
New Algorithms for Constant Coefficient

Multiplication in Custom Hardware

NEW ALGORITHMS FOR CONSTANT COEFFICIENT

MULTIPLICATION IN CUSTOM HARDWARE

BY

JASON THONG, B. Eng.

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c⃝ Copyright by Jason Thong, October 2009

All Rights Reserved

Master of Applied Science (2009) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: New Algorithms for Constant Coefficient Multiplication

in Custom Hardware

AUTHOR: Jason Thong

B. Eng. (Electrical and Biomedical),

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. Nicola Nicolici

NUMBER OF PAGES: xxv, 237

ii

Abstract

Multiplying by known constants is a common operation in many digital signal pro-

cessing (DSP) algorithms. High performance DSP systems are implemented in custom

hardware, in which the designer has the ability to choose which logic elements will be

used to perform the computation. By exploiting the properties of binary multiplication,

it is possible to realize constant multiplication with fewer logic resources than required

by a generic multiplier. In this thesis, we present several new algorithms for solving

the constant multiplication problem - given a set of constants, find a low-cost logic

circuit that realizes multiplication by each of the constants.

In this thesis, a thorough analysis of the existing algorithms, the underlying

frameworks, and the associated properties is provided. We also propose new strategies

which are fundamentally different from the existing methods, such as the integration of

a heuristic algorithm within an optimal algorithm. In our proposed optimal exhaustive

algorithms, we introduce aggressive pruning methods to improve the compute efficiency

(compared to existing optimal exhaustive algorithms). Our proposed heuristics attempt

to address the weaknesses of the existing heuristics. By extending the analysis of prior

work and providing new insight, we are often able to improve both the run time and

the performance (in terms of minimizing logic resources).

iii

Acknowledgements

I am deeply grateful to all who have contributed to this thesis. Without the support of

faculty, friends, and family, my work would not have been nearly as proficient. Many

people have helped me mature as a researcher and as a person in some way or another;

I would like to acknowledge those who have played a key role in my development.

I am eternally indebted to my parents, who have given me so much love and

continually provided an excellent environment for me to learn and work. Because of

your support, I have the desire to do good research and to keep improving my skills.

I admire the no-nonsense approach of my supervisor Dr. Nicola Nicolici, who I

thank for consistently challenging me to improve in many aspects of research beyond

just technical rigor. In addition to Dr. Nicolici, I also thank Dr. Capson and Dr.

Szymanski for their insightful comments during my defense. The final form of my

thesis and my defense presentation have been greatly assisted by my very professional

friends in the Computer-Aided Design and Test group at McMaster: Adam Kinsman,

Dr. Henry Ko, Zahra Lak, Phil Kinsman, and Mark Jobes. I sincerely appreciate

your enthusiastic support and all of your suggestions. Another thanks goes to Adam,

Mark and Dr. Nicolici for enduring several (often unstructured) discussions about

my algorithms during their development. Finally, I would like to acknowledge the

administrative and technical staff of the ECE department for their assistance.

v

Glossary

Abstraction Simplification of details, approximation of complex problems

Adder depth The maximum number of serial adder-operations from input to output

Adder distance The minimum number of adder-operations needed to construct a
target by using the existing terms

Adder-operation An addition or subtraction in which the operands may be shifted

Additive decomposition A SCM or MCM decomposition where several terms can
be added together in any order

ASIC Application-specific integrated circuit

BBB Best of Bernstein or BHM, an existing heuristic SCM algorithm

BDFS Bounded depth-first search, a proposed optimal MCM algorithm

BFSmcm Breadth-first search MCM, an existing optimal MCM algorithm

BH Bull Horrocks, an existing heuristic MCM algorithm

BHM Bull Horrocks modified, an existing heuristic MCM algorithm

BIGE Bounded inverse graph enumeration, a proposed optimal SCM algorithm

CAD Computer-aided design, tools for design automation

Complexity-n constants The set of constants in which the optimal SCM cost is n

CSD Canonical signed-digit, the SD form with no adjacent nonzero digits and the
minimum number of nonzero digits

vii

CSE Common subexpression elimination, a framework for solving SCM and MCM

Custom hardware Computing hardware that is customized for a given application,
includes ASICs and FPGAs

DAG Directed acyclic graph, a framework for solving SCM and MCM

DiffAG Difference-based adder graph, an existing heuristic MCM algorithm

Digit clashing The CSE problem of disappearing patterns due to colliding digits

Division test A pruning method for exploiting multiplicative decompositions

DSP Digital signal processing

FPGA Field-programmable gate array

H(k) Heuristic with k extra nonzero digits, an existing heuristic SCM algorithm

H(k)+ODP The H(k) algorithm with ODPs, a proposed heuristic SCM algorithm

H3 A variant of Hcub with exact distance 3 tests, a proposed heuristic MCM algorithm

H3d A depth-constrained version of H3, a proposed heuristic MCM algorithm

H4 A variant of Hcub with exact distance 4 tests, a proposed heuristic MCM algorithm

Hcub Heuristic of cumulative benefit, an existing MCM algorithm

Heuristic An effective but potentially suboptimal method for solving a problem

IGT Inverse graph traversal, a DAG-based pruning method

Logic resources An abstraction of the amount of silicon required to implement a
logic function

MAG Minimized adder graph, an existing optimal SCM algorithm

MCM Multiple constant multiplication, find a low-cost add-shift-subtract realization
of multiplication by each of the given constants

MSD Minimal signed-digit, any SD representation with the minimum number of
nonzero digits

Multiplicative decomposition A SCM or MCM decomposition involving multipli-
cation by complexity-n constants

viii

ODP Overlapping digit pattern, a proposed technique for partially resolving the CSE
digit clashing problem

Pattern (CSE) A collection of signed digits that define how existing terms are
added-operated together

Pruning The removal of parts of a search tree that are no longer of interest

Pseudo-ODP An ODP which provides no benefit now but may provide more benefit
on a future iteration

