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Abstract

Scan chain design is an essential step in the manufacturing test flow of digital inte-

grated circuits. Its main objective is to generate a set of shift register-like structures

(i.e., scan chains), which, in the test mode of operation, will provide controllability

and observability of all the internal flip-flops. The number of scan chains, the par-

titioning of flip-flops to different scan chains and the order of flip-flops within each

scan chain are three important factors that may impact the test cost and test quality

parameters, such as performance degradation, area overhead, test application time,

volume of test data and delay fault coverage.

In this thesis we investigate a novel approach to design scan chains at the register

transfer level (RTL) of design abstraction. By embedding the test data transfers in the

RTL description, we constrain the logic synthesis tool to share the functional and test

logic. As a result, the functional scan chains may incur lower performance degradation

and area overhead when compared to the dedicated scan chains generated at lower

levels of design abstraction. In addition, by exploiting the information available in the

control/data flow graph (CDFG) extracted from the RTL description, we consciously

partition and order flip-flops in each scan chain to address test application time,

volume of test data and delay fault coverage. Furthermore, because the above tasks

operate on CDFGs, which contain substantially less data than the logic networks

or physical layouts, the test development time for generating functional scan chains

has an insignificant impact on the design cycle. A new RTL test scan insertion tool

has been developed and interfaced to third party electronic design tools to generate

experimental results that demonstrate the benefits of the proposed approach.
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M.A.Sc. - H.F. Ko - McMaster

Chapter 1

Introduction

Escalating size and complexity of very large scale integrated (VLSI) circuits make

verification and test a bottleneck in the design flow [7]. Digital VLSI circuits use

scan chains as a method to control and observe the internal state elements [7]. The

aim of the work described in this thesis is to give a new perspective on scan chain

design at the register-transfer level of design abstraction. To better illustrate how

the proposed method can be beneficial in the development of VLSI circuits, it is

essential to understand the design flow and the state-of-the-art practice for hardware

specification and implementation. The design flow will be outlined in Section 1.1

and the test flow will be introduced in Section 1.2. To quantify the effectiveness of

different test methodologies, the concepts of test cost and test quality will be discussed

in Sections 1.3 and 1.4. Finally, the organization of this thesis is provided in Section

1.5.

1.1 Circuit Models And Design Flow

The design flow of VLSI circuits and systems starts with a system specification as

shown in Figure 1.1. The specification is then translated to algorithmic descriptions,

which are used for architectural planning. At this stage, the design flow will be

divided into two directions: software development and hardware development. In this

thesis, we will focus only on the hardware development process.

1
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System
specification

Algorithm
development/
Architectural

planning

Software
development

Hardware
development

Figure 1.1: System specification refinement and hardware/software partitioning

Circuit models are developed to reduce size and complexity of the design specifi-

cation for hardware development. A model of a circuit gives the relevant features with

varying amounts of details at different levels of design abstraction. A less detailed

model at a higher level of design abstraction is synthesized into circuit model at a

lower level of design abstraction with refined details [25]. Models can be classified

in terms of views and levels of abstraction. The different views are categorized as:

behavioral, structural and physical. They are represented by the three axes in the

Y-chart in Figure 1.2. This Y-chart representation was first proposed by Gajski [15].

• Behavioral view: The behavioral view represents the design as a black box and

describes its outputs in terms of its inputs and time. The structure and physical

information of the black box is unknown in this view.

• Structural view: The structural information of the black boxes from the behav-

ioral view are given by the structural view, where each black box is represented

as a set of components and the interconnects between them.

• Physical view: The physical view adds dimensionality to the structure. In this

view, the size and position of each black box, as well as the port and connection

in the final layout are specified.

2
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System

Hardware
moduleAlgorithms

ALUs,
Registers

Register-
transfer

Logic netlist Gates, FFs

TransistorsTransfer
functions

Transistor
layout

Cell layout

Module
layout

Floorplan
layout

Physical
partitions

Physical view

Behavioral view Structural view

Architectural
level

Register-
transfer level

Transistor
level

Gate level

Figure 1.2: Y-chart representation of circuit model [15]

The different views of a circuit model describe different types of information of

each component in a design. For example, when modeling a Fast Fourier Transform

(FFT) circuit, the behavioral view specifies the mathematical relationship between

the input and the expected output signals of the design. The structural view gives

the choice of components (e.g., butterfly blocks) and their interconnects for the im-

plementation of the circuit. Lastly, the physical view details the physical information

(e.g., dimension, location) of every component that is used in the structural view. By

synthesizing the circuit specifications from a higher level to a lower level of abstrac-

tion, these components and their interconnects are better specified. The four main

levels of design abstraction are: architectural, register-transfer, gate and transistor.

3
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• Architectural level: The specification described at the architectural design ab-

straction level contains the main components that are used for the design. These

components usually include processors, memories and buses. However, they are

treated as black boxes and only their behaviors are specified. At this level of

abstraction, the actual implementation of the components is unknown. In other

words, the architectural design abstraction level only describes a circuit as a set

of operations, such as data computations or transfers.

• Register-transfer level: At the register-transfer level (RTL), a digital circuit eval-

uates a set of transfer functions, which are described by registers and functional

units, such as arithmetic-logic units (ALUs). The RTL description thus gives

better understanding on the actual hardware implementation of the components

described at the architectural design abstraction level.

• Gate level: At the gate level of design abstraction, the transfer functions of

a circuit at the RTL description are transformed into logic equations. Theses

equations are evaluated by a set of primitives that are obtained from a targeted

technology library. These primitives typically include various logic gates (e.g.,

AND, OR, XOR gates), and different types of flip-flops (FFs).

• Transistor level: The transistor design abstraction level describes circuits using

transistors, which resemble the exact implementation of the primitives from the

gate level description on the silicon die. Hence, this abstraction level contains

a huge amount of information as size and complexity of designs increase.

Using the FFT circuit as an example, information about the behavior of different

components (e.g., various types of butterfly blocks) and their interconnects can be

found in the architectural description. At the RTL, data transfers within, as well as

among the butterfly blocks are specified by a set of transfer functions. These functions

will then be synthesized into the gate level netlist which gives the implementation of

each function in terms of logic gates. Finally, the transistor design abstraction level

indicates how the gates are translated into electronic devices.

4
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Architectural
Level

Register-
transfer
Level

Gate Level Transistor
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Automatic/
Manual

Automatic Automatic/
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Figure 1.3: VLSI design flow

The process of transforming the circuit model from a less detailed abstraction

level (e.g., architectural level) to a more detailed abstraction level (e.g., register-

transfer level) is called synthesis. The subsequent steps to synthesize a circuit de-

scription from a higher level to a lower level of design abstraction is the Design Flow,

which is illustrated in Figure 1.3. As shown in the figure, the architectural level is

the highest level of design abstraction. It is used primarily for translating the ar-

chitectural specification so that the design can be simulated. Although a number of

automatic algorithms have been proposed in the recent years, automatic architectural

synthesis, which synthesizes a circuit model from the architectural abstraction level

to the RTL, has yet to reach its maturity. State-of-the-art practice starts the design

flow from the RTL description. At the RTL, a circuit is described as a set of registers

and transfer functions resembling the flow of data between the registers using hard-

ware description languages (HDLs) like VHDL and Verilog HDL. The registers are

implemented directly as flip-flops (FFs), while the transfer functions are implemented

as blocks of combinational logic. This direct one-to-one relationship of registers and

transfer functions in the design helps reduce the complexity of transforming the RTL

design into gate level structural netlist during the automated synthesis process [4].

Finally, the structural netlist at the gate level of design abstraction is transformed

into physical layout at the transistor level automatically, by incorporating manually

generated standard cells.

In addition to using automated tools for circuit synthesis and optimization,

another consideration in VLSI design is to improve the manufacturing yield, by ac-

counting for circuit testability during the design process. This is accomplished by

inserting various design-for-test (DFT) structures into the circuit while maintaining

the original functionality of the design. These DFT structures and the test flow will

be discussed in the following section.

5
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1.2 Test Flow

Microelectronic circuits are tested after manufacturing to screen fabrication errors.

Thus manufacturing test is the verification of circuit fabrication [25].

1.2.1 Manufacturing Test And Fault Models

Fabrication anomalies of integrated circuits in the manufacturing process may cause

some circuits to behave erroneously. Manufacturing test helps to detect the phys-

ical defects that lead to faulty behaviors of the fabricated circuits. These defects

can be detected by parametric tests for chip pins and tests for functional blocks [7].

Parametric tests include DC tests and AC tests. DC parametric tests are used for de-

tecting shorts, opens, maximum current, leakage, output drive current and threshold

levels. AC parametric tests are for testing, setup and hold times, functional speed,

access time, refresh and pause time, and rise and fall time. These tests are usually

technology-dependent and can be performed without any regard to the chip func-

tionality. On the other hand, the tests for functional blocks check for the proper

operation of a manufactured circuit by testing the internal chip nodes using input

vectors. The corresponding circuit responses are compared to the expected responses

for pass/fail analysis. These technology independent tests for functional blocks can

be further divided into functional tests and structural tests.

• Functional tests

Functional tests verify the functionality of each component in the circuit. To

completely exercise the circuit functions, a complete set of test patterns is

needed. For a circuit with n inputs, the number of input vectors will be 2n.

For instance, a 64-bit ripple-carry adder will have 2129 input vectors. To apply

the complete test set to the circuit-under-test (CUT) using an automatic test

equipment (ATE), it would take 2.158 × 1022 years, assuming that the tester

and circuit can operate at 1 GHz [7]. Due to the exhaustive nature of complete

functional tests, testing time is prohibitively large for logic blocks, which makes

them infeasible for testing complex digital integrated circuits.

6
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a
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Figure 1.4: Example of single stuck-at fault

• Structural tests

On the other hand, structural tests depend on the netlist structure of a design.

Depending on the logic and timing behavior of electrical defects, different fault

models are introduced to allow automatic algorithms to be developed for test

generation, test application and test evaluation. The most commonly used

fault model is the single stuck-at fault model. It assumes a single line of the

logic network to be stuck at a logic 0 (s-a-0) or logic 1 (s-a-1). An illustration of

the stuck-at model is shown in Figure 1.4. In this example, the targeted fault

is (s-a-1) at node h, which can be sensitized by the input vector {1, 1} from

inputs {a, b}. The correct response for this circuit at output z is 1. The faulty

response is therefore 0. When using the single stuck-at fault model for the 64-bit

ripple-carry adder, only 1728 stuck-at faults would need to be excited with 1728

test patterns in the worst case scenario [7]. Another fault model that is gaining

attention is the delay fault model, which will be detailed in Section 1.4.

1.2.2 Test Pattern Generation

After a fault model has been selected for structural test, the next step is to generate

a set of test patterns. The outcome of test generation is a set of input vectors, which

are applied to the circuit inputs to sensitize targeted faults, and a set of expected

output responses, which are used for comparison with the actual circuit responses.

Test generation is done by automatic test pattern generation (ATPG). There are two

types of ATPG algorithms. They are combinational ATPG and sequential ATPG.

7
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• Combinational ATPG

Combinational ATPG is one of the most important steps in the test flow. It

is proven to be NP-Complete [7], which makes it prohibitively expensive in

terms of CPU run time and volume of test data when applied to complex VLSI

circuits [11]. Because of its complexity, many heuristics have been investigated

[7] and all of them are based on four main operations: excitation, sensitization,

justification, and implication. To generate a pattern for a stuck-at fault on a

line (or wire), the fault is first excited, the response would then be sensitized

to an observation point (e.g. primary output), and the logic values required on

the input lines are justified. At the same time, the implications of logic values

on other gates will be determined. Figure 1.4 can be used to illustrate the four

operations. To excite the stuck-at-1 fault at node h, the value of that wire has

to be set to 0. The effect of the fault is sensitized to the primary output z. In

order to excite the fault at node h with a value of 0, the values of the primary

inputs {a, b} are justified to be {1, 1}. This input combination implies the

value of node g to be 1. By iteratively applying the four operations to all the

faults in the circuit, a complete set of test patterns can be generated.

• Sequential ATPG

If the internal state elements are not controllable, sequential ATPG is needed.

There are several reasons why test pattern generation for sequential circuits is

more difficult than for combinational circuits. First of all, the output responses

of the circuit depend not only on the input patterns, but also on the internal

states of the circuit. These internal states may be synchronous or asynchronous.

Also, sensitizing a fault to a primary output requires the circuit to be driven

to a known state. This sensitization process alone might require more than

one pattern, and the order in which the test patterns are applied is critical.

Furthermore, propagating the effect of the fault to an observable output may

take several clock cycles. In addition, multiple clock domains further complicate

test pattern generation for sequential circuits, because the relations between

clock domains must be followed to avoid any unpredictable behavior [26].

8
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RTL code Synthesis

Gate Level
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Figure 1.5: Design flow with DFT

The difficulty in controlling and observing internal states makes sequential ATPG

inapplicable to large circuits. The enhancement of circuit testability will allow ATPG

to generate test patterns for complex VLSI designs in a more efficient way (i.e.,

tractable given the resources at hand). Thus, techniques to improve the controllability

and observability of a design are needed.

Traditionally, circuit testability was considered as an after thought. Efforts were

only done at the end of the design cycle. However, this approach often led to low

fault coverage or rising production costs due to the unforseen increase in cycle time

as size and complexity of VLSI circuits grow. As a result, design-for-test (DFT), was

introduced to account for testability within the design cycle [4]. Figure 1.5 shows

the modified design flow when considering testability within the design cycle. In

this scenario, DFT structures are inserted after the structural netlist at the gate

design abstraction level is obtained from logic synthesis tools. Although considering

testability within the design cycle may increase the development cost, it can be offset

by the decrease in production cost and improved manufacturing yield [46]. The

common DFT structures that are used to enhance testability of VLSI circuits will be

detailed in the following section.

9
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1.2.3 Types Of Design-For-Test Structures

The DFT structures that are considered here are scan design and built-in self-test.

Scan Design

It is common for VLSI designs today to have internal state signals which cannot be

easily controlled from primary inputs or observed at primary outputs. This prohibits

sequential ATPG to be tractable to complex VLSI designs, which may contain thou-

sands (or even millions) of state elements. In order to enhance controllability and

observability of large sequential circuits, the scan method is used to transform sequen-

tial circuits into combinational circuits from the test generation standpoint. Hence,

the more tractable combinational ATPG algorithms can be used [26].

The scan method attempts to control and observe the sequential elements (i.e.,

FFs) inside a circuit by inserting a test mode such that, when the circuit is in this

mode, all the FFs are connected together to form one or multiple shift registers.

These shift registers, also known as scan chains (SCs), are connected to primary

inputs and primary outputs, which are called scan inputs (SIs) and scan outputs

(SOs) respectively. By serially shifting arbitrary values into the SCs from SIs (called

scan in), all the internal FFs can be set to desired states. Similarly, the internal FFs

can be observed by scanning out their values in the SCs through SOs. As a result, the

circuit becomes fully controllable and observable [7]. The complete controllability and

observability of a scan design eliminates the need for sequential ATPG. Instead, the

scan-flip-flops in the circuit are treated as pseudo-primary-inputs and pseudo-primary-

outputs. Thus, from the ATPG standpoint, the sequential circuit is transformed into

a combinational circuit.

In order to construct the SCs, original FFs in the design will have to be replaced

with special scan-flip-flops (SFFs). A SFF has an additional 2-input multiplexor

(MUX) that is connected to the input of the FF. The hardware structure of an SFF

is illustrated in Figure 1.6(a). In the normal functional mode, the SFF reads the value

from the functional data input of the MUX, thus retaining the original functionally of

the design. Conversely, in the test mode, the SFF takes its value from the scan data

10
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Figure 1.6: Scan design

(SD) input of the MUX, which is connected to another FF in the SC. Figure 1.6(b)

shows a circuit without scan. In this circuit, the input FFs {FF1, FF2} connect

to a combinational logic block, which feeds the output FF {FF3}. By replacing the

three FFs in Figure 1.6(b) with SFFs, the scan design is shown in Figure 1.6(c). In

this scan design, the signal test se indicates whether the circuit is operating in the

normal mode or in the test mode. In the normal mode, the scan circuit has the same

functionality as the original circuit. In the test mode, The FFs are connected to form

an SC with the following order: {FF1, FF2, FF3}. This SC can be used to shift in

test vectors through the scan input SI1.

