\omega \varepsilon^{\prime}}$
Transmission Lines:
$\frac{d^{2} V_{s}}{d z^{2}}=\gamma^{2} V_{s}$
$\gamma^{2}=Z Y$
$Z=R+j \omega L$
$Y=G+j \omega C$
For the loss less case, speed v and characteristic impedance Z_{0} are
$v=\frac{1}{\sqrt{L C}} \quad \mathrm{Z}_{0}=\sqrt{\frac{L}{C}}$
In general,
$\mathrm{Z}_{0}=\sqrt{\frac{Z}{Y}}$
Power loss (dB) $=8.69 \alpha \mathrm{Z}$
Reflection coefficient and VSWR
$\Gamma=\frac{V^{-}}{V^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \quad s=\frac{1+|\Gamma|}{1-|\Gamma|}$
Wave impedance,
$Z_{w}(z)=Z_{0} \frac{Z_{L}-j Z_{0} \tan (\beta z)}{Z_{0}-j Z_{L} \tan (\beta z)}$
Plane wave reflection
Reflection coefficient

$$
\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}
$$

Transmission coefficient
$\tau=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}$
The wave impedance
$\eta_{w}(z)=\eta_{2} \frac{\eta_{3}-j \eta_{2} \tan \left(\beta_{2} z\right)}{\eta_{2}-j \eta_{3} \tan \left(\beta_{2} z\right)}$
Trigonometric identities
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\exp (j A)=\cos A+j \sin A$

THE END