RAG-n n-dimensional reduced adder graph, an existing heuristic MCM algorithm

Ready set The set of existing terms constructed so far

Redundancy between constants The reuse of terms between different constants
when constant multiplication is decomposed

Redundancy within constants The reuse of terms within each constant when
constant multiplication is decomposed

Ripple-carry adder A multi-bit adder composed of several single-bit adders con-
nected serially

SBAC Single-bit adder cost, a proposed optimal SCM algorithm

SCM Single constant multiplication, same as MCM but for a single constant

SD representation Signed-digit representation, used in the CSE framework

Search space The set of all solutions that can be found by an algorithm, this is
smaller than the solution space for heuristic algorithms

Solution space The set of all feasible solutions

Successor set The set of terms that can be constructed with one adder-operation

Target set The given set of constant(s) for which we must realize multiplication by

Vertex reduction A pruning method for exploiting additive decompositions

ix

Notation

Notation Meaning Def. in
Section

R Ready set, the set of existing terms constructed so far,
this contains the solution when the algorithm ends

2.3.1

S Successor set, the set of terms that can be constructed
with one adder-operation (with respect to R)

3.2.2

S2 2nd order successor set, the set of terms that can be
constructed with two adder-operations

3.2.6

T Target set, the given set of constant(s) for which we
must realize multiplication by

2.3.1

T ′ Remaining target set, targets not yet constructed 4.2
Cn Complexity-n constants, the set of constants in which

the optimal SCM cost is n
3.2.3

dist(R, t) Adder distance from R to a target t 3.2.3
A(x, y) Adder-operation between elements x and y 2.3.2
A(x1, . . . , xn) Vertex-reduced adder-operation between all of the ele-

ments x1, . . . , xn

3.2.5

∣U ∣ The cardinality of the set U 2.3.2
∣u∣ The absolute value of the element u 2.3.2
U ⋅ V Set of all products 3.2.4
U/V Set of all divisions with zero remainder 3.2.4

1 In signed-digit notation, this represents -1 2.1.2

A In CSE, this represents the negative of pattern A 3.1.2

B = A0A An example of CSE notation, pattern B is defined in
terms of two instances of the existing pattern A