Built-in Self-test

After test patterns are generated from ATPG with the aid of the scan method, the

next step is test application. The constrained test access to the I/O pins limits the
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Figure 1.7: General BIST architecture [7]

number of internal scan chains that can be directly driven by the tester. Because

the longest internal scan chain determines the test application time, for circuits with

many flip-flops and a low number of test pins, the time the circuit spends on the tester

may be prohibitively large. Further, the huge volume of test data introduces another

problem when external testers are employed. This is because storing the test data

will require either reloading of buffers or the use of expensive testers with gigantic

buffers. Hence, a new approach for test application called built-in self-test (BIST) has

emerged [33]. Instead of feeding test patterns and observing circuit responses of the

CUT from an external tester, on-chip test pattern generators and response analyzers

controlled by a test controller are used in BIST. Figure 1.7 illustrates a general BIST

architecture. There are two types of BIST schemes for applying test patterns to the

CUT. They are test-per-clock and test-per-scan.

• Test-per-clock

The architecture for the test-per-clock BIST system is shown in Figure 1.8(a).

In this architecture, the PIs of the CUT are driven by the linear feedback shift

register (LFSR), and the POs are connected to the multiple input signature

register (MISR) to generate a response signature for the circuit. By generating

and applying a new test pattern to the CUT continuously from the LFSR, a new

set of faults are tested every clock period [7]. However, the BIST controller for

12
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Figure 1.8: BIST test application schemes

the test-per-clock BIST system can be quite complex, which may result in high

area overhead. Moreover, the use of large test registers (e.g., LFSRs, MISRs)

can significantly impact both area and performance of the original design.

• Test-per-scan

The test-per-scan BIST system is shown in Figure 1.8(b). In this system, the

concept of test-per-clock is combined with the scan method. As a result, a

two-step process is required for each new set of faults. In addition to the single

clock period for conducting the test, a series of shifts for the SC are needed to

initialize the circuit and read out all the test results. Therefore, the test-per-

scan system will take several clock cycles per pattern. However, the test control

and test hardware is non-intrusive since it reuses the available scan structure

for test application. This leads to lower area and performance overhead when

compared with the test-per-clock system. In addition, it fits easily into any

designs which already have scan structures in place.

In addition to the above, details of other DFT structures can be found in [7, 26].

In this thesis, we restrict the discussion to the scan method due to its applicability to

large circuits and different fault models, its suitability for both BIST and ATE-based

test application and its ease of integration in the VLSI design flow. In order to evalu-

ate the effectiveness of various scan architectures, different parameters are introduced

to quantify the benefits or drawbacks of each architecture. These parameters will be

discussed in the next section.

13
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1.3 Test Cost

Scan structures can significantly improve the testability of complex VLSI designs.

However, the enhancement does not come for free. In order to quantify the added

test cost of different scan structures, a number of parameters are used. The param-

eters that are considered in this thesis are: performance penalty, area overhead, test

application time, volume of test data and test development time.

• Performance penalty

Performance penalty is mainly caused by the extra hardware from the inserted

scan structures. The replacement of every FF with SFF shown in Figure 1.6(a)

brings an additional MUX to the circuit. Each additional MUX located on the

critical path of the design adds performance penalty equivalent to two gate-

delays. It is obvious that as the number of FFs in the critical path increases,

the performance penalty grows proportionally. Moreover, the extra wires used

for the creation of scan paths raise the capacitive loading on the FF outputs,

which may also increase the propagation delays. In general, the propagation

delays in scan design increase around 5% [7].

• Area overhead

It is obvious that the insertion of scan structures for testability improvement

introduces area overhead to the design [7]. In the case of the scan method, the

increase in silicon area is due to the complexity of the scan device, FF, or latch.

For instance, the gate overhead for the SFF in Figure 1.6(a) will be the input

multiplexor, which is equivalent to four logic gates. In addition to the gate

overhead, the scan method may require a significant amount of routing, which

can impact the chip area. In a scan design, the test enable (test se) signal is

routed to all FFs, and the output of each FF is routed to the SD input of the

subsequent FFs in an SC. To reduce area occupied by the interconnect wires

from the scan design, one can re-order the sequential elements in the chain.

However, this effort to diminish routing overhead can only be performed at the

layout generation or routing step in the design flow.

14
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• Test application time

Testing of scan circuits targeting faults in the combinational logic is a multi-step

process. It involves shifting the test patterns generated by combinational ATPG

into the SFFs, applying the shifted test patterns to the circuit, and shifting test

responses out of the chip. The time it takes to complete this three-step process

is the test application time. Figure 1.9 demonstrates the entire test application

procedure for a circuit with one SC. The test patterns for the combinational logic

are shown in Figure 1.9(a). There are two sets of test patterns in this example.

{i1, i2} are the parts of the test vectors applied at the primary inputs. {s1, s2}
are the parts of test vectors applied through internal FFs. {o1, o2} and {n1,

n2} are the circuit responses available at the primary outputs and from the

internal FFs respectively. Figure 1.9(b) illustrates the test sequences. For each

sequence, the following steps are performed. Firstly, an input test vector for

internal FFs is shifted into the chip by setting the test control signal (test se) to

1 in the scan cycle. After that, an input test vector for primary inputs will be

applied when test se is set to 0 in the functional cycle. This allows the internal

states to be updated and the circuit responses to be propagated to the primary

outputs. Finally, the updated states are shifted out of the chip in the following

sequence. They will then be used together with the expected responses for

pass/fail analysis. As we can see from the example, the test application time is

dominated by the scan time of internal FFs. To reduce test application time,

one can divide FFs into multiple SCs which are driven simultaneously. Figure

1.10(a) shows the structure of a single SC. For this structure, the scan time

of each test pattern for a test sequence will be n clock cycles. On the other

hand, Figure 1.10(b) divides the SC into k segments. Each of these SCs has its

own dedicated scan input and scan output. The scan time for each pattern is

then reduced to dn
k
e clock cycles. However, additional pins or a more complex

pin-multiplexing scheme will be required for this structure.

• Volume of test data

The volume of test data (VTD) represents the amount of data a circuit needs to
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Figure 1.9: Scan test sequences for single-clock design

achieve a desirable fault coverage for a targeted fault model. For a scan design,

the VTD can be calculated using Equation 1.1.

V TD = Numpatterns × (2×NumSFF + NumPIs + NumPOs) (1.1)

In this equation, Numpatterns represents the number of test patterns for the

design to achieve a desirable fault coverage. NumSFF indicates the number

of scan-flip-flops in the design. NumPIs and NumPOs denote the number of

primary inputs and primary outputs respectively. For example, if a circuit with

5,000 SFFs, 128 primary inputs and 128 primary outputs requires 2,000 test

patterns to achieve a single stuck-at fault coverage of over 99%, the VTD will

be around 20 Mbits. As size and complexity of VLSI designs increase, the VTD

grows rapidly. To supply this massive VTD during test application, the size
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Figure 1.10: Scan designs with different number of scan chains

of ATE buffers will have to be large enough to store all the data in one test

session. Otherwise, reloading of buffers will be required. In both cases, the cost

of test will be increased [8].

• Test development time

The time it takes to transform an original design into a testable design that

meets all the environmental and/or timing constraints is called test development

time. The test development process includes the insertion and optimization of

scan structures. For example, the scan insertion step will allocate each FF in

one of the multiple scan chains and the optimization step may be required for

ordering the FFs in each scan chain to reduce the routing overhead. If the

optimization step cannot reduce the routing overhead sufficiently, some FFs

may need to be reassigned to different SCs and the test development process

proceeds iteratively. If, after a predefined number of iterations, the use of

scan still violates the constraints, the original design may have to be changed

to compensate for the added penalty of the scan structures. As a result, the

prolonged test development time can directly affect the cost of the design.
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1.4 Test Quality

Although it was proven that the single stuck-at fault model can cover a large spectrum

of physical defects, new issues arise when circuits are implemented in nanometer

technologies [12]. For example, to compensate for the decreasing effectiveness of

quiescent current-based (IDDQ) testing for circuits manufactured in smaller process

geometries, the delay fault model is essential to screen the process variations that

may affect only the circuit timing. The objective of testing for delay faults is to

detect defects that adversely affect the timing behavior of a circuit without changing

its logical operation under static conditions. A delay fault is detected when the

amount of time a desired transition takes to propagate through the circuit from an

initialization point to an observation point exceeds the period allowed for it [21]. To

achieve delay fault detection, at-speed test application of two consecutive patterns is

required, which imposes added constraints on scan development, as discussed next.

To detect a delay fault in a scan circuit, the primary inputs and internal flip-flops

are used as initialization points, while the observation points include both primary

outputs and flip-flops [38]. This scan-based delay fault test consists of two test pat-

terns, V1 and V2. The first pattern V1 is called the initialization pattern and it must

first be applied to the circuit to initialize the logic into a known state. The second

pattern V2, called the excitation pattern, is then applied in the successive clock pulse

to trigger the desired transition. This process is called the two-pattern test method-

ology. One way to apply two-pattern tests is the broadside test application strategy.

In this strategy, the initialization pattern is first scanned into the SC and applied to

the circuit to drive all the memory elements to known states. The excitation pattern

is then derived as the combinational circuit’s response to the initialization pattern.

One major disadvantage with this strategy is that it complicates the test pattern gen-

eration problem [21]. Skewed-load (or last-shift launch) test application strategy for

two-pattern delay fault test methodology eliminates the need for sequential ATPG. It

can also reuse the available DFT infrastructure provided for stuck-at fault testing. In

this strategy, the pattern V1 is loaded into the SCs prior to test application, with V2

as the shifted version of V1. This correlation between the pattern pair imposes some
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x1 x2 x3 x4 x5 x6 x7 x8

V1 α1 α2 α3 α4 α5 α6 α7 α8

V2 γ α1 α2 α3 α4 α5 α6 α7

Table 1.1: Example of a two-pattern test

restrictions on the possible patterns that can be applied due to the SC order [38]. To

demonstrate this restriction, Table 1.1 shows the application of the pattern pair {V1,

V2} in the FF set {x1, x2, x3, x4, x5, x6, x7, x8}. We assume that the SC is connected

such that a single shift of the SC causes each bit to move one position to the right.

The value α is the bit data in the initialization pattern V1. The value γ is the new

value that is shifted into the SC while V1 is shifted once to obtain the excitation

pattern V2. Because scan chain order will determine the correlation between the test

patterns and hence it will influence the detectability of delay faults, it is essential

to investigate new ways to insert scan structures that account for skewed-load delay

fault testing.

1.5 Thesis Organization

This thesis presents a new way to introduce scan structures into a circuit at the RTL.

The remainder of the thesis is organized as follows. Chapter 2 gives details about how

different parameters in SC construction can affect the cost of testing and summarizes

the relevant prior approaches. The strengths and limitations of these approaches help

introduce the motivation and objectives for the research presented in this thesis.

Chapter 3 introduces a new method to analyze circuits described at the RTL

for SC construction. Detailed algorithms on how to analyze the RTL description of

a design in order to build SCs are also included in this chapter. These algorithms

generate generic scan structures for any type of designs (e.g., control-intensive designs,

data-intensive designs). Moreover, by satisfying a set of constraints while building the

SCs, in addition to reducing area and performance penalty, the inserted scan structure

can be tuned to enhance delay fault test quality of a design using the skewed-load two-

pattern test application strategy.
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To address the escalating volume of test data and its influence on test cost, Chap-

ter 4 will introduce two new reconfigurable Illinois Scan Architectures [17]. When

combined with the scan structures that are generated by the functional scan syn-

thesis process at RTL with additional constraints, the volume of test data for scan

designs can be effectively reduced. Finally, the conclusion and suggestions for further

work are given in Chapter 5.
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Chapter 2

Scan Chain Design

The scan method is the most commonly used DFT technique to enhance testability

of complex VLSI designs. The simplicity of the scan method allows automatic algo-

rithms to be developed for scan insertion. This reduction in human effort allows the

scan method to be applicable to large digital integrated circuits. In a scan design,

testability is enhanced by replacing original FFs with SFFs as described in Section

1.2.3. Complete controllability and observability of the combinational circuit can be

obtained by shifting data in and out of the chip through internal SCs. As a result,

test pattern generation for complex digital integrated circuits can be done by combi-

national ATPG. The generated test patterns can then be applied to the CUT using

external ATE or BIST as discussed in Section 1.2.3. Nonetheless, the many benefits

from the scan method do not come for free. Various parameters are used to quantify

the cost of scan. The discussion of different cost parameters has been provided in

Sections 1.3 and 1.4. In Section 2.1, the contributing factors that influence different

cost parameters of the scan method will be discussed. Section 2.2 gives the justifica-

tion for constructing scan chains at RTL. A summary of the relevant DFT approaches

for test cost reduction will be provided in Section 2.3. Finally, the motivations and

objectives of this research will be outlined in Section 2.4.
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2.1 Scan Chain Architecture

In this section, the different factors that will affect various cost parameters when in-

serting scan to a circuit will be detailed. The contributing factors that are considered

are: scan path construction techniques, scan cell partitioning into multiple scan chains

and scan cell order.

2.1.1 Scan Path Construction Techniques

The scan method enhances testability by providing a mechanism to transport test

vectors into the internal state elements of a design. This path for transporting test

data between FFs is called the scan path (SP). There are different ways to construct

SPs between FFs and they influence the area and performance overhead of the scan

design. In this thesis, two types of SPs are considered: dedicated scan paths and

functional scan paths.

Dedicated Scan Path

The simplest way to connect SFFs is to use a dedicated scan path. In this approach,

all the FFs are replaced with the SFFs shown in Figure 1.6(a). The multiplexing logic

at the input of a SFF allows the insertion of dedicated SP to disregard the functional

logic of the original design. This is because when using dedicated SPs to connect

SFFs, test data is transported through a path that is completely independent of the

functional path (FP), on which functional data is transported in the normal mode.

Moreover, to create an SP, an extra wire is inserted to connect the output of a source

SFF to the SD input of a destination SFF. This wire can then be used to transport test

data when the circuit operates in the test mode. Due to this independency between

dedicated SPs and FPs, simple automatic algorithms can be developed to insert scan

structures for complex VLSI designs. In state-of-the-art practice, synthesis tools

allow designers to perform scan insertion automatically at the gate level of design

abstraction, after the structural netlist of the design is obtained [41].

In this dedicated SP architecture, the amount of additional hardware required to

construct SPs increases rapidly with respect to the number of internal state elements
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in a design. These extra MUXes of the SFFs and routing of additional wires for the

creation of SPs introduce undesirably large area overhead. Furthermore, for every

added MUX located on the critical path of the design, a performance penalty of two-

gate delays will be injected. Hence, a better way to construct SPs such that area and

performance overhead can be reduced is necessary. This leads to the proposal of the

functional scan path architecture, which is discussed next.

Functional Scan Path

Instead of inserting additional hardware to construct SPs, the functional scan path

architecture tries to organize the sequential elements of the design into SPs by utilizing

existing FPs as much as possible. The original FPs, which are used to transport

functional data in the normal mode, are reused as SPs to transport test data in the

test mode. The fact that a design will never operate in the normal mode and the

test mode at the same time makes this path sharing mechanism possible. This is

because functional data and test data will travel on the same path only at different

time frames. The sharing of FPs and SPs diminishes the need to insert extra wires

for SP construction. Moreover, although complex multiplexing logic is required to

distinguish SPs from FPs in the dedicated SP architecture, it is not necessary when

constructing functional SPs. Consequently, by utilizing existing FPs, the functional

SP architecture may be able to reduce the amount of extra hardware needed to

construct SPs. This reduction in test logic in turn decreases the area and performance

overhead associated with the scan method.

