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2.10

State the necessary and sufficient conditions for the minimum of a func-
tion f(x).

Under what circumstances can the condition df(x)/dx = 0 not be used
to find the minimum of the function f(x)?

Define the rth differential, d'f(X), of a multivariable function f(X).
Write the Taylor’s series expansion of a function f(X).

State the necessary and sufficient conditions for the maximum of a mul-
tivariable function f(X).

What is a quadratic form?

How do you test the positive, negative, or indefiniteness of a square
matrix [4]?

Define a saddle point and indicate its significance.

State the various methods available for solving a multivariable optimi-
zation problem with equality constraints.

State the principle behind the method of constrained variation.
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What is the Lagrange multiplier method?
What is the significance of Lagrange multipliers?

Convert an inequality constrained problem into an equivalent uncon-
strained problem.

State the Kuhn-Tucker conditions.

What is an active constraint?

Define a usable feasible direction.

What is a convex programming problem? What is its significance?
Answer whether each of the following quadratic forms is positive def-
inite, negative definite, or neither.

@ f=xi~x3

b) f=4xx,

© f=xi+ 24}

) f= —x3 + 4x;x, + 4x3

@ f= —x7 + 4x;x; — W3 + 2x;x3 + 8xyx3 — 4x3

State whether each of the following functions is convex, concave, or
neither.

(@ f=—-2x>+ 8 + 4

b)) f=x>+10x + 1

© f=xi—x}

@ f= —xi +4xx,

€@ f=e5 x>0

) f=vx>0

@® f=xx
) f= @ — 1)+ 10(x, — 2)°

2.20 Match the following equations and their characteristics.
@ f=4x - 3x, +2 Relative maximum at (1, 2)
®) f=2x; — 2" + (x; — 2)? Saddle point at origin
© f=—( — 1> - (x, — 2> No minimum
@ f=xx Inflection point at origin
© f=x° Relative minimum at (1, 2)
PROBLEMS

2.1

A dc generator has an internal resistance R ohms and develops an open-
circuit voltage of V volts (Fig. 2.10). Find the value of the load resis-
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—» Figure 2.10 Electric generator with load.

tance r for which the power delivered by the generator will be a maxi-
mum.

Find the maxima and minima, if any, of the function

4

X
TR )

Find the maxima and minima, if any, of the function
f@) = 4x> - 18x% + 27x — 7
The efficiency of a screw jack is given by

_ tan o
T n (@ + ¢)

where « is the lead angle and ¢ is a constant. Prove that the efficiency
of the screw jack will be maximum when a = 45° — ¢/2 with 9, =
(1 — sin ¢)/(1 + sin ¢).

Find the minimum of the function

fx) = 10x® — 48x° + 15x* + 200x> — 120x% — 480x + 100

Find the angular orientation of a cannon to maximize the range of the
projectile.

In a submarine telegraph cable the speed of signalling varies as x°

log(1/x), where x is the ratio of the radius of the core to that of the
covering. Show that the greatest speed is attained when this ratio is

1:e.
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The horsepower generated by a Pelton wheel is proportional to u(V —
u), where u is the velocity of the wheel, which is variable, and V is the
velocity of the jet, which is fixed. Show that the efficiency of the Pelton
wheel will be maximum when u = V/2.

A pipe of length / and diameter D has at one end a nozzle of diameter
d through which water is discharged from a reservoir. The level of water
in the reservoir is maintained at a constant value h above the center of
nozzle. Find the diameter of the nozzle so that the kinetic energy of the
jet is a maximum. The kinetic energy of the jet can be expressed as

26D°%h  \*"?
<D5 + 4f1d4>

where p is the density of water, fthe friction coefficient and g the grav-
itational constant.

1
2 wpd?

An electric light is placed directly over the center of a circular plot of
lawn 100 m in diameter. Assuming that the intensity of light varies
directly as the sine of the angle at which it strikes an illuminated sur-
face, and inversely as the square of its distance from the surface, how
high should the light be hung in order that the intensity may be as great
as possible at the circumference of the plot?

If a crank is at an angle § from dead center with § = wt, where w is the
angular velocity and ¢ is time, the distance of the piston from the end
of its stroke (x) is given by
2
x=r(l — cosb) +Il(1 — cos 26)

where r is the length of the crank and / is the length of the connecting
rod. For r = 1 and [ = 5, find (a) the angular position of the crank at
which the piston moves with maximum velocity, and (b) the distance
of the piston from the end of its stroke at that instant.

Determine whether each of the following matrices is positive definite, negative
definite, or indefinite by finding its eigenvalues.