3.1.2

xi

Contents

Abstract iii

Acknowledgements v

Glossary vii

Notation xi

1 Introduction 1

1.1 Applications of Constant Multiplication 2

1.2 Custom Hardware . 6

1.2.1 A Comparison of Custom Hardware and Instruction-Based

Processors . 6

1.2.2 Logic Resources . 8

1.3 Thesis Contributions and Organization 10

2 Problem Background 13

2.1 Integer Multiplication . 13

2.1.1 General Multiplication and Constant Multiplication 13

2.1.2 Using Subtraction in Constant Multiplication 15

xiii

2.2 Sharing Intermediate Terms . 18

2.3 Formal Problem Definitions . 19

2.3.1 An Informal Introduction . 19

2.3.2 Definition of the Constant Multiplication Problem 20

2.3.3 Simplifying Assumptions and the Derivation of the

Adder-Operation for Custom Hardware 21

2.3.4 Definition of the SCM and MCM Problems 24

2.3.5 Related Problems . 24

3 Algorithmic Frameworks 27

3.1 DAG and CSE Framework Notation 28

3.1.1 Directed Acyclic Graph Notation 28

3.1.2 Common Subexpression Elimination Notation 31

3.2 Useful Properties . 35

3.2.1 The Reflective Property of the Adder-Operation 36

3.2.2 The Successor Set . 37

3.2.3 An Introduction to the Adder Distance 39

3.2.4 Multiplicative Decompositions and Division Tests 41

3.2.5 Additive Decompositions and Vertex Reduction 44

3.2.6 Computing the Exact Adder Distance 47

4 Existing Algorithms 51

4.1 Exhaustive Search Methods . 54

4.1.1 The MAG Algorithm (Optimal SCM) 55

4.1.2 Extension of the MAG Algorithm 56

xiv

4.1.3 An Optimal MCM Algorithm 59

4.2 An Overview of Iterative Heuristics 60

4.3 Bottom-Up Graph-Based Algorithms 61

4.3.1 The BH and BHM Algorithms 61

4.3.2 The RAG-n Algorithm . 63

4.3.3 The Hcub Algorithm . 65

4.4 Top-Down Graph-Based Algorithms 67

4.4.1 Bernstein’s Software-Oriented SCM Algorithm and the BBB

Algorithm . 67

4.4.2 Difference-Based Heuristics and the DiffAG Algorithm 70

4.5 CSE-Based Algorithms . 73

4.5.1 An Introduction to CSE Algorithms 73

4.5.2 Top-Down Versus Bottom-Up Heuristics 74

4.5.3 The H(k) Algorithm . 76

4.6 Other MCM Algorithms . 79

4.7 Problems Related to SCM and MCM 81

4.7.1 Depth Constraining . 81

4.7.2 Minimization of Single-Bit Adders 82

4.8 Bounds on the SCM and MCM Problems 83

4.8.1 Theoretical Analysis . 83

4.8.2 Justification for Not Providing the Asymptotic Run Time

Analysis of the Algorithms . 85

5 New SCM Algorithms 87

5.1 Heuristic SCM . 88

xv

5.1.1 Examples of Non-Optimal CSE Solutions 88

5.1.2 The H(k)+ODP Algorithm and Overlapping Digit Patterns . 92

5.1.3 The Remaining Limitations of H(k)+ODP 100

5.1.4 Run Time Versus Minimizing Adders 102

5.1.5 Implementation Details . 104

5.1.6 Experimental Results . 105

5.2 Optimal SCM . 111

5.2.1 Outline of the BIGE Algorithm 111

5.2.2 Exhaustive Searching in the BIGE Algorithm 116

5.2.3 Details Specific to the Adder-Operation 127

5.2.4 Experimental Results . 130

5.3 Minimization of Single-Bit Adders . 135

5.3.1 Single-Bit Adders . 136

5.3.2 An Exhaustive Search . 137

5.3.3 Experimental Results . 141

5.4 Concluding Remarks on SCM . 144

6 New MCM Algorithms 145

6.1 Heuristic MCM . 146

6.1.1 An Analysis of Redundancy Within Constants Versus

Redundancy Between Constants 146

6.1.2 Enhancing the Use of Redundancy Within Constants 153

6.1.3 The H3 Algorithm . 155

6.1.4 The H4 Algorithm . 167

6.1.5 Experimental Results . 171

xvi

6.1.6 Differential Adder Distance 179

6.1.7 The Hybrid H3+DiffAG Algorithm 182

6.2 Depth Constrained MCM . 183

6.2.1 Using the Depth Constraint to Prune the Search Space 183

6.2.2 A Depth Constrained Version of H(k)+ODP 185

6.2.3 The Depth Reordering Problem 187

6.2.4 Experimental Results . 190

6.3 Optimal MCM . 195

6.3.1 Prior Work . 195

6.3.2 The Bounding Heuristic . 196

6.3.3 An Exhaustive Search for Multiple Constants 198

6.3.4 Experimental Results . 207

6.4 Concluding Remarks on MCM . 217

7 Conclusion 219

7.1 A Summary of the Contributions . 219

7.2 Future Work . 222

7.2.1 Minimization of Multiple and Less Abstracted Metrics 223

7.2.2 Parallelization of an Exhaustive Search 224

xvii

List of Figures

1.1 Two realizations of a FIR filter. 5

2.1 A general 4-bit multiplier. 14

2.2 Multiplication by 9. 15

2.3 The canonical signed digit (CSD) transform. 17

3.1 Three representations of the same implementation of multiplication by

53. 29

3.2 Four equivalent representations of one possible solution to the MCM

problem with T = {45, 75, 211}. 33

3.3 Two representations of the successor set S with respect to R 38

3.4 The distance 2 graph topology t ∈ A(s, s) = C1 ⋅ s, where s ∈ S. . . . 43

3.5 The decomposition of a multiplicative graph into two subgraphs. . . . 44

3.6 Vertex reduction applied to an additive decomposition. 46

3.7 Splitting the source node of a SCM graph topology produces the corre-

sponding adder distance graph topology. 49

4.1 A summary of the algorithms discussed in this thesis. 52

4.2 Graph number 4, cost 3, in [1] enables the construction of A(1, C1 ⋅ C1). 56

4.3 The merging of equivalent graphs via vertex reduction. 57

xix

4.4 Transposing a multiplicative graph does not change set of possible

outputs. 58

4.5 The topology corresponding to Di,j ∩ S ∕= ∅, where Di,j = A(Ni, Nj). 72

4.6 The signed-digit representation generating algorithm. 79

5.1 The average SCM cost versus the bit width. 106

5.2 The average percent more adders than optimal versus bit width. . . . 108

5.3 Cost 5, graph topology number 11 from Figure 5 in [2]. 119

5.4 Cost 5, graph topology number 11 for testing adder distance. 119

5.5 Cost 5, graph topology number 30. 123

5.6 Cost 5, graph topology number 30 for testing adder distance. 123

5.7 The average number of adders and average run time of the BIGE

algorithm. 131

5.8 The average number of single-bit adders versus bit width. 142

6.1 An illustration of CSE-related problems. 148

6.2 The equivalent graph topology for 00B00B0A0000B. 151

6.3 A summary of the distance 3 tests. 156

6.4 An illustration of the vertex reordering problem caused by the A(x, y) ≤

2b constraint. 164

6.5 The average number of adders in MCM with a few large constants. . 172

6.6 The average number of adders for H3, DiffAG, and Hcub in the general

MCM benchmark, part 1 of 2. 174

6.7 The average number of adders for H3, DiffAG, and Hcub in the general

MCM benchmark, part 2 of 2. 175

xx

6.8 The approximate boundary where H3 and DiffAG produce solutions

with a similar number of adders on average. 178

6.9 The depth constraint is used to prune graph tests. 184

6.10 An example which illustrates the depth reordering problem. 188

6.11 Experimental results of H3d as the depth constraint is varied for a fixed

number of constants and bit width. 192

6.12 A comparison between the heuristic bound and the optimal part of

BDFS for constants of small bit width, part 1 of 2. 210

6.13 A comparison between the heuristic bound and the optimal part of

BDFS for constants of small bit width, part 2 of 2. 211

6.14 A comparison between the heuristic bound and the optimal part of

BDFS for two constant MCM. 214

xxi

List of Tables

5.1 The formal definition of the first three general ODP Classes. 95

5.2 Examples of the first three classes of ODPs with B = A00A. 96

5.3 Examples of the first three classes of ODPs with B = A00A. 96

5.4 The non-general class 4 ODPs. 97

5.5 The general class 5 pseudo-ODPs. 98

5.6 The non-general class 6 pseudo-ODPs. 100

5.7 An estimate of the average number of SD forms used by H(k) at each

bit width and each k. 103

5.8 The average number of adders versus bit width. 108

5.9 The average run time (seconds) versus bit width. 109

5.10 The average improvement in run time when H(k)+ODP can produce

better average solutions than H(k + n) for n ≥ 1. 110

5.11 A summary of the cost 5 tests. 121

5.12 A summary of the intrinsic cost 6 tests. 122

5.13 A summary of the distance 5 tests for cost 6 which do not cover the

topologies of the intrinsic cost 6 tests. 126