An example of how an FP is converted into an SP is shown in Figure 2.1. In

this example, instead of introducing an additional MUX, an OR gate is inserted to

connect FFA and FFC together as an SP in the test mode when the value of the

test control signal test se is 1. By identifying cost saving FPs and converting them

into SPs, the need for additional hardware for SP creation is diminished. Moreover,

utilizing these FPs can reduce the routing overhead. This is because additional wires

will not be needed to connect the SFFs. After SPs between FFs are constructed, they

are combined together to build SCs. The next section will detail on how SP selection

for SC construction can also affect the cost of test.
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Figure 2.1: Modification of functional path

2.1.2 Scan Cell Partitioning Into Multiple Scan Chains

As mentioned in Section 1.3, the test application time for a design is dominated by

the scan time of test vectors. As circuit size and complexity increase, the number of

FFs in a design rises with it. The growth in FF number prohibits all the FFs to be

chained into a single lengthy SC. Thus, it is common to divide FFs into multiple SCs

to reduce the scan time. When the SCs are driven simultaneously, it is obvious that

the scan time of the longest SC becomes the scan time of the design. This is because

a circuit cannot be tested until all the FFs are set to known states. This phenomenon

is illustrated in Figure 2.2(a), in which the scan time is 16 clock cycles. Hence, it

is always beneficial to balance the length of SCs. Figure 2.2(b) shows four balanced

SCs, where each SC has 10 FFs. Although this example has the same number of FFs

as in Figure 2.2(a), the scan time is reduced to only 10 clock cycles.

In addition to test application time, SP partitioning into multiple SCs may affect

the test quality for delay fault tests, which will be discussed in Section 3.5. Moreover,

Chapter 4 will show that the volume of test data of a scan design can also be better

compressed by exploring this contributing factor.
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Figure 2.2: Scan time of different scan chain lengths

2.1.3 Scan Cell Order

It was already mentioned in Section 2.1 that an SC is constructed by chaining FFs

together in a design, and the path between any two FFs in an SC is an SP. It is

then obvious to conclude that an SP only exists between two FFs if they are chained

adjacent to each other in an SC. This order of SFFs in an SC thus impacts the wire

lengths of the SP in both scan construction techniques described in Section 2.1.1. For

instance, it is assumed that two FFs are chained adjacent to each other. If they are

located physically far away from each other in the design, it will require a long wire

to establish the SP. Routing of this long SP thus becomes more troublesome. Fur-

thermore, the scan cell order also affects the utilization of FPs as SPs, which directly

impacts the area and performance overhead of the scan design when constructing

functional SCs. For example, it is assumed that to reduce the cost of test in the case

of functional scan, the FP between a source FF (FFA) and a destination FF (FFB)

will need to be utilized as SP. However, if FFA and FFB are not placed adjacent to

each other in an SC, the FP will not be reused. This is because there is no need to

establish a path between FFA and FFB to transport test data any more. Thus, the

savings from functional scan have vanished.
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In addition to affecting the area and performance overhead, Section 3.5 will

show that scan cell ordering also affects the delay fault coverage of a scan design

when using the skewed-load test application strategy for two-pattern tests. Also,

the effectiveness in compressing test data of a scan design can be enhanced through

consciously determining the scan cell order by incorporating additional constraints

during the scan synthesis process. This will be discussed in detail in Chapter 4.

2.2 Gate vs. Register-Transfer Abstraction Level

The scan chain architecture was already shown to directly affect the cost of test for

scan designs. Nonetheless, constructing SCs at different levels of design abstraction

can also impact the cost parameters. For instance, test development time can be

influenced by introducing DFT structures at the RTL. This is because considering

DFT early in the design cycle can produce a different design flow that allows synthesis

tools to better meet design constraints by optimizing test logic and functional logic

concurrently, which is not possible when DFT structures are inserted at the gate level

[14].

• Gate level DFT insertion

Figure 2.3(a) illustrates the state-of-the-art design flow, where DFT structures

are inserted after the RTL circuit description has been synthesized into the

gate level structural netlist. In this case, the impact of DFT structures in

terms of test cost will not be realized until late in the design flow. If design

constraints are violated due to the addition of DFT structures, either the DFT

structures or the original design will have to be modified to compensate the

cost of test. This iterative process of circuit re-optimization may translate into

lengthy development time, which in turn increases the cost of the design.

• RTL DFT insertion

On the other hand, Figure 2.3(b) shows a different design flow, where DFT

structures are inserted at the RTL. By introducing DFT at the RTL, synthesis
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Figure 2.3: Design flow with gate level and RTL DFT insertion [19]

tools can have greater flexibility to optimize the testable circuit to meet the

design constraints by considering the test logic and functional logic simultane-

ously during synthesis. This is illustrated in Figures 2.4(a) and 2.4(b). Figure

2.4(a) shows the implementation of gate level scan, where an extra MUX is

inserted to create an SP. In this case, the performance penalty for the critical

path from FFA to FFD is 4 gate-delays. Conversely, by inserting scan at

the RTL, synthesis tools can optimize the scan logic together with the original

circuit, producing the optimized design in Figure 2.4(b). In this case, the de-

lay in the critical path is reduced to only 2 gate-delays. The problem of wire

delay can also be addressed by embedding test logic into functional logic to

eliminate the need for long wires in the construction of SPs. Furthermore, this

flexibility of synthesis tools may be able to lessen the area overhead of scan

designs. This is because the synthesis tool can now better optimize the testable

circuit to reduce the logic per FF ratio. In addition, introducing scan at the
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RTL can eliminate the need to re-order scan cells at later stages of the design

flow (i.e., layout and routing stage) to reduce routing overhead from the scan

structure based on two reasons. First of all, extra wires are not needed when

SPs are created by reusing existing FPs in a design. Secondly, in the case when

additional wires are needed for SP creation, the inserted wires will not affect

the timing closure of the synthesized design. This is because during RTL/logic

synthesis, the scan structure is already taken into consideration by the synthesis

tools. Thus, the resulted netlist will not contain wires that may influence the

timing closure of the design after the creation of SPs. Moreover, constructing

scan at the RTL (prior to logic and physical synthesis) can facilitate the em-

bedding of additional constraints, which will tune the generated scan structure

for different objectives, without affecting the timing closure of the scan circuit.

However, there is an disadvantage in constructing SCs at the RTL. If there are

redundant FFs in the original design, synthesis tools will not be able to remove

them during logic synthesis anymore as in the case when scan is inserted at

the gate level. This is because these redundant FFs are now included in the

SPs in the scan design. However, note, this problem can also be solved using a

pre-processor that parses the initial RTL description for any redundant sequen-

tial elements (caused mainly by legacy or parameterized RTL code) and marks

them as un-scannable.

Different levels of design abstraction also affect the choice of techniques to con-

struct SPs. To identify the different types of FPs described in Section 2.1.1 available

in a design, the original functional information in the design must be analyzed. Al-

though one can construct functional SPs at the gate design abstraction level, the huge

size and complexity of the circuit description at this level make the task of FP iden-

tification extremely difficult. As a result, state-of-the-art synthesis tools only provide

automatic algorithms to construct dedicated SPs at the gate level [41]. As a result, it

is beneficial to insert functional scan at the RTL because the size and complexity of

a design that must be analyzed are significantly lower that at the gate level. Thus,

tractable algorithms can be developed to identify FPs at RTL.
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Figure 2.4: Optimization of scan logic

2.3 Relevant Approaches On The Scan Method

As shown in Section 2.1 and 2.2, various factors can affect the test cost of the scan

method. A number of methods had been proposed to explore these factors and

attempt to reduce the cost of test for scan designs. In this section, the strengths

and limitations of these proposals will be summarized. The summaries are divided

into four categories relevant to the work presented in this thesis. The first category

goes over the proposals that target to enhance testability using various DFT test

structures at the RTL. Techniques to reduce the cost of scan are evaluated in the

second category. The third category reviews methods that aim to improve delay fault

coverage for complex digital integrated circuits using the scan method. The fourth

category discusses the various techniques to improve test data compression for scan

designs.
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2.3.1 Enhancing Testability At RTL

Roy et al. proposed a method to insert test points at RTL in order to improve single

stuck-at fault coverage of a design in the BIST mode [35]. By using RTL control-

lability/observability measures, test points are inserted in the RTL description prior

to logic synthesis. Boubezari et al. introduced another method for RTL test point

insertion [6]. Controllability and observability information is gathered by analyzing

the internal signals of each functional module (FM) in the design. The FMs include

simple adders/subtracters, comparators, multipliers and multiplexers. As a result,

the method becomes dependent on how the FMs are synthesized into hardware. Lin

et al. proposed another method to enhance testability of a design. By analyzing

the controllability of the design, test points and extra logic are inserted to establish

SPs in the combinational logic of the design [23, 24]. However, in addition to the

circuit information from the RTL description, these methods also require gate level

information for the computation of controllability and observability of the design.

The identification and modification of functional logic at the gate level that can be

shared for test purposes may lead to very high computational cost. Thus, they are

not applicable for large industrial designs. To avoid the computation of controllabil-

ity and observability, the scan method can be used to enhance testability of complex

circuits. The simplicity of scan makes it the most popular DFT technique in the test

community. In the next section, various techniques that were proposed to reduce the

cost of scan will be discussed.

2.3.2 Techniques To Reduce The Cost Of Scan

Roy presented a method for chaining FFs at RTL [34]. By employing a bottom-

up iterative algorithm to the VHDL source for different processes, memory elements

identified in the design are chained randomly to establish SPs. By constructing SCs

at RTL, synthesis tools can better optimize test logic together with functional logic.

Although this method could reduce area overhead of the scan design, the structure of

the design is not exploited. Chickermane and Zarrineh proposed a method to trans-

form memory elements to level-sensitive-scan-design (LSSD) at the early stage of the
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design flow [10]. By analyzing the structural information of the design, additional

logic is inserted to preserve functional behavior of the SFFs in the normal mode, while

ensuring the scan functionality in the test mode. Although this approach allows syn-

thesis tools to optimize test logic and functional logic together during synthesis, no

information on how to divide the memory elements among different SCs in order to

reduce the overall area overhead of the scan design is provided. Norwood and Mc-

Cluskey presented an orthogonal scan methodology that utilizes existing FPs through

functional units to establish SPs [27, 29]. Orthogonal scan paths are defined during

the allocation and binding phases of architectural synthesis, based on the assumption

that functional units can be treated as transparent objects in the SPs. To achieve this,

the routing of control signals to the functional units incurs additional area overhead.

Bhattacharya and Dey proposed H-SCAN [5], which was later improved by Asaka et

al. to H-SCAN+ [3]. The H-SCAN approach uses only the FPs that include a multi-

plexer (MUX) in between two registers and, by modifying the logic that controls the

MUXes, SPs can be established in the test mode. This is achieved by exploiting the

structural information of RTL designs obtained from behavioral descriptions through

high level synthesis. Although H-SCAN can reduce both the area and performance

penalty associated with gate level scan, no consideration is given for the case when

no MUXes are present in between FFs and no detail is provided on how the SFFs are

chained to create multiple balanced SCs.

Recently Huang et al. proposed a new method for inserting scan structures at

the RTL [19]. The costs to transform different types of FPs described in Section

2.1.1 to SPs are first calculated. A greedy algorithm is then used to search through

FPs and select the ones that can be used to establish SPs with minimum cost. The

FFs that are not selected by the greedy algorithm are then merged into the selected

path by cutting and slicing, after the SCs have been generated. Due to the cost

criteria used by the greedy search algorithm, FFs that belong to multiple paths are

overlooked. Therefore, only a limited number of FPs are explored. In addition, the

SI/SO selection is not related to scan path generation algorithm. Hence, the number

of FPs that are explored is further reduced. All of the above issues will ultimately

influence not only the added DFT area, but also the timing of the scan circuit.
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In practice, the RTL description of a design is organized in different modules, thus

producing a design hierarchy. As a result, it is essential to insert scan structures to

hierarchical designs at RTL. In [19], different processes in the source code are treated

as independent entities. Once SPs in each process are constructed, they are then

connected to each other via the communication channels between different processes

in the same module. Although the method from [19] is able to construct SPs for

all the processes in a single module, no detailed information is provided on how it

can be applied to hierarchical designs where FFs are located in different processes of

various modules. Nevertheless, one may be able to extend the method from [19] to

support hierarchical designs in a bottom-up approach by replacing the processes with

module instantiations and afterward applying the same greedy algorithm. As a result,

the algorithm will first try to organize FFs in the child modules before combining

the different SPs in the parent modules. However, one problem with this extended

approach is the generation of balanced SCs. To produce balanced SCs, slicing and

stitching will have to be applied to the SCs that exceed the desired length. Therefore,

if the slicing point is located inside a child module deep down in the design hierarchy,

then placing the sliced FFs into the SCs from other modules may adversely influence

both area and performance.

2.3.3 Improving Delay Fault Coverage

One benefit of the scan method is its applicability for the delay fault model. Section

1.4 already mentioned the importance of delay fault testing. To detect delay faults

using the scan method, the skewed-load test application technique for two-pattern

test strategy can be used. However, due to the correlation of patterns that can be

applied using this technique, delay fault coverage for large designs may be insufficient.

In this section, several relevant previous methods targeting the improvement of fault

coverage in delay fault testing using various techniques will be reviewed.

The straightforward way to eliminate the restrictions on the possible patterns

that can be applied to the combinational circuit block is to use enhanced scan flip-

flops (ESFFs) proposed in [13]. ESFFs are special flip-flops (FFs) that can hold
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two bits of state information. The extra storage allows any arbitrary pattern pairs

{V1, V2} to be stored before application. Although the use of ESFFs removes any

correlation between the two consecutive patterns, the extra hardware for building the

special FFs translates to high area overhead. Instead of transforming all the FFs into

ESFFs, Cheng et al. introduced a technique to reduce the number of ESFFs needed

in a design, which results into a partial ESFFs structure in [9]. By analyzing the

pattern sets generated from a full ESFFs structure of the circuit, it was established

that only a subset of FFs need to be made ESFFs in order to be able to achieve high

delay fault coverage. However, even with partial ESFF, the area overhead for designs

with high flip-flop to logic gate ratio can still be large.

Instead of using ESFFs, Pomeranz and Reddy showed in [32] that by dividing

SCs into multiple small segments, each with its own scan input and scan output ports,

the delay fault coverage can also be improved. Nonetheless, the exhaustive nature of

their algorithm restricts the method to be only applicable to small designs. Moreover,

having a very large number of SCs in a design may be undesirable since, to drive all

the SCs concurrently, testers with high number of channels are also required. A DFT

scheme that helps improve delay fault coverage was proposed in [22]. By adding

SCLATCHes and additional MUXes to the design, scan paths can be reconfigured to

allow arbitrary pattern pairs to be loaded in the scan cells. However, their approach is

not only test set dependent, but the additional hardware may also result in significant

area overhead. Scan mapping for applying two-pattern tests in a standard scan design

environment was described in [44]. By inserting combinational mapping logic before

the scan elements, the second pattern V2 of a pattern pair can be generated in the

next clock pulse. Although this approach can improve the delay fault coverage, the

area and performance overhead associated with the mapping logic may exceed that of

enhanced scan. Another approach that inserts additional hardware to the design to

improve delay fault coverage was proposed by Altaf-Ul-Amin et al. in [2]. The circuit

is analyzed in order to extract the hierarchically two-pattern testable (HTPT) data

paths, which are then used to determine where and what kind of additional hardware

is inserted to the design to transport test data. Although this approach slightly

increases the area overhead compared with enhanced scan, it is only applicable to
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data intensive designs.

By analyzing the circuit at the gate level, Hurst and Kanopoulos suggested that

FFs are divided into different modules according to the logic cones that they are

driving [20]. The FFs in the SCs are then rearranged so that no two adjacent FFs in

the same SC are from the same module. The test pattern pairs can now be stored in

the adjacent FFs of an SC to facilitate arbitrary second pattern V2 and to be loaded to

the circuit during test. Instead of adding complex logics to the design, this approach

only requires FFs to be moved around in different SCs. This results only in an

insignificant amount of area overhead. However, the complexity of analyzing a circuit

at the gate level prohibits the application of this approach to large circuits. In order to

reduce the complexity of circuit analysis, orthogonal scan generated from behavioral

descriptions was described in [28]. Information about the FFs in a circuit is gathered

at the behavioral level, where complexity is low. The information is then utilized to

construct scan paths during architectural synthesis so that no two scan cells driving

the same functional unit are placed adjacent to each other in the scan path. This

approach maintains all the benefits from [20], while allowing complex circuits to be

analyzed at a higher level of design abstraction. However, the underlying assumption

is that the circuit specification is given in the behavioral domain at the algorithmic

level. Furthermore, by accounting for orthogonal scan during high level synthesis,

only the data path of the circuit is guaranteed to have high delay fault coverage.