3 1 -1

212 [4l=| 1 3 -1
-1 -1 5]

4 2 —4]

213 [Bl=| 2 4 -2
| -4 -2 4]
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-1 -1 -1
214 [C]1=]|—-1 -2 =2
-1 -2 -3

Determine whether each of the following matrices is positive definite, negative
definite, or indefinite by evaluating the signs of its submatrices.

3 1 -1

2,15 [A] = 1 3 -1
-1 -1 5]

[ 4 2 -4

216 [Bl=( 2 4 -2
L-4 -2 4]

-1 -1 -1

217 [C}j=]-1 -2 =2
-1 -2 -3

2.18 Express the function
JfO1x0,x3) = —x% - x% + 2x,x, — x% + 6x)x3 + 4x; — Sx3 + 2
in matrix form as

fX)=3X"[4A]X + B"X + C

and determine whether the matrix [A] is positive definite, negative def-
inite, or indefinite.

2.19 Determine whether the following matrix is positive or negative definite.

4 -3 0
[M]=|-3 0 4
0 42

2.20 Determine whether the following matrix is positive definite.

~14 30
M1=| 3 -1 4
0 4 2
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Figure 2.11 Two-bar truss.

The potential energy of the two-bar truss shown in Fig. 2.11 is given
by

EA[1V EA (h\’
S, x) = — <—> 3+ = <—> x3 — Px; cos 6 — Px, sin 0
s \2s s \s

where E is Young’s modulus, A the cross-sectional area of each mem-
ber, [ the span of the truss, s the length of each member, A the height
of the truss, P the applied load, 6 the angle at which the load is applied,
and x, and x, are, respectively, the horizontal and vertical displacements
of the free node. Find the values of x, and x, that minimize the potential
energy when E = 207 X 10°Pa, A = 10°m*, I = 1.5m, h = 4.0
m, P = 10* N, and 6 = 30°.

The profit per acre of a farm is given by
20x; + 26x, + 4x,x, — 4x] — 3x3

where x; and x, denote, respectively, the labor cost and the fertilizer
cost. Find the values of x, and x, to maximize the profit.

The temperatures measured at various points inside a heated wall are as
follows:

Distance from the heated surface as a
percentage of wall thickness, d 0 25 50 75 100

Temperature, t (°C) 380 200 100 20 0



PROBLEMS 119

2.24

2.25

2.26

2.27

2.28

It is decided to approximate this table by a linear equation (graph) of
the form t = a + bd, where a and b are constants. Find the values of
the constants a and b that minimize the sum of the squares of all dif-
ferences between the graph values and the tabulated values.

Find the second-order Taylor’s series approximation of the function
fanx) = (6 — Dle® + x

at the points (a) (0,0) and (b) (1,1).

Find the third-order Taylor’s series approximation of the function
fGx1x0,x3) = X5x; + x1€"

at point (1,0, —2).

The volume of sales (f) of a product is found to be a function of the
number of newspaper advertisements (x) and the number of minutes of
television time (y) as

f=12xy — x* = 3y?

Each newspaper advertisement or each minute on television costs $1000.
How should the firm allocate $48,000 between the two advertising me-
dia for maximizing its sales?

Find the value of x* at which the following function attains its maxi-
mum:

e-(l/2) [(x — 100)/10]2

It is possible to establish the nature of stationary points of an objective
function based on its quadratic approximation. For this, consider the
quadratic approximation of a two-variable function as

fX) = a +b'X + 3 X[c] X

X b ¢y C
X = { 1}’ _ { 1}, and [c] = [ 11 12]
X2 b, Ci2 Cn

If the eigenvalues of the Hessian matrix, [c], are denoted as 3, and 3,,

where



120

CLASSICAL OPTIMIZATION TECHNIQUES

identify the nature of the contours of the objective function and the type
of stationary point in each of the following situations.

(@) B, = B,; both positive

(b) 3, > B,; both positive

(© |B1] = |B,]; B; and B, have opposite signs
@ B > 0,62 =0

Plot the contours of each of the following functions and identify the nature of
its stationary point.

2.29
2.30
2.31
2.32

2.33

2.34

2.35

2.36

2.37

2.38

f=2-x>—y*+ 4xy
f-—-2+)c2—y2
f=xy

f=x3—3xy2

Find the admissible and constrained variations at the point X = {2}

for the following problem:
Minimize f = x? + (x, — 1)
subject to
2 +x, =4

Find the diameter of an open cylindrical can that will have the maxi-
mum volume for a given surface area, S.

A rectangular beam is to be cut from a circular log of radius r. Find the
cross-sectional dimensions of the beam to (a) maximize the cross-sec-
tional area of the beam, and (b) maximize the perimeter of the beam
section.

Find the dimensions of a straight beam of circular cross section that can
be cut from a conical log of height 4 and base radius r to maximize the
volume of the beam.