5.14 Bit width versus the sizes of the Cn sets and the total run time required

to compute all 4 sets. 132

xxiii

5.15 Smallest numbers that require a specific part of the BIGE algorithm. 133

5.16 Detailed distributions for each part of the BIGE algorithm. 134

5.17 The experimental results of the SBAC and BIGE algorithms. 143

6.1 A summary of the distance 4 tests. 168

6.2 A summary of the distance 5 and 6 partial graph estimators. 169

6.3 The average number of adders in MCM problems with only a few large

constants. 171

6.4 The average run time (seconds) for MCM with a few large constants. 173

6.5 The average run time (seconds) for DiffAG, H3, and Hcub in the general

MCM benchmark. 177

6.6 The average run time (seconds) of H3d and H3. 194

6.7 A summary of the bounding heuristics used by BDFS. 197

6.8 The average number of adders in BDFS. 209

6.9 The average and worst case run time (seconds) of BDFS. 209

6.10 Results for the BDFS benchmark with 2 constants. 214

7.1 A summary of the best existing SCM and MCM algorithms as of 2004. 220

7.2 A summary of the current best SCM and MCM algorithms. 220

xxiv

List of Algorithms

1 The bounded inverse graph enumeration (BIGE) algorithm for optimal

SCM. 113

2 A computationally efficient method for computing the adder-operation

subject to A(x, y) ≤ 2k. 129

3 A depth-first exhaustive MCM search with redundant R eliminated. . 202

xxv

Chapter 1

Introduction

Multiplying a variable by a set of known constant coefficients is a common operation

in many digital signal processing (DSP) algorithms. Compared to other common

operations in DSP algorithms, such as addition, subtraction, using delay elements,

etc., multiplication is generally the most expensive. There is a trade-off between the

amount of logic resources used (i.e. the amount of silicon in the integrated circuit) and

how fast the computation can be done. Compared to most of the other operations,

multiplication requires more time given the same amount of logic resources and

it requires more logic resources under the constraint that each operation must be

completed within the same amount of time.

A general multiplier is needed if one performs multiplication between two arbitrary

variables. However, when multiplying by a known constant, we can exploit the

properties of binary multiplication in order to obtain a less expensive logic circuit that

is functionally equivalent to simply asserting the constant on one input of a general

multiplier. In many cases, using a cheaper implementation for only multiplication

still results in significant savings when considering the entire logic circuit because

1

1.1. Applications of Constant Multiplication M.A.Sc. - J. Thong - McMaster

multiplication is relatively expensive. Furthermore, multiplication could be the

dominant operation, depending on the application.

In this thesis, we will propose several algorithms which run in software, but the

solutions that these algorithms produce enable one to efficiently implement constant

coefficient multiplication in hardware. Given the set of constant coefficients, said

algorithms search for good hardware realizations.

The remainder of the introduction is organized as follows. In section 1.1, we will

present some DSP algorithms and applications that require multiplication by a set of

constants. In section 1.2, the advantages of using a ‘‘multiplierless’’ implementation

of constant coefficient multiplication in custom hardware are discussed. Finally, the

contributions and the organization of the thesis are summarized in section 1.3.

1.1 Applications of Constant Multiplication

In this section, we will provide a few examples of applications which require multi-

plication by a set of constants. When designing the hardware to implement these

applications, the algorithms in this thesis can be used to provide good solutions for

the constant coefficient multiplication part of the logic circuit.

Multiplication by a set of constants occurs when multiplying by a constant vector

or a constant matrix. For example, the dot product a ⋅ b gives the scalar projection of

a onto b (or vice versa). Multiplication by a constant matrix is nothing more than

performing the dot product between several constant vectors (which collectively form a

matrix) and a variable vector (the elements of this vector are the inputs). Multiplying

by a constant matrix can thus be regarded as a linear transformation of coordinates,

which is used in many applications. For example, the conversion from the RGB (red,

2

1.1. Applications of Constant Multiplication M.A.Sc. - J. Thong - McMaster

green, blue) color space to the YUV color space (Y represents brightness, U and V

represent chroma) involves multiplication by a constant 3x3 matrix. Because the

human eye is more sensitive to brightness than coloring (chroma), we can compress

the information in the U and V components with only a minor perceived distortion.

This is exploited in JPEG and MPEG for compressing images and video, respectively.

However, most display devices require color to be provided in the RGB format, hence

the need for color space conversion. Any application which involves a predefined

linear transformation of coordinates will use multiplication by a set of constants.

Many discrete linear signal transforms involve multiplication by constants, such

as the Discrete Fourier Transform (DFT) and other Fourier-related transforms like

the Discrete Cosine Transform. As commonly known, the DFT and Fourier-related

transforms can be used for spectral analysis, i.e. to identify what proportion of the

input signal was contributed by a sinusoid at frequency f (for different f). These

transforms can also be regarded as a linear transformation of coordinates and as such,

they can be used for signal compression. The objective is to transform the input

signal into a coordinate basis such that the majority of the energy (or information)

in the signal is concentrated into only a few components. We can then compress or

even completely disregard the low energy components with only a minimal distortion.

In communications, signal compression is key to minimizing the amount of energy

needed to transmit information. This is particularly important in mobile devices, in

which battery life is a major concern.

As an example of signal compression, many real-life images (as opposed to ran-

domly generated pixels) are typically composed of mostly low frequency content. By

expressing an image in its frequency domain, we can compress the high frequency

3

1.1. Applications of Constant Multiplication M.A.Sc. - J. Thong - McMaster

information without much distortion. This is also exploited in JPEG and MPEG.

Likewise, the human ear is less sensitive to high frequency sounds. MP3 exploits

this by using less compression for low frequencies and more compression for high

frequencies. Nonetheless, we first need to represent the signal in the frequency domain

before we can compress. When decompressing (to listen to the audio), after we undo

the compression, we need to transform from the frequency domain to the time domain,

which again involves a linear signal transform with constant multiplication.

Many linear signal transforms are computed in a manner such that intermediate

terms are reused, such as done in the Fast Fourier Transform (FFT). For an input

signal of length n, this reduces the number of multiplications from O(n2) to O(n log n).

Even in this form, this still involves multiplication by constants. For example,

each ‘‘butterfly’’ in the FFT involves a multiplication by a constant 2x2 matrix

(assuming complex numbers are represented in rectangular coordinates, since addition

is complicated in polar coordinates).

The DFT can be used for solving partial differential equations numerically (to

estimate the solution). By approximating the Fourier Transform of the original

equations with the DFT, the equations are expressed as a sum of complex exponentials.