2.3.4 Improving Test Data Compression Ratio

Another concern associated with the scan method is the huge volume of test data

required to test a scan design. This problem can be solved by employing the Illinois

Scan Architecture. It was proposed by Hamzaoglu and Patel [17] and is aimed at

reducing test data volume with minimum area overhead. Due to its ability to compress

test data with very low area overhead, Illinois Scan is emerging as a promising low-

cost test method [18, 47]. Illinois Scan operates in two modes: the broadcast scan

mode and the serial scan mode. In the broadcast scan mode, a single scan input (SI) is

connected to multiple SCs. This allows the same set of test patterns to be shifted into
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Figure 2.5: Different modes of the Illinois scan architecture

multiple chains simultaneously. For example, let’s assume there is a circuit having

100 flip-flops (FFs) that would be split into four SCs with 25 FFs in each chain. When

using the broadcast mode of Illinois Scan, FFs 1, 26, 51 and 76 would receive the

same set of test data, while FFs 2, 27, 52 and 77 receive another set of test data, and

so on. In other words, FFs in different SCs, but at the same scan depth, will receive

identical set of test data from the common SI in the broadcast mode. As a result, the

volume of test data and test application time can be reduced. However, due to the

strong correlation of the test data that is fed in different SCs in the broadcast mode,

the resulting fault coverage of the design may decrease [18]. For example, there are

three SCs being driven by a single SI in Figure 2.5(a). If FF2, FF5 and FF8 drive

the same logic cone and they are located in different SCs at the same scan depth,

the fault coverage will be reduced due to the limited set of test data this logic cone

can receive from the three FFs in the broadcast mode. To improve fault coverage,

serial mode would then be used to reconnect the multiple SCs into a single long SC,

as shown in Figure 2.5(b). This allows FFs that drive the same logic cone to receive

any arbitrary set of test data. However, the large volume of serial test patterns will

reduce the effectiveness of this technique to compress the overall test data set.

Hamzaoglu and Patel proposed a technique to rearrange scan cells in order
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to reduce the number of serial patterns for Illinois Scan [17]. By analyzing a com-

plete partially specified test set for the full scan circuit without using any test set

compaction algorithms, compatibility classes of the FFs are computed. A pair of

FFs is classified as compatible if they have the same set of test patterns. Once the

compatibility classes are computed, scan cells are rearranged such that FFs at the

same scan depth but distributed in different SCs must be compatible. Although the

greedy heuristic could improve the effectiveness of Illinois Scan for test data volume

reduction, this approach is test set dependent.

When FFs are divided into multiple SCs in Illinois Scan, the SC length k is an

important parameter that could affect both the scan time and the test data volume

reduction effectiveness. When k is small, the number of SCs increases, which decreases

the test application time by lowering the amount of test data loaded in the broadcast

mode. However, the high number of SCs increases the number of faults that cannot

be tested in the broadcast mode. As a result, large amounts of serial test patterns,

which starts increasing test data volume and test application time, will be needed. An

incremental test generation algorithm for finding the optimal SC length k for Illinois

Scan was proposed by Pandey and Patel [30]. By first choosing a number n smaller

than or equal to the total number of FFs in the design, where n has a large number

of prime factors, ATPG is applied to generate the test data for each Illinois Scan for

different values of n, which is updated according to Equation 2.1.

nnew =
nold

smallest prime factor of nold

(2.1)

Although by incrementally reducing the fault list can reduce ATPG time in a single

run for multiple Illinois Scan configurations, the recursive nature of the algorithm may

become computational expensive for large designs.

In addition to the serial mode and broadcast mode with SC length k, Pandey and

Patel introduced a reconfiguration technique for Illinois Scan such that an additional

broadcast mode is inserted to the Illinois Scan Architecture [31]. In this additional

mode, SCs are reconfigured so that the first SC (SC1) is rotated by one bit, while

SC2 is rotated by two bits, until all subsequent SCs are rotated in the same manner.

As a result, FFs that have the same scan depth in the normal broadcast mode will
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have different scan depths in this additional mode due to the SC rotation. This

allows a new set of parallel test data to be applied for the previously undetected

faults and thus it reduces the number of serial test patterns. Another technique for

reconfiguring the Illinois Scan Architecture was proposed by Samaranayake et al. [36].

Instead of using a single SI to drive multiple SCs in the broadcast mode, multiple

SIs are employed by this technique. These SIs are combined with mapping logic that

consists of MUXes and inverters. The controls of mapping logic are determined by

analyzing the fault lists. If a targeted fault is undetected in one configuration, the

circuit will be reconfigured to allow different patterns to be fed into the SCs. The

mapping logic allows any SI to drive any combination of SCs, with the ability to invert

test data while they are being shifted onto the SCs if necessary. Thus, FFs in the same

scan depth can receive any combination of test patterns in different broadcast modes.

Consequently, the need of serial patterns can be eliminated, which in turn reduces

test application time and test data volume. Although this technique can improve the

effectiveness of test data compression, the analysis of compatability of SCs in different

configuration by applying ATPG recursively may significantly exceed the processing

time of regular ATPG. Another way to eliminate the need for serial patterns is to

use the Reconfigurable Shared Scan-in architecture (RSSA) proposed in [39]. By

inserting extra mapping logic to the Illinois Scan Architecture, the scan enable signal

can be used to configure the architecture into different broadcast modes during test

application. However, the analysis of potential conflicts for scan cell allocation into

multiple SCs can be computationally expensive for large designs when it is performed

at low levels of design abstraction (e.g., gate level).

Since the compression effectiveness in Illinois Scan is dependent on the presence

of correlations between FFs in the same scan depth in multiple SCs, it is necessary

to investigate a generic yet computationally-efficient functional SC design method

at RTL that can reduce volume of test data, and at the same time, decrease area

overhead and improve the speed of the synthesized scan circuit.
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2.4 Motivation And Objectives

The simplicity of scan makes it the most commonly used DFT technique for testing

complex VLSI designs. However, in addition to all its benefits, it also increases the

cost of test, which was detailed in this chapter. In order to reduce test cost, Section

2.1 had explained that by considering various contributing factors while constructing

SCs, different test cost parameters will be affected. Section 2.2 illustrated that by

introducing scan at the RTL, the cost of test can be further decreased. Although the

problem of inserting scan at the RTL has been analyzed in the past, the previous

solutions have different limitations as mentioned in Section 2.3.2. Moreover, to the

best of the author’s knowledge, none of the previous solutions investigate the use of

functional scan at the RTL to enhance delay fault coverage or to reduce the volume

of test data. Thus, a new generic method for constructing functional scan chains at

the RTL is needed.

The proposed method, which will be detailed in Chapter 3, uses the FP clas-

sification technique from [19] to identify FPs that can reduce the cost of scan when

they are used as SPs. However, in order to better utilize these cost saving FPs when

generating scan structure at the RTL, an alternative technique will be introduced to

address the following problems during SC construction for digital integrated circuits:

1. How to order the memory elements in the SCs such that the maximum number

of cost saving FPs are used?

2. Which existing PI/PO should be reused as SI/SO in designs with multiple SCs?

3. How to balance the length of the SCs in order to reduce test application time?

The alternative technique to the above problems is justified by the need to facili-

tate the inclusion of custom constraints into the scan synthesis process. As a result,

the generated scan structure can be optimized for different objectives. For instance,

as delay fault testing becomes growingly important, the skewed-load test application

strategy was introduced to facilitate two-pattern delay fault test with scan designs.

However, the delay fault coverage using this strategy strongly depends on the cor-

relation of test patterns within an SC as discussed in Section 1.4. Consequently, a
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set of new constraints will be introduced in Section 3.5 for SCs construction such that

correlation of test patterns within an SC can be eliminated. Moreover, as mentioned

in Section 1.3, test application time and volume of test data become the bottlenecks

of the scan method. Although the Illinois Scan Architecture can reduce the volume of

test data with low area penalty, while reusing the existing scan structure of a testable

design, the effectiveness of this technique in compressing test data is limited by scan

cell partitioning in multiple SCs and scan cell order within each SC. As a result,

Chapter 4 will present two new reconfigurable Illinois Scan Architectures, as well as

a set of new constraints to be incorporated in the scan synthesis process to minimize

the occurrence of data correlations between multiple SCs in the broadcast mode of

these architectures.
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Chapter 3

Functional Scan Synthesis At RTL

In this chapter, a new method to construct functional SCs at the RTL is introduced.

By analyzing designs at the RTL, the complexity of identifying reusable FPs in a

design is reduced when compared to the gate level counterpart. Because of this, the

generated scan structure can be better optimized to reflect the area and performance

savings from functional scan in opposed to the dedicated scan path structure. More-

over, RTL scan insertion also gives better flexibility to the synthesis tools to optimize

the test and functional logic simultaneously, which will lead to improved circuits

speeds with similar area when compared to the gate level dedicated scan insertion.

In addition, by incorporating additional constraints in the scan synthesis process,

the generated scan structure can be optimized to enhance delay fault coverage, or to

reduce the volume of test data.

The process of constructing functional scan at RTL can be divided into multiple

steps, which is illustrated in Figure 3.1. The implementation effort of each step of the

program will be discussed in Appendix B. The program starts by analyzing a design

that is described by Verilog HDL at the RTL. The analysis then produces a set of

control/data flow graphs (CDFGs). This process of CDFG generation will be detailed

in Section 3.1. After that, the CDFGs will be used to generate a sequential graph (S

Graph), which will be explained in Section 3.2. The process of SP identification from

the generated S Graph will then follow and will be discussed in Section 3.3. These SPs

will then be connected to construct SCs as described in Section 3.4. After discussing
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Figure 3.1: Functional scan synthesis at RTL

the algorithms to generate scan structures that are optimized to reduce area and

performance penalty, Section 3.5 introduces the new constraints that can tune the

scan design to enhance delay fault coverage when using the skewed-load two-pattern

test application strategy. Experimental results will then be shown in Section 3.6.

3.1 Generating Control/Data Flow Graph

The first step in the RTL scan synthesis process is to generate a set of CDFGs from the

RTL description of a design. An CDFG contains control and data flow information

between memory elements of a circuit. To represent the two types of information,

an CDFG will contain control nodes and operation nodes, as well as control edges

and data edges. In order to better explain the CDFG, two examples are illustrated

in Figure 3.2. In Figure 3.2(a), a simple addition operation described by the transfer

function a = b + c is translated into an CDFG. The data node {+1} shows that

an addition is performed. This operation takes inputs from the two data edges {b,
c}, and outputs the sum to the data edge {a}. In this case, no control information

is presented. On the other hand, Figure 3.2(b) shows the CDFG of a simple IF

statement. In this case, two operations that are denoted by the two data nodes

{+1, −1} are specified in the transfer function. The operation {< 1} is used as the

condition to determine which result should be acquired in the control node {Sel1}.
The control edge {+} indicates the result from operation {+1} will be selected if the

condition is evaluated to TRUE. Conversely, the control edge {−} specifies that the

result from the other operation will be chosen.

By analyzing all the transfer functions specified in Verilog HDL, a set of CDFGs

will be generated for a design. These CDFGs can then be used to create a sequential

graph, which will be discussed in the following section.
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Figure 3.2: Examples of CDFGs

3.2 Generating Sequential Graph

After the set of CDFGs are created from the RTL description, the next step in the

scan synthesis process is to generate a sequential graph (S Graph). An S Graph is

used to show the control and data flow between all memory elements (i.e., flip-flops)

in a design. It starts with a set of nodes that represent PIs, and ends with a set of

nodes that represent POs of the design. Moreover, for every memory element that

is found from the analysis of CDFGs, a node will be created. And whenever a path

where data can be transfered between two elements is found from the CDFGs, a data

edge will be inserted to connect the corresponding source and destination nodes in

the S Graph. Similarly, whenever a path where control information can be transfered

is identified from the CDFGs, a control edge will be inserted to the S Graph.

After the S Graph is successfully generated, a complete view of control and data

flow of the design can be obtained. Since data edges in the S Graph represent data

flow between memory elements, they can also be categorized as different types of FPs.
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As a result, the next step in the scan synthesis process is to identify the candidate

FPs that may lead to savings in area and performance when they are reused as SPs.

The algorithms for doing that will be detailed in the following section.

3.3 Identifying Reusable Functional Paths

Reutilization of FPs as SPs in a design is the main reason why functional scan incurs

less area and performance penalty compared with scan structures that are generated

by the dedicated SP technique as described in Section 2.1.1. The three types of FPs

that can be identified are [19]:

Type I: Paths that directly connect registers in the original circuit.

Type II: Paths that already have some multiplexer-like logic between registers.

Type III: Paths that have complex logic between registers.

It is obvious that the savings in terms of area and performance penalty will not be

the same if different types of FPs are reused as SPs when constructing SCs. It is thus

necessary to estimate the reutilization cost of the various types of FPs. They can be

stated as follows:

Type I: These paths can be used as SPs without any additional cost.

Type II: These paths can be reused by inserting an AND/OR gate to control

the MUX and establish an SP in the test mode as shown in Figure 2.1. As a

result, the cost for using this type of FP is 1 logic gate.

Type III: To utilize these paths, additional MUXes must be added. In other

words, the cost will be the size of a MUX.

Using the above cost structure, the cost to reuse each FP (i.e., data edge) in the S

Graph can be calculated. By identifying FPs of Types I and II and converting them

into SPs, the need for additional MUXes is eliminated. Moreover, utilizing these FPs

can reduce the routing overhead. This is because additional wires will not be needed

43



3.3. Identifying Reusable Functional Paths M.A.Sc. - H.F. Ko - McMaster

Variable Name Representation
S Graph {V , E | V ∈ FF, E ∈ FP}
Vi Vertex i in S Graph
Vstart Vertex in S Graph without incoming edge
SPi SP i in design
SCi Scan chain i
SLi Length of scan chain i
SIi Scan input i
SOi Scan output i
Li List of data type i

Table 3.1: Terminology for scan synthesis

to connect the SFFs. Furthermore, despite the insertion of MUXes for the reuse of

Type III FPs, synthesis tools can optimize these extra MUXes and the functional

logic simultaneously if they are introduced before the gate design abstraction level.

Algorithms 1 and 2 illustrate an alternative technique to [19] for detecting these

potential FPs. However, before introducing the algorithms, the terminology that will

be used for all the algorithms throughout the thesis is listed in Table 3.1.

FPs are defined as paths between two FFs in a design where MUX insertion for

chaining FFs together in an SC is not required, and SPs represent a sequence of FPs

that are reused in an SC. Thus, the first step in Algorithm 1 is to remove all the

edges in the S Graph that represent Type III FPs, which require additional MUXes

to be inserted for SP establishment. After that, self loops of memory elements and

feedback loops in the S Graph are removed since we are not interested in building

SCs with loops. There are two main types of feedback loop that can be found in

the S Graph as illustrated in Figure 3.3. For the Type I feedback loop shown in

Figure 3.3(a), the last edge in the loop is removed. This is because removing that

edge can produce the longest possible sequence of cost saving FPs (i.e., SP) from

the loop. On the other hand, in the Type II feedback loop, illustrated in Figure

3.3(b), since the length of SP will be the same no matter which edge is eliminated,

the edge with the highest cost will be removed. After that, at step 3 of Algorithm 1,

the edges that represent paths that violate any custom constraints if they are scan

chained are removed. These constraints that can tune the generated scan structures
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Figure 3.3: Different types of feedback loops

to enhance delay fault coverage or reduce the VTD will be introduced in Sections

3.5.1 and 4.3. This is different to prior works on RTL scan [3, 5, 19, 34] that focused

only on reducing area and performance penalty.

At this stage of Algorithm 1, only FPs that can bring potential savings to the

scan design are retained in the S Graph. Figure 3.4(a) shows a sample of S Graph at

this stage. However, even though all of the remaining edges can potentially reduce

the cost of scan, not all of them can be reused as SPs. This is because in order to

prevent corruption of test data that is shifted into the SCs during test, each memory

element can only be accessible through one SC. As a result, it is necessary to remove

the redundant edges in this S Graph, so that all the remaining edges can be reused as

SPs. This is done in Algorithm 1 by the FOR loop at step 4, which will start traversing

the S Graph from the candidate nodes (i.e., nodes that do not have any incoming edge)

by iteratively applying the algorithm TraverseSGraph shown in Algorithm 2.