The deflection of a rectangular beam is inversely proportional to the
width and the cube of depth. Find the cross-sectional dimensions of a
beam, which corresponds to minimum deflection, that can be cut from
a cylindrical log of radius r.

A rectangular box of height a and width b is placed adjacent to a wall
(Fig. 2.12). Find the length of the shortest ladder that can be made to
lean against the wall.



PROBLEMS 121
4
“
&
Al
v
A/
o
d ,
;7 4
Ladder .’ ;
\//’ 4
A4 L
77
A4 f
, 7 V
A4 4
V4 “
7 V
- I f
;7 4
al A
,/, . f
7al | D g
Y y
VARV A A S GV GV G G Gl A AV GV G G G B 4
Figure 2.12 Ladder against a wall.
2.39 Show that the right circular cylinder of given surface (including the

2.40

241

2.42

2.43

2.44

245

ends) and maximum volume is such that its height is equal to the di-
ameter of the base.

Find the dimensions of a closed cylindrical soft drink can that can hold
soft drink of volume V for which the surface area (including the top and
bottom) is a minimum.

An open rectangular box is to be manufactured from a given amount of
sheet metal (area S). Find the dimensions of the box to maximize the
volume.

Find the dimensions of an open rectangular box of volume V for which
the amount of material required for manufacture (surface area) is a min-
imum.

A rectangular sheet of metal with sides a and b has four equal square
portions (of side d) removed at the corners, and the sides are then turned
up so as to form an open rectangular box. Find the depth of the box
that maximizes the volume.

Show that the cone of the greatest volume which can be inscribed in a
given sphere has an altitude equal to two-thirds of the diameter of the
sphere. Also prove that the curved surface of the cone is a maximum
for the same value of the altitude.

Prove Theorem 2.6.
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A log of length / is in the form of a frustum of a cone whose ends have
radii a and b (@ > b). It is required to cut from it a beam of uniform
square section. Prove that the beam of greatest volume that can be cut
has a length of al/[3(a — b)].

It has been decided to leave a margin of 30 mm at the top and 20 mm
each at the left side, right side, and the bottom on the printed page of
a book. If the area of the page is specified as 5 x 10* mm?, determine
the dimensions of a page that provide the largest printed area.

Minimize f = 9 — 8x; — 6x, — 4x; + 2x3
+ 2x% + x% + ZX|X2 + lex:x,

subject to

x1+x2+2x3=3

by (a) direct substitution, (b) constrained variation, and (¢) Lagrange
multiplier method.

Minimize f(X) = %(x% + x3 + x3)
subject to

8iX) =x, —x =0
&X)=x+x+x-1=0
by (a) direct substitution, (b) constrained variation, and (¢) Lagrange
multiplier method.

Find the values of x, y, and z that maximize the function

6xyz

fxyn) = P

when x, y, and z are restricted by the relation xyz = 16.

A tent on a square base of side 2a consists of four vertical sides of
height b surmounted by a regular pyramid of height k. If the volume
enclosed by the tent is V, show that the area of canvas in the tent can
be expressed as

g/~§g—h+4a«/hz+az
a
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2.58

2.59

Also show that the least area of the canvas corresponding to a given
volume V, if a and h can both vary, is given by

J5h
a= > and h = 2b

A departmental store plans to construct a one-story building with a rect-
angular planform. The building is required to have a floor area of 22,500
ft* and a height of 18 ft. It is proposed to use brick walls on three sides
and a glass wall on the fourth side. Find the dimensions of the building
to minimize the cost of construction of the walls and the roof assuming
that the glass wall costs twice as much as that of the brick wall and the
roof costs three times as much as that of the brick wall per unit area.

Find the dimensions of the rectangular building described in Problem
2.52 to minimize the heat loss assuming that the relative heat losses per
unit surface area for the roof, brick wall, glass wall, and floor are in
the proportion 4:2:5:1.

A funnel, in the form of a right circular cone, is to be constructed from
a sheet metal. Find the dimensions of the funnel for minimum lateral
surface area when the volume of the funnel is specified as 200 in®.

Find the effect on f* when the value of A4, is changed to (a) 257 and
(b) 227 in Example 2.10 using the property of the Lagrange multiplier.

(a) Find the dimensions of a rectangular box of volume V = 1000 in®
for which the total length of the 12 edges is a minimum using the
Lagrange multiplier method.

(b) Find the change in the dimensions of the box when the volume is
changed to 1200 in® by using the value of A* found in part (a).

(¢) Compare the solution found in part (b) with the exact solution.

Find the effect on f* of changing the constraint to (a) x + x, + 2x; =
4 and (b) x + x, + 2x3 = 2 in Problem 2.48. Use the physical meaning
of Lagrange multiplier in finding the solution.