Differentiation now becomes multiplication (d
dx
eix = xeix), which is much easier

to solve. The product of polynomials involves the convolution of the polynomial

coefficients. Assuming the polynomials are ntℎ order, O(n2) multiplications are

needed, yet by using a FFT-based method, this can be reduced to O(n log n). In both

examples, an inverse Fourier Transform is also computed at the end.

Finite impulse response (FIR) filters and infinite impulse response (IIR) filters are

commonly used in DSP algorithms. Assume N and M are finite, x[n] is the input,

4

1.1. Applications of Constant Multiplication M.A.Sc. - J. Thong - McMaster

Zx[n] Z

y[n]

a1

+

a2

+

 a0

(a) Three separate single constant
multiplications.

x[n]

ZZ y[n]

 a2 a1

+

a0

+

(b) Three constants that multiply the same
multiplicand.

Figure 1.1: Two realizations of a FIR filter with N = 3 (Z denotes a delay element).

y[n] is the output, and ai and bi are constant coefficients, then every IIR filter has the

form y[n] =
∑N−1

i=0 ai ⋅x[n− i]−
∑M

i=1 bi ⋅y[n− i]. In a FIR filter, all of the bi = 0. Two

realizations of a FIR example with N = 3 are shown in Figure 1.1. Three separate

single constant multiplications are needed in Figure 1.1(a) whereas one instance where

the same multiplicand is multiplied by three constants is used in Figure 1.1(b). The

delay elements Z have a larger bit width in Figure 1.1(b), but when decomposing

multiple constant multiplication, intermediate terms can be shared between constants

to reduce logic resources, as illustrated in section 2.2.

FIR and IIR filters are arguably the simplest means of performing digital filtering

(and therefore likely the cheapest to implement). Filtering is used to attenuate or gain

each frequency in the input signal by a desired amount, thus it can be used to alter

the frequency response characteristics in a system. For example, a communication

channel may attenuate some frequencies more than others, but by having an estimate

of the channel’s frequency response, we can apply a filter with the inverse attenuation

of each frequency at the output of the channel in order to restore the original signal.

In communications, FIR/IIR filters are used for equalization, echo suppression, etc.

5

1.2. Custom Hardware M.A.Sc. - J. Thong - McMaster

FIR filters are typically used for upsampling and downsampling digital signals. In

both cases, an interpolation filter is typically used to smooth the newly sampled signal.

This has many applications in audio and video processing (for example, resizing a

video or playing audio at different speeds requires a change in the sampling rate).

FIR filters are also used in image processing. For example, the Laplacian operator

can be used for edge detection, and one of the simplest means of implementing this is

with a 2-dimensional FIR filter.

The work in this thesis is primarily intended for DSP systems, where the benefits

of finding low-cost implementations of constant multiplication are considerable since it

is frequently used. Even so, multiplication by universal constants can arise in scientific

computing, for example. However, when solving a set of equations, it may be possible

to collect the constants in order to reduce the total number of multiplications.

1.2 Custom Hardware

1.2.1 A Comparison of Custom Hardware and Instruction-

Based Processors

In order to achieve higher computational throughput and/or lower energy consump-

tion, many DSP algorithms are implemented in custom hardware. Examples of

custom hardware include application specific integrated circuits (ASICs) and field-

programmable gate arrays (FPGAs). These benefits are further enhanced by finding

lower cost implementations of constant coefficient multiplication, as smaller and

cheaper implementations of DSP systems are obtained. In ASICs, a smaller logic

circuit results in less material costs and lower energy consumption ceteris paribus.

6

1.2. Custom Hardware M.A.Sc. - J. Thong - McMaster

Alternatively, for the same amount of silicon, a higher computational throughput can

be obtained by placing more computational units in parallel. FPGAs typically have

some dedicated multipliers, but a large DSP design could require more multiplications

than available multipliers, in which case one must build soft multipliers (i.e. using the

programmable logic elements). In FPGAs, finding an implementation that requires

less logic elements may enable one to fit the system on a smaller and likely cheaper

FPGA, among various other benefits. The benefits manifest when computational

units are used in parallel. For example, the total computational throughput may need

to be high enough to satisfy a real-time constraint (such as a video decoder which

must output a frame of video of size x by y pixels every z seconds).

Many DSP applications only require the computational unit to perform one task.

For example, a video decoder inside a television receives encoded video in a pre-defined

format and outputs decoded video in another pre-defined format. In this case, the

flexibility to perform different tasks, which is offered by instruction-based processors,

is not needed. In custom hardware, no time and no parts of the logic circuit are

wasted for fetching and processing instructions if this is not needed, thus this extra

time and circuit area can be used to perform useful computations.

Most of the instruction-based processors in the DSP systems of today have multi-

pliers since multiplication is a common task. Furthermore, in most compute-intensive

DSP systems, the multipliers are pipelined to have high throughput. It will be shown

in section 2.1 that constant coefficient multiplication is decomposed into a set of

addition, subtractions, and binary shifts. In general, fewer multiply operations are

required than add, subtract and shift operations in order to compute multiplication by

a set of constants. Thus, if multipliers are already available in an instruction-based

7

1.2. Custom Hardware M.A.Sc. - J. Thong - McMaster

processor, they may as well be used to minimize the execution time. However the

size of the add-subtract-shift logic circuit which implements constant multiplication is

generally smaller than if multipliers were used. Unlike instruction-based processors

which already have multipliers available to use, in custom hardware, the designer has

the ability to choose what hardware will be used to perform a desired computation.

Conclusively, the application of constant multiplication decomposition is primarily

intended for custom hardware.

On a different note, some small instruction-based processors (which could be used

in embedded systems for instance) may not have multipliers. An example of such

is the NIOS II/e processor from Altera [3]. In this case, multiplication has to be

done with additions, subtractions and shifts anyways, thus minimizing the number of

operations results in less execution time. Even so, this particular application is not our

main focus. Such processors are typically not used for large amounts of computation,

thus multiplication within this processor is unlikely to be on the critical path of a

system-wide task.