The goal of Algorithm 2 is to remove all redundant edges so that each memory

element is accessible through only one path. Moreover, in order to reduce the cost

of scan, it should only remove a minimum number of redundant edges from the S

Graph. In order to better explain this algorithm, a portion of an example S Graph,

45



3.3. Identifying Reusable Functional Paths M.A.Sc. - H.F. Ko - McMaster

Vstart1

FF1

FF3 FF4

FF5 FF6

�

��

���������
	�����
�����

����������	

�����������

FF2

������������ ����������	
Vstart2

(a) Starting S Graph

Vstart1

FF1FF3

FF4

FF5

FF6

FF2

Vstart2

(b) Final S Graph

Figure 3.4: S graph at different stages

after the removal of loops, is shown in Figure 3.4(a). Starting from Vstart1 in the S

Graph, FF1 is chosen and kept in this sequence of FPs (i.e., SP) even though the

cost of using that path is higher than that of FF2. This is because FF1 is the only

child node of Vstart1 with one incoming edge (steps 1-6). The reason Algorithm 2 gives

higher priority to child nodes with single rather than multiple incoming edges is that

even if a child with multiple incoming edges does not get selected in this iteration,

it may be chosen later by another SP since there are multiple paths going into that

child. On the other hand, if a child with single incoming edge is not selected, there

will not be any other paths available to include that node. Thus, this algorithm aims

to utilize as many FPs as possible in the circuit. Continuing to traverse the S Graph

from FF1, FF3 and FF4 are chosen as single-input children in step 1. However,

according to step 3, only FF4 will be chosen and kept in the SP since it has a lower

cost. The edge between FF1 and FF3 will be removed at step 5, since FF3 will no

longer be considered to be included in this SP. Moving on to traverse the S Graph

from FF4, FF5 and FF6 are selected as new candidates that could be included in

the SP at step 7. However, according to step 9, only FF5 will be kept in this SP

since it has a lower cost. The edge connecting FF4 and FF6 will thus be removed

at step 11. Also, the incoming edge connecting to FF5 will be removed at step 12
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since FF5 should not be considered in any other SP. The algorithm will stop here

since FF5 does not have any more children. However, it will start again from another

candidate node until all the SPs are identified and stored in LSP . At this stage, the

S Graph in Figure 3.4(a) will be simplified to the S Graph in Figure 3.4(b), and from

which, the next step of determining the order of SPs for SC construction in the scan

synthesis process will follow.

Algorithm 1: SPIdentification

Input : S Graph

Output: LSP

1 Remove ALL edges in S Graph representing MUX insertion;
2 Remove any feedback loop;
3 Remove ALL edges that violate custom constraints;
4 foreach candidate node Vstart in S Graph do

5 Set Vstart visited;
6 SPcurrent = TraverseSGraph(S Graph, Vstart, SPempty);
7 LSP = LSP ∪ SPcurrent;

end
8 Return LSP ;

3.4 Constructing Scan Chains

After all the redundant edges in the S Graph are removed using Algorithm 2, the next

step in the scan synthesis process is to connect the cost saving SPs in the S Graph

for SC construction. It should be noted that to connect two SPs together to form an

SC, a MUX will be needed. For example, to connect the SP starting from Vstart1 and

Vstart2 in Figure 3.4(b), a MUX will be needed to connect FF5 and Vstart2. Since we

want to produce balanced SCs while minimizing the area and performance penalty,

only a minimum number of MUXes should be added at this stage. An alternative

technique to connect SPs for SC construction is shown in Algorithm 3. The first step

in this algorithm is to determine the desired length of the SCs. This is because by

considering the SC length during scan construction, slicing and trimming of SCs in

the later stage will not be necessary in order to build balanced SCs. The optimal
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Algorithm 2: TraverseSGraph

Input : S Graph, Vstart, SPcurrent

Output: SPupdated

1 Lsingle = list of child nodes of Vstart with single input;
2 if (Lsingle 6= NULL) then

3 Vcheap = Vi from Lsingle with lowest cost;
4 SPcurrent = SPcurrent ∪ Vcheap;
5 Remove ALL other outgoing edge from Vstart;
6 SPupdated = TraverseSGraph(S Graph, Vcheap, SPcurrent);

else

7 Lmultiple = list of child nodes of Vstart with multiple inputs;
8 if (Lmultiple 6= NULL) then

9 Vcheap = Vi from Lmultiple with lowest cost;
10 SPcurrent = SPcurrent ∪ Vcheap;
11 Remove ALL other outgoing edges from Vstart;
12 Remove ALL other incoming edges to Vcheap;
13 SPupdated = TraverseSGraph(S Graph, Vcheap, SPcurrent);

end
end

14 Return SPupdated

SC length for a design can be calculated using Equation 3.1. After the desired SC

length is obtained, the next step in the algorithm is to decide which PI should be

used as SI in the design. This is done by steps 4-10 in Algorithm 3. By giving higher

priority to PIs that are already connecting to some existing FPs, routing and gate

overhead could be further reduced when they are reused as SIs. Only when such PIs

cannot be found, the algorithm will randomly select any available PI as SI. Once an

SI is chosen, the order of scan cells for that SC is determined by iteratively executing

Algorithm 4 at step 12.

SLdesired = dTotalFFdesign

NumSC

e (3.1)

Algorithm 4 determines which SP should be chosen and appended to the current

SC if its length has not reached the upper bound yet. Every time when the algorithm
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needs to find a new SP for a chain, it looks at two parameters in the existing chain to

make the decision. The first parameter that is considered is the length of SP that is

needed. The algorithm will always try to find an SP that has length less than or equal

to the difference between the desired SC length (SLdesired) and the current SC length

(SLcurrent) as shown in steps 4 and 10. This is because we want to avoid slicing of SP

as much as possible while producing balanced SCs. The possible physical location of

the SPs is the second parameter that needs to be considered when finding candidate

SP. When two separate SPs need to be connected together, a MUX will be added

between the end of SP1 and the beginning of SP2. Moreover, when two memory

elements are connected to each other indirectly (i.e. there are some combinational

logic in-between the registers), they are more likely to be placed closer to each other

during layout and routing. As a result, in order to reduce routing overhead, we would

like to choose an SP that connects to SP1 indirectly as our candidate SP2 so that the

routing overhead for the additional MUX can be minimized. This is why from steps

4-9, we are giving high priority to the SPs that are connected indirectly as candidate

SPs. However, if SPs that are indirectly connected cannot be found, steps 10-15 of the

algorithm will randomly choose an SP that is still to be chained. After the candidate

SP has been chosen, it will need to be checked if any custom constraint is violated

at step 16. These constraints for enhancing delay fault coverage or reducing VTD of

scan designs will be discussed in Sections 3.5.1 and 4.3 respectively. If the chosen SP

meets all the constraints, it will then be appended to the current SC. Finally, when

the SC is long enough, it randomly picks a scan output port from a list of available

scan outputs (LSO) and appends it to the SC (step 19).

In both Algorithms 3 and 4, the routine AppendSC is used to append the selected

SP into the current SC. This routine will append the SC until all FFs in the SP are

inserted, or when the number of FFs inserted reaches a desired number. This way,

the length of SC will never exceed the desired SC length, and thus, avoiding slicing

of SC in the later stage of the scan synthesis process. After the order of scan cells

in each SC are determined using the above algorithms, the RTL description of the

design will be modified to incorporate the scan structure accordingly. An example of

how a description is modified for scan chain insertion will be shown in Appendix A.
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Algorithm 3: StartChaining

Input : LSI , LSO, NumSC , LSP

Output: LSC

1 Find optimal SC length SLdesired of the design;
2 Numcurrent chain = 1;
3 while (Numcurrent chain ≤ NumSC) do

4 LSI candidate = SI that connects to SPany in LSP ;
5 if (LSI candidate 6= NULL) then

6 SIselected = SI that connects to SPlongest in LSP ;
7 SCcurrent = SCcurrent ∪ SIselected;
8 SCcurrent = AppendSC(SCcurrent, SPlongest);

else

9 SIselected = Any scan input in LSI ;
10 SCcurrent = SCcurrent ∪ SIselected;

end
11 Remove SIselected from LSI ;
12 SCupdated = ChainFF(SCcurrent, SLdesired, LSO, LSP);
13 LSC = LSC ∪ SCupdated;
14 Numcurrent chain = Numcurrent chain + 1;

end
15 Return LSC ;

The generated RTL scan design can then be interfaced with the RTL/logic synthesis

tools (or RTL-to-GDSII flow [37]) with the DFT infrastructure in place.

In addition to reducing area and performance penalty of the generated scan

structures, custom constraints can be inserted into the algorithms to tune the created

scan structure for various objectives. In the following section, the extra constraints for

enhancing delay fault coverage will be introduced. Furthermore, the scan structure

can also be optimized to reduce the volume of test data, as discussed in Section 4.3.
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Algorithm 4: ChainFF

Input : SCcurrent, SLdesired, LSO, LSP

Output: SCupdated

1 SLcurrent = length of SCcurrent;
2 if (SLcurrent < SLdesired && LSP 6= NULL) then

3 SLdiff = SLdesired − SLcurrent;
4 LSP indirect = All SPindirect in LSP with length ≤ SLdiff ;
5 if (LSP indirect 6= NULL) then

6 SPlongest = longest SPindirect in LSP indirect;
else

7 LSP indirect = All SPindirect in LSP ;
8 if (LSP indirect 6= NULL) then

9 SPlongest = longest SPindirect in LSP indirect;
else

10 LSP random = All SPrandom in LSP with length ≤ SLdiff ;
11 if (LSP random 6= NULL) then

12 SPlongest = longest SPrandom in LSP indirect;
else

13 LSP random = All SPrandom in LSP ;
14 if (LSP random 6= NULL) then

15 SPlongest = longest SPrandom in LSP indirect;
end

end
end

end
16 if (SPlongest does not violate any custom constrains) then

17 SCcurrent = AppendSC(SCcurrent, SPlongest, SLdiff);
18 SCupdated = ChainFF(SCcurrent, SLdesired, LSO, LSP);

end
else

19 SCupdated = SCcurrent ∪ (SOselect from LSO);
end

20 Return SCupdated;
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3.5 Improving Delay Fault Coverage Through Func-

tional Scan

Delay fault testing is gaining importance in the test community to compensate for

the decreasing effectiveness of quiescent current-based testing for circuits manufac-

tured in smaller process geometries. To facilitate delay fault testing using existing

scan structures available in a design, the skewed-load two-pattern test application

strategy can be used. However, as described in Section 1.4, due to the presence of

pattern correlations, sufficient test quality of scan designs using this strategy cannot

be achieved. In Section 3.5.1, a technique to improve delay fault coverage through

consciously constructing functional scan structure will be introduced.

3.5.1 Constraints To Improve Delay Fault Coverage

Skewed-load test application strategy for two-pattern testing of scan circuits has the

restriction of data correlation between test pattern pairs. This was already discussed

in Section 1.4. To remove the above limitation, which leads to loss in delay fault

coverage, we account for three constraints during the RTL scan synthesis process in

Algorithms 1 and 4. The three constraints: Vertical Constraint 1, Vertical Constraint

2 and Horizontal Constraint, and a sample scan structure built with these constraints

is shown in Figure 3.5:

1. Vertical constraint 1 tries to place two FFs in adjacent positions in the same

scan chain only if they drive different logic cones;

2. Vertical constraint 2 gives higher priority to FFs with larger bit index (for data

paths) during FF selection;

3. Horizontal constraint spans FFs driving the same logic cone into different scan

chains, if possible;

By using the Vertical Constraint 1, two FFs driving the same logic cone will be

interleaved with FFs driving another logic cones, resulting an interleaved SC struc-

ture. In the example of Figure 3.5, the right most SC consists of FFs {A3, B3, A1,
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Figure 3.5: Considering delay fault testing constraints for scan chain designs at RTL

C1}. When targeting a transition fault in logic cone A, the pattern pair {V1, V2} that

will excite the fault can be loaded onto the SC by shifting the first pattern V1 onto

the FFs {A3, A1}, while using the other FFs {B3, C1} as buffers to store the second

pattern V2. In this case, any arbitrary pattern pair can be loaded to the target logic

cone A. Moreover, when a design has multiple SCs, the Horizontal Constraint can

further enhance the delay fault coverage by spanning FFs driving the same logic cone

onto multiple SCs, as illustrated in Figure 3.5. By applying this constraint in the SC

construction process, FFs that drive the same logic cone are distributed onto different

SCs, reducing the likelihood of these FFs to be put onto a single SC at later stage

during SC generation. This allows the Vertical Constraint 1 to be better satisfied
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throughout the complete scan synthesis process. The reason for having Vertical Con-

straint 2 is also to aid the satisfaction of Vertical Constraint 1. In the example shown

in Figure 3.5, after chaining FF set {A8, . . ., A3} in the first level of the SCs, without

Vertical Constraint 2, the FF set {C6, . . ., C1} can be chosen to be placed onto the

second level. In this case, Vertical Constraint 1 would be violated since the FF set

{B8, . . ., B1} would have to be placed in levels three and four. By better satisfying

Vertical Constraint 1 from the aid of Vertical Constraint 2 and Horizontal Constraint

in Algorithms 1 and 4, the restriction of skewed-load test application scheme due to

pattern correlation for two-pattern delay fault testing can be eliminated, resulting

higher delay fault coverage without the addition of any complex logic.

3.6 Experimental Results

We integrated the new constraints to the RTL scan synthesis process and performed

experiments on a DSP core from the SCU benchmark set [1] and the ITC benchmark

B14 [40] using commercial synthesis and ATPG tool flow [42]. The experimental

results for area/performance analysis are shown in Tables 3.2 and 3.3. The testability

results for both of the circuits can be found in Tables 3.4 and 3.5. In all the tables,

the results are subjected to rounding error.

Tables 3.2 and 3.3 show the experimental results for area overhead and circuit

performance of the DSP core and B14, when comparing the gate level full scan and

the proposed RTL full scan. For both tables, Column 1 shows the timing constraints

used for logic synthesis. Column 2 provides the total number of SCs and Columns

3, 5 and 7 indicate whether the timing constraints were met during synthesis for the

non-scan circuit (i.e., no DFT included), the circuit with gate level scan and the

RTL scan circuit. Columns 4 and 6 show the area overhead when compared to the

non-scan circuit for gate level scan and RTL scan accordingly. Column 7 shows the

difference in area overhead between gate level scan and RTL scan. For example, for

the DSP core with a clock period of 10.7 ns, the original circuit, gate level scan and

RTL scan circuits can all meet the timing constraint. One thing to note is that there

are 639 FFs in the original circuit and gate level scan, while RTL scan has 664 FFs
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# Original Area OH
Period of (No DFT) Gate level scan RTL scan ∆
(ns) SC Timing Met? % Met? % Met? %
10.70 8 Yes 6.01 Yes 6.18 Yes -0.16

16 6.01 Yes 6.10 Yes -0.09
24 6.01 Yes 6.53 Yes -0.51

10.65 8 No 4.80 No 5.72 Yes -0.92
16 4.80 No 6.75 Yes -1.95
24 4.80 No 5.70 Yes -0.90

10.60 8 Yes 5.94 No 6.78 Yes -0.84
16 5.94 No 7.90 Yes -1.96
24 5.94 No 8.26 Yes -2.32

10.55 8 No 5.39 No 6.39 Yes -1.00
16 5.39 No 6.10 Yes -0.70
24 5.39 No 5.89 Yes -0.50

10.50 8 No 6.41 No 7.57 Yes -1.16
16 6.41 No 7.36 Yes -0.94
24 6.41 No 7.23 Yes -0.82

10.45 8 No 5.90 No 6.38 Yes -0.49
16 5.90 No 6.96 Yes -1.06
24 5.90 No 7.02 No -1.12

10.40 8 No 5.61 No 5.77 Yes -0.16
16 5.61 No 5.87 Yes -0.26
24 5.61 No 6.42 Yes -0.81

10.35 8 No 5.94 No 7.09 No -1.15
16 5.94 No 6.94 No -1.00
24 5.94 No 6.93 Yes -0.99

10.30 8 No 6.16 No 8.13 No -1.98
16 6.16 No 7.18 No -1.03
24 6.16 No 8.87 Yes -2.71

Table 3.2: Area/performance for the DSP core with delay constraints

after synthesis. This is because without RTL scan, the synthesis tool can optimize

the circuit by removing redundant FFs. However, these redundant FFs will not be

removed in RTL scan since these FFs are now included in the scan paths. Despite

the presence of these redundant FFs, the average increase in area overhead for RTL

scan when compared to that of gate level scan is only 1.02% for the DSP core. In

the case of B14, the area overhead is, however, reduced on average by 3.55%. This is

because, the scan synthesis process tries to reduce area overhead of the scan design

by reusing existing FPs as SPs in the circuit. In addition, by constructing SCs at the

RTL, the synthesis tool can optimize test logic and functional logic concurrently, thus
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Number Original Area OH
Period of (No DFT) Gate Full RTL Full ∆
(ns) SC Timing Met? % Met? % Met? %
5.75 4 Yes 13.84 Yes 5.63 Yes 8.21

8 13.85 Yes 10.28 No 3.57
12 13.85 Yes 8.98 Yes 4.88

5.70 4 Yes 13.29 Yes 7.58 No 5.71
8 13.29 Yes 6.33 No 6.96
12 13.29 Yes 11.99 No 1.30

5.65 4 No 4.97 No 0.86 Yes 4.11
8 4.97 No 6.78 No -1.81
12 4.97 No 4.37 No 0.60

5.60 4 Yes 5.19 Yes 0.32 Yes 4.87
8 5.19 Yes 1.36 No 3.83
12 5.19 Yes 1.29 Yes 3.90

5.55 4 Yes 10.29 Yes 7.91 No 2.39
8 10.29 Yes 10.01 No 0.28
12 10.29 Yes 8.08 No 2.21

5.50 4 No 4.66 No -1.63 Yes 6.29
8 4.66 No 2.33 No 2.32
12 4.66 No 0.31 Yes 4.35

Table 3.3: Area/performance for B14 with delay constraints

improving the timing of the design. In the case of the DSP core, RTL scan with 24

SCs helps improve the timing to 10.3 ns, an improvement of 2.91% when compared to

the original circuit, which has a timing of 10.6 ns. For B14, RTL scan with 4 and 12

SCs helps improve the timing by about 1% to 5.5 ns when compared to the original

circuit, which has a timing of 5.55 ns.