A real estate company wants to construct a multistory apartment build-
ing on a 500 ft X 500 ft lot. It has been decided to have a total floor
space of 8 X 10° ft>. The height of each story is required to be 12 ft,
the maximum height of the building is to be restricted to 75 ft, and the
parking area is required to be at least 10% of the total floor area ac-
cording to the city zoning rules. If the cost of the building is estimated
at $(500,000h + 2000F + 500P), where h is the height in feet, F is
the floor area in square feet, and P is the parking area in square feet.
Find the minimum cost design of the building.

Identify the optimum point among the given design vectors, X;, X,,
and X;, by applying the Kuhn-Tlucker conditions to the following
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problem:
Minimize f(X) = 100(x, — x})*> + (1 — x,)?

subject to

2.60 Consider the following optimization problem:
Maximize f = —x7 — x3 + x;x, + Tx; + 4x,

subject to
2x1 + 3.X'2 =24
—5x; + 12x, < 24

leO, X220, XZS4

Find a usable feasible direction at each of the following design vectors:

IR

2.61 Consider the following problem:
Minimize f = (x; — 2)* + (x, — 1)?
subject to
2zZx +tx
X, = x?

Using Kuhn-Tucker conditions, find which of the following vectors are
local minima:

RIS IR
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Using Kuhn-Tucker conditions, find the value(s) of 8 for which the
point x{ = 1, x§ = 2 will be optimal to the problem:

Maximize f(x,x;) = 2x; + Bx,
subject to

gl =x1+x3-5=<0

G, =x—x—-2=<0

Verify your result using a graphical procedure.

Consider the following optimization problem:
Maximize f = —x; — x,
subject to

x%+X222
4SXI+3XZ

x +x3 <30

1
(a) Find whether the design vector X = {1} satisfies the Kuhn-Tucker

conditions for a constrained optimum.

(b) What are the values of the Lagrange multipliers at the given design
vector?

Consider the following problem:
Minimize f(X) = x3 + x3 + x3
subject to
X +x +x2=25
2 —-xx;<0
x, =0, x, = 0, X3 =2

Determine whether the Kuhn-Tucker conditions are satisfied at the fol-
lowing points:
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3 3 2
Xl = % s X2 = % ’ X3 -
2 3 2

-1
2.65 Find a usable and feasible direction S at (a) X, = { 5} and (b) X, =

2
{3} for the following problem:

Minimize f(X) = (x;, — 1) + (x, — 5)
subject to

gX)=-x}+x,-4<0
g:(X) = —(x, —2)2+x2—3 =0

2.66 Consider the following problem:
Minimize f = x? — x,
subject to

26 = x7 + x3
X|+x226

X1 = 0
Determine whether the following search direction is usable, feasible, or

both at the design vector X = {?}

N N

2.67 Consider the following problem:
Minimize f = x} — 6x3 + 11x; + x5

subject to
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x%+x§—x§so

4-—x%—-x%—x§sO

X = O, i = 1,2,3, X3 < 5

Determine whether the following vector represents an optimum solu-

tion:
0
X =42
V2
2.68 Minimize f = x} + 2x3 + 3x2

subject to the constraints
81 =X — X —2x; < 12
& =x +2x —3x; < 8§
using Kuhn-Tucker conditions.
2.69 Minimize f(x;,%;) = (x; — 1)* + (x, — 5)?

subject to

by (a) the graphical method and (b) Kuhn-Tucker conditions.

2.70 Maximize f = 8x;, + 4x, + x1x; — xf - x%

subject to
26 + 3x, < 24
=5x, + 12x, = 24
X =95
by applying Kuhn-Tucker conditions.
2.71 Consider the following problem:

Maximize f(x) = (x — 1)?
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subject to

—2=x=<4

Determine whether the constraint qualification and Kuhn-Tucker con-
ditions are satisfied at the optimum point.

2.72 Consider the following problem:
Minimize f = (x, — 1)* + (x, — 1)
subject to
26,-(1-x) =<0

xIZO

X2ZO

Determine whether the constraint qualification and the Kuhn-Tucker
conditions are satisfied at the optimum point.

2.73 Verify whether the following problem is convex:
Minimize f(X) = —4x, + x? — 2x,x, + 2x3
subject to
2 +x <

X — 4x, <

Vv <o o

0

X = 0, Xy

2.74 Check the convexity of the following problems.

@) Minimize f(X) = 2x; + 3x, — x3 — 2x}
subject to
X +3x, <6
5% + 2x, < 10
x =0, X, =0
M) Minimize f(X) = 9x] — 18x;x, + 13x;, — 4
subject to

X+ x5+ 2, = 16