1.2.2 Logic Resources

The objective of the work in this thesis is to design algorithms to efficiently search for

good decompositions of constant coefficient multiplication -- given the set of constants,

find the set of additions, subtractions, and shifts that realize the constant coefficient

multiplication with the minimum amount of logic resources.

In custom hardware, shifts incur no cost since they are hardwired. Floating point

numbers have a finite size mantissa, so without loss of generality, when we search for

constant multiplication decompositions, we can assume that all of the given constant

8

1.2. Custom Hardware M.A.Sc. - J. Thong - McMaster

coefficients will be integers because any fractional number with finite precision can be

left shifted until it becomes an integer. This process incurs no cost and is reversible,

i.e. after constant multiplication has been implemented, we can shift the result to

correct for any factor of 2n, where n is an integer.

We use the number of additions or subtractions as the metric for the amount of

logic resources. Our targeted implementation is custom hardware, in which addition

and subtraction require approximately the same amount of logic resources and shifts

incur no cost since they are hardwired. It is assumed that ripple-carry adders are used

since the objective is to minimize the amount of logic. Minimization for other types

of adders, such as carry-save adders, is beyond the scope of this thesis. Although the

number of additions or subtractions is an abstraction of the amount of silicon required

to implement the logic circuit, it is conjectured that finding good solutions with this

metric typically results in good solutions in terms of minimizing the amount of silicon.

This metric is the most commonly used metric in this area of research.

Some abstraction is needed in order to solve problem sizes of the most practical

importance within a reasonable amount of time. This claim is supported by our

experimental results. Instead of the number of additions or subtraction, the number

of single bit adders or subtractors can be used as a more accurate metric (note

even this still has some abstraction from the amount of silicon). As shown in our

experimental results in section 5.3.3, a significant amount of extra time is required to

solve the same problems using this more accurate metric. This translates into needing

impractical amounts of time to solve larger but still real-sized problems. This also

implies that further increasing the metric accuracy will result in longer run times,

meaning only smaller problem sizes (which are less relevant in practice) can be solved

9

1.3. Thesis Contributions and Organization M.A.Sc. - J. Thong - McMaster

within reasonable amounts of time. Furthermore, using the amount of silicon as the

metric makes the solution dependent on the implementation fabric of the logic circuit,

thus the solution would be non-portable and also dependent on the performance of

many other computer-aided design (CAD) tools, which perform logic synthesis, place

and route, etc.

A ‘‘reasonable’’ amount of time is difficult to quantify because it depends on the

design flow of the system. For example, if the system is intended to satisfy an existing

standard, the constants will be defined and thus each constant multiplication problem

only needs to be solved once (even if other parts of the system are modified). In this

case, one may be willing to wait hours or days for each problem instance. Conversely,

a faster algorithm is needed if the design specifications are not finalized (for example,

the constants may need to be updated as other parts of the system are modified).

Depending on how finalized the design is, one may only be willing to wait a few

seconds for each constant multiplication problem, for example. If a large part of the

system involves constant multiplication, it is sensible to allocate a large portion of

the time in the total CAD flow to solving constant multiplication. Conclusively, a

‘‘reasonable’’ amount of time is highly application specific, as discussed above.

1.3 Thesis Contributions and Organization

In chapter 2, we will illustrate how constant multiplication can be decomposed,

which facilitates the search for low-cost implementations. We will also introduce the

formal problem definition. In chapter 3, we will present the algorithmic frameworks

and several of the associated properties that are exploited by many algorithms. By

discussing this before the existing algorithms in chapter 4, we are able to provide a

10

1.3. Thesis Contributions and Organization M.A.Sc. - J. Thong - McMaster

unified discussion of the existing algorithms, which helps to illustrate the similarities

and differences in the underlying intuition of these algorithms.

Our proposed single constant multiplication (SCM) and multiple constant multipli-

cation (MCM) algorithms are described in detail in chapters 5 and 6, respectively. The

best methods for solving SCM are fundamentally different from the best techniques

for solving MCM, hence we have considered these problems separately. We propose

new heuristics and optimal (exhaustive) algorithms. By extending the analysis of

prior work and providing new insight, we are often able to improve the run time and

the performance (in terms of minimizing logic resources).

We also address two additional problems. In section 5.3, we show that considering

a more accurate (less abstracted) resource metric results in solutions with less logic

resources. In section 6.2, we propose a depth-constrained MCM algorithm. By reducing

the depth, the computational throughput of the logic circuit increases. Finally, the

contributions and ideas for future work are summarized in chapter 7.

11

Chapter 2

Problem Background

We will begin by illustrating how multiplication by a set of constants can be decom-

posed into a set of additions, subtractions, and binary shifts. In section 2.2, we will

demonstrate that reusing intermediate terms in the decomposition can further reduce

the size of the logic circuit. Many examples are provided to illustrate these concepts.

In section 2.3, several formal problem definitions are provided. Some simplifying

assumptions will be discussed and then incorporated into the problem definitions.

2.1 Integer Multiplication

2.1.1 General Multiplication and Constant Multiplication

As stated in section 1.2.2, since shifts are free, we can assume that all of the constant

coefficients will be integers, as floating point numbers can be shifted until they become

an integer (this requires no cost and this process is reversible). Therefore we will only

consider integer multiplication.

13

2.1. Integer Multiplication M.A.Sc. - J. Thong - McMaster

P&q0 (P&q1) 1 (P&q2) 2(P&q3) 3

+

+

+

P Q

Figure 2.1: A general 4-bit multiplier. A left shift by n bits is denoted by ≪n. Q has
a binary representation of q3q2q1q0, thus qi ∈ {0, 1} for i = 0, 1, 2, 3. Note that P&qi
is a short-form representation for using an AND gate between qi and each bit of P , so
if P is m bits, then P&qi is also m bits.