Tables 3.4 and 3.5 show the testability results for the DSP core and B14 generated

by a commercial ATPG tool [42]. The timing constraints and number of SCs are

listed in columns 1 and 2 respectively. The column labeled AU represents ATPG

untestable faults, which are faults that are untestable due to the limitation of scan

cell arrangement. FC corresponds to fault coverage for transition faults, CTP denotes

the number of compressed test patterns, and CPU represents test generation time in

seconds. The readers should note that the total faults for the circuits with different

timing constraints and number of SCs are different due to the differences in logic

blocks that were synthesized from the RTL description. It can be seen from Table

3.4 that the proposed method consistently improves the delay fault coverage to over
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Period SC Gate level scan RTL scan ∆
(ns) # AU FC CTP CPU AU FC CTP CPU AU FC CTP CPU
10.70 8 1563 95.82 315 191.62 178 98.08 294 161.41 1385 2.26 21 30.21

16 2193 93.98 320 209.57 209 98.22 292 168.83 1984 4.24 28 40.74
24 2488 92.91 375 275.94 655 97.53 287 167.68 1833 4.62 88 108.26

10.65 8 1564 95.58 298 270.89 177 98.32 300 164.93 1387 2.74 -2 105.96
16 2188 93.70 307 327.53 203 98.25 304 165.15 1985 4.55 3 162.38
24 2520 92.44 350 409.28 656 97.45 272 158.46 1864 5.01 78 250.82

10.60 8 1600 95.52 311 197.59 177 98.20 297 156.21 1423 2.68 14 41.38
16 2275 93.80 312 210.11 202 98.40 310 214.28 2073 4.60 2 -4.17
24 2563 92.46 379 298.91 653 97.51 295 178.15 1910 5.05 84 120.76

10.55 8 1558 95.41 301 171.57 180 98.41 324 222.67 1378 3.00 -23 -51.10
16 2238 93.67 328 218.88 207 98.19 306 160.77 2031 4.52 22 58.11
24 2499 92.62 356 266.71 662 97.51 264 138.44 1837 4.89 92 128.27

10.50 8 1583 95.93 301 151.54 172 98.28 310 133.02 1411 2.35 -9 18.52
16 2183 94.16 320 175.87 208 98.18 305 186.21 1975 4.02 15 -10.34
24 2492 93.24 361 223.95 662 97.56 271 142.91 1830 4.32 90 81.04

10.45 8 1550 95.58 297 182.77 185 98.23 321 194.92 1365 2.65 -24 -12.15
16 2183 93.66 310 230.50 212 98.29 316 200.87 1971 4.63 -6 29.63
24 2499 92.54 377 312.15 660 97.74 290 168.53 1839 5.20 87 143.62

10.40 8 1566 95.63 276 190.56 172 98.36 305 223.38 1394 2.73 -29 -32.82
16 2230 93.75 300 200.62 202 98.17 291 177.17 2028 4.42 9 23.45
24 2450 92.67 337 268.89 667 97.37 299 171.25 1783 4.70 38 97.64

10.35 8 1539 95.82 277 182.96 178 98.18 323 218.51 1361 2.36 -46 -35.55
16 2192 94.01 313 222.35 208 98.13 290 168.34 1984 4.12 23 54.01
24 2453 92.96 364 293.44 658 97.55 284 199.09 1795 4.59 80 94.35

10.30 8 1577 95.83 325 175.72 176 98.27 318 185.27 1401 2.44 7 -9.55
16 2222 93.97 348 220.52 205 98.11 315 211.44 2017 4.14 33 9.08
24 2502 92.91 390 262.89 658 97.49 277 154.46 1844 4.58 113 108.43

Table 3.4: Skewed-load delay fault coverage results for the DSP core

Period SC Gate level scan RTL scan ∆
(ns) # AU FC CTP CPU AU FC CTP CPU AU FC CTP CPU
5.75 4 295 98.06 696 87.03 1134 96.03 652 40.06 -839 -2.03 44 46.97

8 344 97.97 702 87.24 1061 96.12 661 80.77 -717 -1.85 41 6.47
12 1011 95.20 689 95.95 1194 95.64 627 18.27 -183 0.44 62 77.68

5.70 4 261 98.28 717 60.93 1081 95.97 645 60.92 -820 -2.31 72 0.01
8 304 98.11 727 67.05 1039 96.27 667 62.71 -735 -1.84 60 4.34
12 974 95.33 712 76.46 1208 95.73 666 76.16 -234 0.40 46 0.30

5.65 4 273 98.09 674 104.04 1067 96.33 671 71.75 -794 -1.76 3 32.29
8 331 97.87 698 104.90 1181 95.78 664 113.88 -850 -2.09 34 -8.98
12 1002 94.46 673 121.91 1135 95.73 657 44.34 -133 1.27 16 77.57

5.60 4 251 98.24 691 81.95 1059 95.94 659 103.64 -808 -2.3 32 -21.69
8 304 98.07 692 79.78 1084 96.14 671 89.79 -780 -1.93 21 -10.01
12 989 94.74 673 91.81 1043 96.06 678 92.47 -54 -1.32 -5 0.66

5.55 4 261 98.37 669 94.13 1085 96.11 660 90.05 -824 -2.26 9 4.08
8 312 98.04 698 95.96 1057 96.44 659 95.96 -745 -1.60 39 0.00
12 954 94.76 672 109.62 1223 95.60 638 82.59 -269 -0.84 34 27.03

5.50 4 329 97.97 695 112.33 1026 96.27 671 73.95 -697 -1.70 24 38.38
8 970 94.84 684 125.41 961 96.35 640 68.10 9 1.51 44 57.31
12 572 96.87 689 113.51 1109 95.79 659 62.77 -537 -1.08 30 50.74

Table 3.5: Skewed-load delay fault coverage results for B14
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Period SC TF AU Faults FC with faults FC without faults
(ns) # in test paths in test paths in test paths
10.70 8 64942 178 121 98.08 98.27

16 65382 209 123 98.22 98.41
24 65460 655 123 97.53 97.72

10.65 8 65466 177 119 98.32 98.50
16 65524 203 118 98.25 98.43
24 65238 656 127 97.45 97.64

10.60 8 64800 177 121 98.20 98.39
16 67140 202 118 98.40 98.58
24 66290 653 121 97.51 97.69

10.55 8 67360 180 121 98.41 98.59
16 66610 207 120 98.19 98.37
24 65470 662 126 97.51 97.70

10.50 8 65324 172 125 98.28 98.47
16 66610 208 122 98.18 98.36
24 65670 662 126 97.56 97.75

10.45 8 66284 185 125 98.23 98.42
16 66604 212 124 98.29 98.48
24 66724 660 123 97.74 97.92

10.40 8 67354 172 116 98.36 98.53
16 66170 202 116 98.17 98.35
24 65934 667 128 97.37 97.56

10.35 8 67804 178 121 98.18 98.36
16 67340 208 121 98.13 98.31
24 67178 658 121 97.55 97.73

10.30 8 67412 176 119 98.27 98.45
16 68366 205 118 98.11 98.28
24 66162 658 121 97.49 97.67

Table 3.6: Adjusted skewed-load delay fault coverage results for the DSP core with
RTL scan when functionally redundant faults in the test paths are discarded

Period SC TF AU Faults FC with faults FC without faults
(ns) # in test paths in test paths in test paths
5.75 4 34210 1134 1112 96.03 99.28

8 35362 1061 1029 96.12 99.03
12 33042 1194 1139 95.64 99.09

5.70 4 33412 1081 1055 95.97 99.13
8 34414 1039 1035 96.27 99.28
12 34608 1208 1153 95.73 99.06

5.65 4 34426 1067 1031 96.33 99.32
8 33902 1181 1137 95.78 99.13
12 34926 1135 1080 95.73 98.82

5.60 4 34996 1059 1025 95.94 98.87
8 36382 1084 1051 96.14 99.03
12 34414 1043 1008 96.06 99.06

5.55 4 34894 1085 1015 96.11 99.02
8 36004 1057 1022 96.44 99.28
12 34958 1223 1194 95.60 99.02

5.50 4 35202 1026 989 96.27 99.08
8 33156 961 908 96.35 99.09
12 34026 1109 1086 95.79 98.98

Table 3.7: Adjusted skewed-load delay fault coverage results for the B14 with RTL
scan when functionally redundant faults in the test paths are discarded
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97%, with an average improvement of 3.9% when compared with gate level scan. This

is mainly due to the reduction of ATPG untestable faults because of the scan cells

arrangement according to the constraints proposed in our approach. However, the

above improvement in ATPG untestable faults does not account for the undetectable

faults in the test paths, which are unique for functional scan and, if present, will not

affect the functional mode of operation. For example, in the case of B14 (Table 3.5),

the presence of these undetectable faults in the test paths will decrease (on average)

the delay fault coverage of RTL scan by 0.94% when compared with gate level scan.

Because these undetectable faults in the test paths cannot affect the functional mode

of operation, they can be discarded from the fault coverage computation. Tables 3.6

and 3.7 show the delay fault coverage results for the DSP core and B14 after they are

adjusted by discarding these AU faults. In these tables, the timing constraints and

the number of SCs are listed in columns 1 and 2 respectively. The column labeled

TF corresponds to the total number of delay faults in the synthesized circuit, and AU

represents ATPG untestable faults, which includes faults that are in the test paths.

Column 5 gives the number of faults that are in the test paths. Finally, the delay fault

coverage before and after the adjustment are shown in Columns 6 and 7 respectively.

As one can see from the results, after re-calculating the delay fault coverage for RTL

scan by discarding the faults in the test paths, which, if present, will not affect the

functional operation of the circuit, the average delay fault coverage is improved to

98.18% and 99.09% for the DSP core and B14 respectively. Furthermore, due to the

interleaved SC structure that is generated, there could be multiple independent logic

cones presented in a single scan chain, which gives ATPG more flexibility to merge

patterns targeting faults in different logic cones into a single test pattern. As one can

see from the experimental results for the DSP core and B14 in Tables 3.5 and 3.4,

the average reduction in number of test patterns for RTL scan compared with gate

level scan is about 29 and 34 respectively. In addition, our proposed solution has also

improved the test generation time by an average of 57.44 and 21.29 seconds for the

DSP core and B14 accordingly. It is also important to note that the computational

time for scan insertion in the RTL code is in the range of tens of seconds on a

Pentium-M at 1.3 GHz.
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3.7 Summary

This chapter presented an alternative technique to [19] for constructing functional

scan chains at the RTL. By extracting functional information from the RTL descrip-

tion using CDFGs and the S Graph, functional paths that can lead to potential

savings in area and performance overhead, when they are reused as scan paths, are

identified. Moreover, the additional constraints that are integrated into the scan syn-

thesis process eliminate the restriction of data correlation between test pattern pairs.

As a result, the generated scan structure can lead to enhanced delay fault coverage,

low area overhead, as well as improved timing. It is important to note that, if the

scan chains are constructed after the logic or physical synthesis steps in the design

flow, imposing constraints on the scan chain order may conflict with timing closure or

wiring minimization objectives. However, this is not the case for the proposed solu-

tion for enhancing delay fault coverage, where the constraints on the functional scan

path construction are included in the RTL description prior to logic synthesis. As

a consequence, both the test and functional logic and interconnect are subsequently

optimized simultaneously during logic and physical synthesis.
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Chapter 4

Test Data Compression Through

Functional Scan

Due to the decrease in design complexity at the RTL, analysis of circuits for functional

information becomes feasible. The extracted information can then be used to identify

cost saving FPs that can be reused as SPs in a design. The previous chapter has

already shown how by reusing these cost saving FPs as SPs during SC construction

at the RTL, one could reduce area overhead, improve timing and enhance the delay

fault coverage of a scan circuit.

The large volume of test data (VTD) is another problem associated with the

scan method. It was already mentioned in Section 2.3.4 that the Illinois Scan Archi-

tecture (ISA) can reduce VTD while reusing the existing scan structure in a design.

However, due to the correlations of patterns in multiple SCs in the broadcast mode,

the effectiveness of test data compression from the ISA is limited. In Section 4.1,

a technique to eliminate the correlations of patterns by inserting dummy cells into

the scan design is discussed. Due to the excessive area overhead of this technique,

Section 4.2 introduces two new reconfigurable ISAs. Section 4.3 then introduces a

set of new constraints to be incorporated to the scan synthesis process that was de-

tailed in Chapter 3. Experimental results shown in Section 4.4 indicate that the VTD

for functional scan synthesized at RTL can be effectively reduced, regardless of the

resulting logic network or the subsequently generated structural test sets.
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Figure 4.1: Illinois scan with dummy cells

4.1 Illinois Scan With Dummy Cells

Our first attempt to improve the stuck-at fault coverage for the ISA was to insert

dummy cells into SCs to eliminate correlations between test patterns by preventing

FFs that drive the same logic cone to be placed at the same scan depth in different

SCs. As shown in Figure 4.1, FF1, FF2 and FF3 drive the same logic cone. By

inserting dummy cells {D1, . . ., D6} into the SCs, the FFs are no longer at the same

scan depth in multiple chains, thus allowing arbitrary patterns to be fed to the target

logic cone in the broadcast mode. This eliminates the need for the serial test patterns

which increases both the VTD and the test application time of scan designs. Since

the inserted dummy cells do not serve any purpose and appear transparent to the

circuit functionality in the normal operation mode, these redundant FFs serve as area

overhead for the purpose of test only.

In order to minimize the number of dummy cells needed to improve the stuck-at

fault coverage for the ISA, the algorithm will insert a dummy cell to an SC only if it

is not able to find an un-chained FF that does not drive the same logic cone as the

FFs placed at the same scan depth in all the other SCs. The algorithm was applied

to the ITC benchmark circuit B14 [40] with 244 FFs. Figure 4.2 shows the number

of dummy cells inserted, while Figure 4.3 illustrates the actual test data compression

ratio of B14 with different number of SCs driven by 1, 2 and 4 SIs with the ISA.

The actual compression ratio is calculated by Equation 4.1. The reader should note

that the targeted compression ratio for Illinois Scan with no serial test patterns is
Number of SCs
Number of SIs

.
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Figure 4.3: Compression ratio for B14
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compression ratio =
Total FFs excluding dummy cells

(Length of longest SC) ∗ (Number of SIs)
(4.1)

Although a compression ratio of over 8X can be obtained for B14 when there are

16 SCs driven by a single SI using ISA (see Figure 4.3), there are over 200 dummy

cells inserted to the design, which only has 244 FFs before scan insertion (see Figure

4.2). In order words, this method reduces test data volume and test application

time while achieving the desired stuck-at fault coverage at the expense of having an

undesirably large area overhead. On the other hand, by using multiple SIs, the number

of dummy cells needed can be reduced. For instance, only 12 dummy cells are needed

for B14 when using four SIs to drive 16 SCs (see Figure 4.2). However, the resulting

compression ratio is only 3.6X in this case (see Figure 4.3). Having shown that dummy

cell insertion is not capable of improving the fault coverage without a significant area

penalty, we introduce two new Reconfigurable Illinois Scan Architectures (RISAs)

that can effectively reduce the VTD for scan designs in the next section.

4.2 Reconfigurable Illinois Scan Architectures

The benefits of reducing the test data volume and the test application time of scan

designs with the ISA are mainly contributed by shifting the same set of test data

into multiple SCs from a single SI. However, when FFs that drive the same logic cone

are placed at the same scan depth in different SCs, the possible set of test patterns

this logic cone can receive will be limited, thus reducing the fault coverage of the

design. Although the serial mode in the ISA can help improve the fault coverage, the

serial test mechanism prolongs the test application time and increases the VTD. This

problem can be solved by using the two RISAs with multiple broadcast modes and

different SC lengths in each mode.
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4.2.1 Reconfigurable Illinois Scan Architecture

The purpose of the RISA is to eliminate correlations between patterns in multiple SCs

by employing multiple broadcast modes. Figure 4.4 1 illustrates an example of the

proposed architecture. In this example, there are 24 FFs equally distributed in 8 SCs.

It is assumed that FF2 and FF5 drive the same logic cone, while FF14, FF17, FF20

and FF23 drive another logic cone. In mode 0 when the test select signals {TS2, TS1,

TS0} have the values of {0, 0, 0}, the architecture functions as the original ISA in

the broadcast mode, where a single SI drives 8 SCs. However, when in mode 1, when

the TS signals change to {0, 0, 1}, the SCs are reconfigured such that the adjacent

SCs are combined into a single SC, resulting in 4 SCs with length of 6 to be driven by

the same SI. In this mode, the conflict between FF2 and FF5 will be eliminated since

they will be at different scan depths in the same SC. When the TS signals change

to {0, 1, 1} (mode 2), the SCs will be reconfigured again such that only 2 SCs with

length of 12 will be driven by the same SI. In this mode, all the conflicts between

FF14, FF17, FF20 and FF23 are eliminated. Finally, in mode 3 with {TS2, TS1,

TS0} equal to {1, 1, 1} we will end up with a single scan chain where as long as a

test pattern exist for a fault it will be generated. Note, although the test data volume

is increased every time the SCs are reconfigured, the rate of increase of the RISA is

lower when compared to that of the serial broadcast mode in the original ISA.

If there are 2n SCs in a design, then the total number of broadcast modes in

the RISA is n + 1 (including the serial scan mode). This is illustrated in Figure

4.5 where there are four SCs, which can be configured in three modes. Whenever

the RISA is reconfigured, the adjacent SCs will be chained together as one long

SC. There will be n TS signals, whose values can be stored in n state elements,

which is negligible from the added area standpoint. The update of the TS signals

can be done in between test sessions, with different broadcast modes, using a small

on-chip controller programmable through the boundary scan interface. The decimal

equivalents of the n + 1 values for the n TS signals are 2i − 1, with i from 0 to n.

1The left data input of the 2 to 1 MUXes is selected by the driving the control signal to 1
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Figure 4.4: Reconfigurable Illinois scan
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Figure 4.5: Different broadcast modes for the RISA
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4.2.2 Reconfigurable Illinois Scan With Inversion

In this section, a modified version of RISA will be introduced. This new architecture

can further improve the effectiveness of test data compression by inserting a negligible

amount of extra logic to the original RISA. An example of the modified RISA is shown

in Figure 4.6. In this architecture, a set of exclusive-OR (XOR) gates are inserted

into the original RISA shown in Figure 4.4. These XOR gates are controlled by the

input signal INV such that they function as inverters when the value of INV is set

to a logic 1. Hence, the test patterns that are shifted into the selected SCs can be

inverted. Recall from Section 4.2.1 that the RISA eliminates correlations between

patterns in multiple SCs by employing various broadcast modes such that SCs are

combined together in different modes. For example, in Figure 4.6, FFs {14, 17, 20,

23} are conflicting each other in SCs {5, 6, 7, 8}. If for detecting a fault the FFs

{14, 17, 20, 23} must be assigned to {0, 1, 1, 0} then to satisfy the above values in

the RISA proposed in the previous section (Figure 4.4) the architecture needs to be

reconfigured until the four SCs are combined into a single SC. However, when using

the modified RISA, the values can be satisfied when SCs {5, 6}, and SCs {7, 8} are

combined as two SCs using the inverting property of the architecture. Thus, the VTD

can be reduced by allowing multiple SCs to be driven by the same SI with the aid of

the inverting capability of the modified RISA. For a design with n SCs, in addition

to the n + 1 broadcast modes (including the serial scan mode) of operation, another

n broadcast modes with inverting inputs to adjacent SCs can be configured in the

modified RISA with inversion ability.

The XOR gates must be aligned such that for every pair of SCs in any config-

uration, there will be one XOR gate driving one of the SCs. For 2n scan chains the

questions is where to place the 2n−1 XOR gates, such that the scan cells at the same

scan depth level in any two neighboring scan chains, in any broadcast mode, will be

uncorrelated? An example of incorrect assignment of XOR gates is shown in Figure

4.7. In this example, the XOR gates are assigned to SC2 and SC4. Although this

setting does provide inverting capability to adjacent SCs to eliminate correlations

between patterns between the SC pairs {SC1, SC2} and {SC3, SC4} as shown in

Figure 4.7(a), the inverting capability is lost when the RISA is reconfigured as shown
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Figure 4.6: Reconfigurable Illinois scan with inversion

in Figure 4.7(b). The XOR gates are no longer present at the beginning of a SC for

pattern inversion from the SI. For the correct assignment, the XOR gates are assigned

to SC2 and SC3 in Figure 4.8(a). After reconfiguration in a new broadcast mode,

the XOR gate of SC3 is kept at the beginning of the combined SC. Thus, the test

patterns from the SI can be inverted for the combined SC in the new configuration

as illustrated in Figure 4.8(b). Table 4.1 shows the assignment of XOR gates for a

different number of SCs. For example, in the case of 4 SCs, the binary pattern 0110

indicates that XOR gates for inversion should be placed at the beginning of SC2 and

SC3. For 2n scan chains, the binary pattern for the assignment of XOR gates is given

by the truth table of the n input XOR gate.

Number of SCs Assignment of XOR gates
4 0110
8 01101001
16 0110100110010110

Table 4.1: Assignment of XOR gates for designs with the RISA with inversion
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Figure 4.7: Incorrect assignment of XOR gates in the RISA with inversion
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Figure 4.8: Correct assignment of XOR gates in the RISA with inversion
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Both of the proposed RISAs improve the effectiveness in test data compression of

scan designs by employing multiple broadcast modes in order to reduce correlations

between patterns in different SCs. However, it should be noticed that if majority of

correlations cannot be removed during the early broadcast modes of the reconfigu-

ration process, the effectiveness in compressing test data using the proposed RISAs

will be reduced. Hence, it is beneficial to arrange FFs in the SCs such that the ap-

pearance of correlation can be reduced in the first place. In the following section,

two constraints that aid the FP selection process during scan construction will be in-

troduced. By integrating the new constraints in the scan synthesis process described

in Chapter 3, functional scan structures that are optimized for the RISAs can be

obtained. As a result, not only the VTD can be decreased, the advantages of reduced

area overhead and improved performance of functional scan designs can be retained.

4.3 Constraints For Functional Scan Construction

at RTL To Reduce Volume of Test Data

As shown in the previous chapter, by introducing test infrastructure prior to RTL/logic

synthesis and ATPG, it is ensured that test and functional logic are generated simul-

taneously, which may benefit the timing closure. To achieve this, the RISA must

be inserted in the RTL description, which, consequently, asks for an investigation

for extra constraints in the functional scan synthesis algorithms that account for the

specific features of the RISA architectures proposed in the previous section.

It was mentioned in Section 2.3.4 that whenever FFs that drive the same logic

logic are placed at the same scan depth in multiple scan chains, the fault coverage in

the broadcast mode will be reduced. As a result, in order to improve the effectiveness

in compressing test data of the generated RISA, the following constraints are needed

in the scan synthesis process in Algorithms 1 and 4:

Constraint 1: FFs that drive the same logic cone must not be placed at the

same scan depth in multiple SCs if possible.
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Constraint 2: FFs that drive the same logic cone must be placed in the same

SC if possible.

Constraint 3: FFs that drive the same logic cone should be placed in adjacent

SCs if both constraints 1 and 2 cannot be satisfied.

In order to better explain the constraints, an illustrative example is given in Figure

4.9. In this example, four sets of FFs {(1, 2, 3, 5, 6), (4), (7, 8, 9), (10, 11, 12)} are

driving four different logic cones. FFs {1, 4, 7, 10} can be placed at the same scan

depth in multiple SCs, as illustrated in Figure 4.9. In order to aid the satisfaction

of constraint 1, constraint 2 is introduced since when FFs that drive the same logic

cone are placed in the same SC, satisfaction of constraint 1 is facilitated. This is

shown in Figure 4.9 where FFs {7, 8, 9} and FFs {10, 11, 12}, drive different logic

cones. When both constraints 1 and 2 fail to be satisfied, constraint 3 will try to

put the conflicting FFs in adjacent SCs. This is because if the conflicting SCs are

placed adjacent to each other, when the RISA changes the broadcast mode (from 4

to 2 SCs driven by one SI in Figure 4.9) the adjacent SCs will be combined into a

single SC. Thus, the conflicts between FFs, which occur in the broadcast mode to

2i+1 SCs will be removed when RISA is reconfigured to the broadcast mode to 2i

SCs. Furthermore, For the RISA with inversion from Figure 4.6, the change of the

broadcast mode from 2i+1 to 2i may not be necessary, because the removal of conflicts

may occur by exploiting the inversion ability.

4.4 Experimental Results

To demonstrate the effectiveness of the proposed RISAs, we have adapted the scan

synthesis algorithms from Chapter 3 and applied them to the DSP core from the SCU

benchmark set [1] and the ITC99 benchmark B14 [40]. There are a maximum of 32

SCs for the DSP core, and 16 SCs for the B14. For synthesis/ATPG, we have used

a commercial tool flow [42]. It is important to note that the computational time for

scan insertion is in the range of tens of seconds on a Pentium-M at 1.3 GHz, which

justifies the advantage of analyzing the developing the scan infrastructure at the RTL.
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Figure 4.9: Illustrative example of Illinois scan construction

4.4.1 Reconfigurable Illinois Scan

Tables 4.2 and 4.3 show the experimental results for area overhead and circuit perfor-

mance for the DSP core and B14 respectively, when comparing the non-scan circuit

with the gate level full scan and the proposed RISA with scan inserted at RTL. In

both tables, column 1 shows the timing constraints used for logic synthesis. Column

2 provides the total number of SCs and Columns 3, 5 and 7 indicate whether the

timing constraints were met during synthesis for the non-scan circuit (i.e., no DFT

included), the circuit with gate level scan and the RTL scan circuit. Columns 4 and

6 show the area overhead when compared to the non-scan circuit for gate level scan

and RTL scan accordingly. Column 8 shows the difference in area overhead between

gate level scan and RTL scan. One thing to note is that there are 639 FFs in the

original circuit and gate level scan, while RTL scan has 664 FFs after synthesis. This

is because without RTL scan, the synthesis tool can optimize the circuit by removing

the redundant FFs. Despite the presence of these redundant FFs, the area overhead

of RTL scan increases on average by only 0.05% when compared to the gate level

scan, which is insignificant. By constructing SCs at the RTL, the synthesis tool can

improve timing by optimizing the test logic and functional logic concurrently. For ex-

ample, although for B14 the timing is not improved, RTL scan insertion for the DSP
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# Original Area OH
Period of (No DFT) Gate Full RTL Full ∆
(ns) SC Timing Met? % Met? % Met? %
10.80 32 Yes 4.84 Yes 5.52 Yes -0.68
10.75 32 Yes 4.89 Yes 5.86 Yes -0.97
10.70 32 Yes 6.01 Yes 5.78 Yes 0.23
10.65 32 No 4.80 No 4.94 Yes -0.15
10.60 32 Yes 5.94 No 5.52 Yes 0.41
10.55 32 No 5.39 No 5.76 No -0.37
10.50 32 No 6.41 No 5.99 Yes 0.42
10.45 32 No 5.90 No 5.52 No 0.37
10.40 32 No 5.61 No 5.56 Yes 0.05
10.35 32 No 5.94 No 5.73 Yes 0.20

Table 4.2: Area/performance for the DSP core with constraints for RISA

# Original Area OH
Period of (No DFT) Gate Full RTL Full ∆
(ns) SC Timing Met? % Met? % Met? %
5.90 16 Yes 6.73 Yes 7.96 Yes -1.23
5.85 16 Yes 9.32 Yes 11.73 Yes -2.41
5.80 16 Yes 1.32 Yes 4.93 Yes -3.61
5.75 16 Yes 13.85 Yes 8.70 Yes 5.15
5.70 16 Yes 13.29 Yes 10.52 No 2.77
5.65 16 No 4.97 No 9.14 No -4.17
5.60 16 Yes 5.19 Yes 6.08 No -0.90
5.55 16 Yes 10.29 Yes 8.65 Yes 1.64

Table 4.3: Area/performance for B14 with constraints for RISA

core helps improve the timing to 10.35 ns, an improvement of 2.42% when compared

to the original circuit, which fails to meet timing constraints beyond 10.6 ns.

Table 4.4 shows the test data compression results generated by a commercial

ATPG tool [42] for B14. The timing constraint is listed in column 1. Column 2 shows

the number of SCs that are driven by a single scan input in the broadcast mode. The

columns labeled FC give the fault coverage for stuck-at faults. CTP corresponds to

the number of compressed test patterns generated by ATPG and VTD denotes the

volume of test data for the particular scan configuration. The last two rows of the

table show the cumulative VTD and the compression ratio for the gate level and

the RTL scan design. By consciously constructing the scan structure for the RISA

to reduce the number of conflicts between FFs at the same scan depth located in

different SCs, while placing conflicting SCs adjacent to each other, most of the faults

become detectable when a single SI drives multiple SCs. This leads to savings in both

test data volume and test application time. For example, when the common SI drives

73



4.4. Experimental Results M.A.Sc. - H.F. Ko - McMaster

Period SC Gate Full RTL Full ∆
(ns) # FC (%) CTP VTD FC (%) CTP VTD FC (%) CTP VTD
5.90 16 95.03 487 7792 98.02 521 8336 2.99 -34 -544

8 97.52 44 1408 98.89 40 1280 1.37 4 128
4 98.81 31 1984 99.51 44 2816 0.70 -13 -832
2 99.26 33 4224 99.54 1 128 0.28 32 4096
1 99.27 2 512 99.54 1 256 0.27 1 256

Cumulative 15920 12816 3104
Compression 8.39 10.43 1.24

Table 4.4: Detail testability results for B14 with RISA

Period Gate Full RTL Full ∆
(ns) FC (%) VTD CR Gate FC (%) VTD CR RTL FC (%) VTD CR Gate/CR RTL
10.80 98.99 27468 5.04 99.66 25347 5.46 0.67 2121 1.08
10.75 99.16 36771 3.78 99.63 28161 4.94 0.48 8610 1.31
10.70 99.07 34209 4.26 99.50 31584 4.62 0.43 2625 1.08
10.65 99.02 31857 4.75 99.58 31185 4.85 0.56 672 1.02
10.60 98.82 37275 4.25 99.56 28560 5.55 0.74 8715 1.31
10.50 98.98 34251 4.47 99.56 29484 5.20 0.58 4767 1.16
10.40 98.98 36372 3.84 99.57 28392 4.92 0.59 7980 1.28
10.35 99.09 30534 4.93 99.62 29757 5.06 0.52 777 1.03

Average 99.01 33592 4.41 99.59 29059 5.08 0.57 4533 1.16

Table 4.5: Testability results for the DSP core with RISA

4 SCs, a fault coverage of 99.51% can already be obtained for RTL scan compared to

only 98.81% for gate level scan.