In any radix, multiplication can be decomposed into several smaller multiplications

and additions. Let us illustrate with an example. In radix 10, to compute 456× 789,

we can decompose this into (456× 7)× 102 + (456× 8)× 101 + (456× 9)× 100, which

is equivalent to ((456× 7)≪2) + ((456× 8)≪1) + (456× 6), where ≪n denotes a

left shift by n digits. The multiplicand (456 in this example) is multiplied by each

digit of 789, is left shifted by the appropriate amount, and then these shifted products

are added. In radix 2 (binary), each digit is 0 or 1, so the multiplicand is only ever

multiplied by 0 or 1 (but multiplication by zero is zero and multiplication by one is

the original number). Therefore in radix 2, multiplication can be decomposed into a

set of additions and left shifts (multiplication is not needed).

Let us multiply two arbitrary binary integers P and Q. Assume Q can be

represented on N bits, thus Q has a binary representation of qN−1qN−2qN−3 ⋅ ⋅ ⋅ q2q1q0,

where each bit qi ∈ {0, 1}. Let R = P ×Q, then R =
∑N−1

i=0 (P × qi)≪ i. Obviously

P × qi = 0 if qi = 0 and P × qi = P if qi = 1. To implement this, an AND gate is used

between qi and each bit of P . A general N -bit multiplier must have N − 1 adders

14

2.1. Integer Multiplication M.A.Sc. - J. Thong - McMaster

+

PP 3

P 9

Figure 2.2: Multiplication by 9 (1001 in binary) requires fewer adders than a general
4-bit multiplier. Also note the AND gates are no longer needed.

since it is possible that every qi could be 1, in which case N instances of the P≪ i

must be added. A general 4-bit multiplier is shown in Figure 2.1.

Let S =
∑N−1

i=0 qi, which is the number of bits in Q that are 1. Clearly, S ≤ N .

If Q is a constant, then multiplication by Q requires only S − 1 adders (to add the

S instances of P ≪ i). In other words, if we know that a particular bit qi is 0, we

no longer need the adder that would have been needed in a general multiplier to

add P ≪ i in the sum to compute P × Q. In a general multiplier, Q can take any

arbitrary value, so N − 1 adders are needed for the worst case. Conversely, a constant

coefficient multiplier needs up to N − 1 adders. Even so, a constant multiplier always

requires less logic resources than a general multiplier since the AND gates to multiply

P × qi are no longer needed. An example of a constant multiplication by 9 (1001 in

binary) is shown in Figure 2.2.

2.1.2 Using Subtraction in Constant Multiplication

A smaller logic may be obtained by considering subtraction. As an example, consider

multiplying an arbitrary number x by 7 (111 in binary). From section 2.1.1, it follows

that 7x = (x≪2)+(x≪1)+x. Now consider decomposing 7x as 8x−x = (x≪3)−x.

The latter decomposition is better since addition and subtraction require roughly the

15

2.1. Integer Multiplication M.A.Sc. - J. Thong - McMaster

same amount of logic resources in custom hardware. To simplify the discussion on

logic resources, both adders and subtractors are simply referred to as ‘‘adders’’ for the

remainder of this thesis unless stated otherwise.

Recall from section 2.1.1 the definition of R = P ×Q =
∑N−1

i=0 (P × qi)≪ i. In a

binary representation, qi ∈ {0, 1} is inherently enforced, however if we let qi = −1,

subtraction will be used since P × qi would then equal −P . Adding a negative term

in a summation is equivalent to using subtraction.

In the remainder of this thesis, we will use 1 to represent −1. Allowing qi ∈ {1, 0, 1}

facilitates the use of both addition and subtraction. If a constant Q can be represented

by n nonzero digits (where each digit qi ∈ {1, 0, 1}), then multiplication by Q requires

n− 1 adders (to add the n terms that the n nonzero digits represent).

By also allowing subtraction, we may be able to reduce the number of nonzero

digits in Q. A run of consecutive ones in the binary representation of the constant

requires many additions, but only one subtraction. Notice that
∑N−1

i=0 2i = 2N−1. For

example, revisiting the example at the beginning of this section, 111 can be replaced

by 1001. Likewise, 1111→ 10001, 11111→ 100001, and so on. Obviously 1→ 11 is a

valid transform, but it is of no benefit since it increases the number of nonzero digits.

The smallest transform we will consider is 11→ 101.

The above transform can be applied repeatedly to a constant until there are no

more consecutive nonzero digits. The resulting signed-digit representation is known as

the canonic signed digit (CSD) form. An example with Q = 7523 is shown in Figure

2.3. Notice the transform proceeds from right to left. On each step, the rightmost

group of consecutive ones is eliminated. Each newly created 1 always has no adjacent

nonzero digits (we do not consider 1 → 11 and it is impossible to create 11 or 11

16

2.1. Integer Multiplication M.A.Sc. - J. Thong - McMaster

1110101100011
1110101100101
1110110100101
1111010100101

10001010100101

Figure 2.3: The canonical signed digit (CSD) transform applied to the constant
Q = 7523. The transform 011 ⋅ ⋅ ⋅ 111→ 100 ⋅ ⋅ ⋅ 001 is repeatedly applied from right
to left until no more consecutive nonzero digits remain.

with the 011 ⋅ ⋅ ⋅ 111 → 100 ⋅ ⋅ ⋅ 001 transform). The next group of consecutive ones

to transform is always to the left of the current group, so only one pass through the

constant is needed. Thus the CSD transform requires linear run time with respect to

the bit width of the constant). The transform happens in a deterministic manner, so

a unique CSD representation exists for each number. An algorithm for computing the

CSD transform is shown in detail in [4].