Tables 4.5 and 4.6 show the simplified testability results for the DSP core and

B14, only for the cases where the timing of RTL scan is satisfied. Column 1 gives

the timing constraints used for logic synthesis. Columns labeled FC represent fault

coverage for stuck-at faults. VTD denotes the cumulative volume of test data. CR

corresponds to the compression ratio, which is calculated by Equation 4.2.

CR =
V TD of circuit when FFs are connected in a single chain

V TD of circuit with Illinois scan architecture
(4.2)

Period Gate Full RTL Full ∆
(ns) FC (%) VTD CR Gate FC (%) VTD CR RTL FC (%) VTD CR Gate/CR RTL
5.90 99.27 15920 8.39 99.54 12816 10.43 0.27 3104 1.24
5.85 99.33 17696 7.99 99.21 14944 9.46 -0.11 2752 1.18
5.80 99.21 16672 8.40 99.41 14976 9.35 0.19 1696 1.11
5.75 99.39 17872 7.79 99.47 14720 9.46 0.09 3152 1.21
5.55 99.33 17088 8.03 99.45 15056 9.11 0.12 2032 1.13

Average 99.31 17050 8.12 99.42 14502 9.56 0.11 2547 1.17

Table 4.6: Testability results for B14 with RISA

74



4.4. Experimental Results M.A.Sc. - H.F. Ko - McMaster

Period Gate Full RTL Full ∆
(ns) FC (%) VTD CR Gate FC (%) VTD CR RTL FC (%) VTD CR Gate/CR RTL
10.80 99.03 14406 9.61 99.66 11130 12.44 0.63 3276 1.29
10.75 99.20 20475 6.99 99.58 18249 7.84 0.39 2226 1.12
10.70 99.08 21084 6.66 99.55 18942 7.41 0.47 2142 1.11
10.65 98.99 18753 7.53 99.61 18186 7.76 0.62 567 1.03
10.60 98.89 20370 7.55 99.61 18522 8.31 0.72 1848 1.10
10.55 99.12 20874 7.66 99.70 19362 8.26 0.58 1512 1.08
10.50 99.03 18921 7.78 99.62 19320 7.62 0.59 -399 0.98
10.45 99.05 21525 6.68 99.52 18144 7.93 0.47 3381 1.19

Average 99.05 19551 7.56 99.61 17731 8.45 0.56 1819 1.12

Table 4.7: Testability results for the DSP core with RISA with inversion

Period Gate Full RTL Full ∆
(ns) FC (%) VTD CR Gate FC (%) VTD CR RTL FC (%) VTD CR Gate/CR RTL
5.90 99.34 6672 20.60 99.31 3632 37.85 -0.02 3040 1.84
5.85 99.38 7456 19.36 99.34 5328 27.10 -0.04 2128 1.40
5.80 99.34 7808 17.38 99.30 5008 27.09 -0.05 2800 1.56
5.75 99.29 7600 18.43 99.41 4992 28.05 0.12 2608 1.52
5.70 99.31 7664 18.44 99.47 5424 26.05 0.16 2240 1.41
5.65 99.35 7632 17.34 99.50 4848 27.30 0.15 2784 1.57
5.60 99.49 7872 16.55 99.49 5008 26.02 0.00 2864 1.57
5.55 99.20 8208 16.81 99.45 5328 25.90 0.25 2880 1.54
5.50 99.42 7520 18.35 99.49 5616 24.57 0.07 1904 1.34

Average 99.35 7603 18.14 99.42 5020 27.77 0.07 2583 1.53

Table 4.8: Testability results for B14 with RISA with inversion

Despite the different logic networks that were obtained after logic synthesis,

as well as the different test sets generated, the experimental results show that the

RISA reduces the VTD for both gate level scan and RTL scan. However, by utilizing

the control and data flow information extracted from the RTL description to build

the scan structure, the reduction in VTD is further enhanced when compared with

gate level scan insertion. For B14, the average compression ratio for the RTL scan is

9.56X, an improvement of 1.17X when compared to the gate level scan, which only

has an average compression ratio of 8.12X.

4.4.2 Reconfigurable Illinois Scan With Inversion

The same set of constraints are used for SC generation, using the algorithms discussed

in Section 4.3, for both RISAs. Hence they have the same impact on circuit speed,

while difference in area is insignificant because it is given only by the XOR gates used

for inversion. In the following we discuss the results for test data compression.
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Tables 4.7 and 4.8 show the testability results for the DSP core and B14. The

labeling of columns of the two tables follow the same patterns as Tables 4.5 and

4.6 that were introduced in Section 4.4.1. As we can see from the results, despite

the different logic networks that were obtained after logic synthesis, as well as the

different test sets generated for RTL scan of the DSP core and B14, the experimental

results show that the RISA with inversion further reduces the VTD for both gate level

scan and RTL scan. For example, the average compression ratio for the B14 for RTL

scan is 27.77X, compared with a compression ratio of 18.14X for the gate level scan.

This once again concludes that by utilizing the control and data flow information

extracted from the RTL description to build the scan structure, the generated scan

structure can be tuned to eliminate correlations between patterns in multiple SCs

sooner using the broadcast modes in the modified RISA. It should be noted that the

compression ratio for the B14 is better than the maximum achievable reduction of

16X for the original ISA, where the same set of test patterns are shifted into 16 SCs.

This is because with the presence of the XOR gates in the modified RISA, the ATPG

tool is constrained, by the inverting feature of the SCs, on how the don’t care bits are

filled in a test pattern. Due to the heuristic nature of filling the don’t care bits in

the test cubes generated for the single scan chain and how faults are ordered in the

netlist, when embedding the RISA with inversion constraints, the ATPG tool may be

able to detect more faults through fault simulation, which ultimately leads to less test

patterns. Thus, the number of test patterns for designs with RISA with inversion

may be smaller than the number of test patterns for the single scan chain design.

When comparing RISA with inversion against RISA, regardless of the scan type

(i.e., gate level or RTL scan), the compression ratio is significantly improved. For

example, the average compression ratios for the DSP core and B14 when using RTL

scan are 5.08X and 9.56X when using the original RISA, as shown in Tables 4.5 and

4.6. When compared to the compression ratios of 8.45X and 27.7X for the same

circuits using RTL scan for RISA with inversion, we can conclude that the inversion

capability (provided by the carefully placed XOR gates) can effectively eliminate the

ATPG conflicts caused by sharing the scan inputs and thus detect faults early in the

broadcast modes, which leads to the improvement in compression ratio.
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4.5 Summary

In this chapter, we have investigated the effectiveness of creating scan chains at RTL

for test data compression using a new reconfigurable Illinois scan architectures. When

compared to the gate level scan, it was found that the scan infrastructure built using

only the control and data flow information available at the RTL can lead to similar or

even better improvements in test data compression (for a fault coverage target over

99%), regardless of the final implementation of the logic network or the manufacturing

test set. It addition, it was demonstrated with experimental data that by consciously

embedding an inversion feature in the reconfigurable Illinois scan architecture, test

data compression can be substantially increased.
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Chapter 5

Conclusion

Motivated, by the escalating design cycle times, caused in part by the increasing gap

between the level of specification for design and test hardware, in this thesis we have

investigated new ways to insert scan structures. By analyzing the RTL description

for functional information, the existing functional paths that can be transformed into

scan paths are identified and then used in the RTL scan synthesis process. The

original designs can then be interfaced to the RTL/logic synthesis tools (or RTL-to-

GDSII flow [37]) with the scan infrastructure already in place. During this process,

synthesis tools can optimize the functional and test logic concurrently which may

benefit the timing and area of the resulted logic networks. Furthermore, it was found

that another advantage from building functional scan chains at the RTL is the ability

to tune the generated scan structures to improve the delay fault coverage or volume

of test data. This is achieved by accounting for special constraints, during RTL scan

synthesis, that influence the place and order of each flip-flop in every scan chain.

There are several important topics for future work. It is common to have complex

RTL designs that are specified hierarchically using various components described in

different HDLs. Thus, it will be beneficial for the proposed scan synthesis process

to be able to deal with hierarchical and mixed-language specifications. In addition,

because the research findings presented in this thesis are based on designs that have

a signal clock signal, it is important to extend the proposed algorithms to deal with

multiple clock domains.
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Appendix A

RTL Code Modification For

Functional Scan

A program has been developed for the purpose of the research presented in this

thesis. The flow of the program has already been discussed in Chapter 3. In order to

demonstrate how the RTL description is modified for scan chain insertion, a simple

divider written in Verilog HDL is shown as an example in Sample Code 1. There

are 11 FFs {quotient[3 : 0], remainder[3 : 0], done, present state[1 : 0]} driven by

the clock signal {clk} in this example. The S Graph that illustrates the control and

data flow between the FFs is shown in Figure A.1. In the S Graph, the solid edges

represent the data flow, while the broken edges denote the control flow between FFs.

in_a in_b

remainder

quotient

present_state

done

resetstart

Figure A.1: S graph for the divider example in sample code 1

79



Appendix A M.A.Sc. - H.F. Ko - McMaster

Sample Code 1: Input RTL description for a divider

module rtl input (clk, reset, start, in a, in b, quotient, remainder, done);
input clk, reset, start;
input [3:0] in a, in b;

output [3:0] quotient, remainder;
reg [3:0] quotient, remainder;
output done;
reg done;

parameter S IDLE = ’d0;
parameter S INIT = ’d1;
parameter S FETCHINPUT = ’d2;
parameter S BUSY = ’d3;

reg [1:0] present state, next state;

// Update present state
always @ (posedge clk) begin

if (reset == 1’b1) begin
present state <= S IDLE;

end
else begin

present state <= next state;
end

end

// Next state
always @ (present state or start or remainder or in b) begin

next state = present state;
case (present state)

S IDLE: begin
if (start == 1’b1) begin

next state = S INIT;
end

end
S INIT: next state = S FETCHINPUT;
S FETCHINPUT: next state = S BUSY;
default: begin

if (remainder < in b) begin
next state = S IDLE;

end
end

endcase
end
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Sample Code 1: Input RTL description for a divider (continued)

// Done signal
always @ (posedge clk) begin

if (present state == S IDLE) begin
done <= 1’b1;

end
else begin

done <= 1’b0;
end

end

// Remainder calculation
always @ (posedge clk) begin

if (present state == S FETCHINPUT) begin
remainder <= in a;

end
else begin

if (remainder >= in b) begin
remainder <= remainder - in b;

end
end

end

// Quotient calculation
always @ (posedge clk) begin

if (present state == S INIT) begin
quotient <= 0;

end
else begin

if (present state == S BUSY) begin
if (remainder > in b) begin

quotient <= quotient + 1;
end

end
end

end

endmodule
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in_a[3] in_a[2] in_a[1]

remainder[3]

quotient[3]

remainder[2] remainder[1]

quotient[2] quotient[1]

quotient[0]

remainder[0]pre_state[1] pre_state[0]

done

SC1 SC2 SC3

Figure A.2: Scan cell partitioning for sample code 2

Sample Code 2 presents the modified RTL code after the example from Sample

Code 1 has gone through the RTL scan synthesis process. In this case, the skewed-load

delay fault testing constraints from Section 3.5.1 are applied to construct three SCs.

The orders of FFs in the three SCs are shown in Figure A.2, and the corresponding

RTL modifications are marked with vertical lines in Sample Code 2. In this example,

the original PIs {in a[3], in a[2], in a[1]} and POs {quotient[0], done, remainder[0]}
are reused as SIs and SOs respectively in the test mode. As a result, additional scan

pins and routing of scan signals are not necessary. Moreover, since the delay fault

testing constraints are applied in this case, the FFs in the SCs are organized such

that all the constraints can be met to enhance delay fault coverage without incurring

extra area overhead.

In addition to the delay constraints discussed in Section 3.5.1, the custom con-

straints mentioned in Section 4.3 for tuning the generated scan structure to improve

test data compression when using the two proposed RISAs can also be applied. These

constraints can be chosen by different command-line parameters for the program.
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Sample Code 2: Output RTL description for a divider with functional scan

module rtl output (clk, reset, start, in a, in b, quotient, remainder, done,
test se);

input clk, reset, start, test se;
input [3:0] in a, in b;

output [3:0] quotient, remainder;
reg [3:0] quotient, remainder;
output done;
reg done;

parameter S IDLE = ’d0;
parameter S INIT = ’d1;
parameter S FETCHINPUT = ’d2;
parameter S BUSY = ’d3;

reg [1:0] present state, next state;

// Update present state
always @ (posedge clk) begin

if (test se == 1’b0) begin
if (reset == 1’b1) begin

present state <= S IDLE;
end
else begin

present state <= next state;
end

end
else begin

present state[1] <= quotient[3];
present state[0] <= quotient[2];

end
end

// Next state
always @ (present state or start or remainder or in b) begin

next state = present state;
case (present state)

S IDLE: begin
if (start == 1’b1) begin

next state = S INIT;
end

end
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Sample Code 2: Output RTL description for a divider (continued)

S INIT: next state = S FETCHINPUT;
S FETCHINPUT: next state = S BUSY;
default: begin

if (remainder < in b) begin
next state = S IDLE;

end
end

endcase

end

// Done signal
always @ (posedge clk) begin

if (test se == 1’b0) begin
if (present state == S IDLE) begin

done <= 1’b1;
end
else begin

done <= 1’b0;
end

end
else begin

done <= present state[0];

end
end

// Remainder calculation
always @ (posedge clk) begin

if (test se == 1’b0) begin
if (present state == S FETCHINPUT) begin

remainder <= in a;
end
else begin

if (remainder >= in b) begin
remainder <= remainder - in b;

end
end

end
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Sample Code 2: Output RTL description for a divider (continued)

else begin
remainder[3] <= in a[3];
remainder[2] <= in a[2];
remainder[1] <= in a[1];
remainder[0] <= quotient[1];

end

end

// Quotient calculation
always @ (posedge clk) begin

if (test se == 1’b0) begin
if (present state == S INIT) begin

quotient <= 0;
end
else begin

if (present state == S BUSY) begin
if (remainder > in b) begin

quotient <= quotient + 1;
end

end
end

end
else begin

quotient[3] <= remainder[3];
quotient[2] <= remainder[2];
quotient[1] <= remainder[1];
quotient[0] <= present state[1];

end
end

endmodule
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Appendix B

Implementation effort of RTL

functional scan synthesis process

The program that was developed to facilitate the RTL functional scan synthesis pro-

cess detailed in this thesis can be divided into five steps as discussed in Chapter 3.

The first step of the RTL functional scan synthesis process is to parse RTL circuit

descriptions written in Verilog HDL for CDFG generation. This part of the pro-

gram is written in three different languages. They are Lex, YACC and ANSI C. The

remaining steps, which include S Graph generation, SP identification, SC construc-

tion and modification of RTL code, are written only in ANSI C. Table B.1 shows

the breakdown of different steps of the program in terms of number of lines of code.

Moreover, in order to reduce the development efforts, the program was developed

using the publicly available data structure from libHLS [43].

Step Description Number of
Number Lines of Code

1 CDFG generation 6309
2 S Graph generation 5167
3 SP identification 5016
4 SC construction 2895
5 Circuit modification 3995

Total: 23382

Table B.1: Breakdown of code size for the RTL functional scan synthesis process
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After the program modifies the RTL description of the design to incorporate the

new functional scan structure, a set of scripts will then be generated so that the scan

design can be interfaced with two commercial test tools from Synopsys. In order to

synthesize the scan design for area and performance analysis, the Design Compiler

was used [41]. After a circuit has been synthesized, the TetraMax ATPG tool was

used to generate test patterns and other test related experimental results such as the

delay fault coverage with the gate level structural netlist [42].
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