The CSD representation has the minimum number of nonzero digits among any

signed digit representation [5]. If the binary form of a constant can be represented on b

bits, the CSD form can be represented on at most b+ 1 CSD digits (1, 0, and 1). If we

transform the leftmost group of consecutive ones with 011 ⋅ ⋅ ⋅ 111→ 100 ⋅ ⋅ ⋅ 001, the

bit width enlarges by one, but now the leftmost 1 is isolated, thus no more transforms

can be done. This ‘‘carry-out’’ behavior is illustrated in the last step of the CSD

transform in Figure 2.3. Since the CSD form has no adjacent nonzero digits, it may

have up to ⌈ b+1
2
⌉ nonzero digits. Therefore realizing multiplication by a constant of

binary bit width b requires ⌈ b+1
2
⌉ − 1 = ⌈ b−1

2
⌉ adders in the worst case. This is much

better than the b− 1 bound from using addition only. In [4], it was proven that the

average number of nonzero digits in the CSD form is b
3

+ �, where � is approximately

0.5 (refer to [4] for more details).

17

2.2. Sharing Intermediate Terms M.A.Sc. - J. Thong - McMaster

The CSD transform as described above cannot be directly applied to negative

constants in 2’s complement. However, finding the negative of a number in the CSD

form is trivial, as inverting the sign of each digit inverts the sign of the number that

these digits represent (we can do this since both 1 and 1 exist). Thus, given a negative

constant, first take the absolute value (2’s complement to unsigned binary), then do

the CSD transform, then invert the sign of all CSD digits. Since Q and −Q have the

same number of nonzero digits, the average and worst case number of nonzero digits

remain the same. However, sometimes we will need an extra adder. For example,

10101 requires 3 adders, not 2.

2.2 Sharing Intermediate Terms

To the best of our knowledge, the CSD bound on the average and worst case number

of adders is the best analytical upper bound. However, it is easy to show that the

CSD implementation of constant multiplication is not always optimal in terms of

using the minimum number of adders. Consider multiplication by 45, which has CSD

representation of 1010101. Since it has 4 nonzero digits, 4 instances of the multiplicand

must be added (or subtracted), thus the cost is 3 adders. However, 45x can be

decomposed as 45x = (16−1)(3x) = ((3x)≪4)−(3x), where 3x = 4x−x = (x≪2)−x.

This decomposition is better because it only needs 2 adders.

It is possible to use less adders than CSD by reusing intermediate terms. The CSD

implementation of 45x is (x≪6)− (x≪4)− (x≪2) + x. This can be factored into

(((x≪ 2) − x)≪ 4) − ((x≪ 2) − x). Once the (x≪ 2) − x is computed, there is no

point using 2 more adders to add the x≪6 and x≪4 terms because adding a shifted

version of (x≪2)− x achieves the same effect with only 1 more adder.

18

2.3. Formal Problem Definitions M.A.Sc. - J. Thong - McMaster

If we need to multiply the multiplicand by several constant coefficients, sharing

intermediate terms between different constants can save adders. For example, consider

multiplying an arbitrary number x by both 13 and 25. It can be shown that multi-

plication by 13 alone requires at least 2 adders and multiplication by 25 alone also

requires at least 2 adders. One optimal solution for 13 is 13x = (x≪3) + (x≪2) + x,

and one optimal solution for 25 is 25x = (x≪4) + (x≪3) + x. Notice that both use

the intermediate term 9x = (x≪ 3) + x. By sharing 9x (which costs one adder to

make), we can implement both 13x = (9x) + (x≪2) and 25x = (9x) + (x≪4) with

only 2 more adders, thus a total of 3 adders are needed.

Clearly, reusing the appropriate intermediate terms can save adders. However, the

challenge is to find which intermediate terms are ‘‘useful’’ given the set of constant

coefficients (this ‘‘usefulness’’ is quantified in different ways by different algorithms in

the later chapters). Small problem instances can be solved by hand, but for practical

reasons it is necessary to use a search algorithm for large but still real-sized problems.

2.3 Formal Problem Definitions

2.3.1 An Informal Introduction

Throughout the thesis, we will reuse some of the notation introduced in [6] since it

provided a unifying framework for constant multiplication problems. We will first

introduce two sets used in [6] that are applicable to any constant multiplication

algorithm and then we will formally define the constant multiplication problem.

Definition 1. The ‘‘ready’’ set R contains all of the terms that have been constructed

in order to realize the constant multiplication.

19

2.3. Formal Problem Definitions M.A.Sc. - J. Thong - McMaster

Definition 2. The ‘‘target’’ set T is comprised of all of the given constant coefficients

in a constant multiplication problem, however only unique and nonzero constants are

considered (duplicates are ignored).

Each element in R represents the realization of multiplying an arbitrary multipli-

cand by this element (i.e. if R = {1, 5, 37}, for any arbitrary x, we have implemented

1x, 5x, and 37x). Every algorithm starts with R = {1} since the multiplicand mul-

tiplied by 1 comes for free. Elements are added to R until T ⊆ R, at which point

the algorithm stops since all of the constant multiplications have been realized. How

R gets constructed is decided by the algorithm. A cost of one adder is incurred

every time one element is added to R. When the algorithm finishes, the number of

adders required to realize the constant coefficient multiplication is the cardinality of

R ∖{1} (R with the element 1 removed from it), thus the objective is to minimize

the cardinality of R. The rules governing how R can be constructed are described

in Definition 3. Note that Definition 3 reuses most of the formal problem definition

from [6], but without explicitly stating how the adder-operation A(x, y) is computed.

2.3.2 Definition of the Constant Multiplication Problem

In this thesis, ∣R∣ denotes the cardinality of the set R whereas ∣r∣ denotes the absolute

value of the element r.

Definition 3. The constant multiplication problem: given a set of unique and nonzero

constant coefficients T , find a set R = {r0, r1, . . . , rn} such that T ⊆ R, r0 = 1, and

for each rk ∈ R with 1 ≤ k ≤ n, there exists elements ri, rj ∈ R with 0 ≤ i, j < k that

satisfy rk ∈ A(ri, rj). The objective is to minimize ∣R∣.

20

2.3. Formal Problem Definitions M.A.Sc. - J. Thong - McMaster

Definition 4. The most general definition of A(x, y), an adder-operation of the

elements x and y, is the set of all possible numbers that can be created using x, y, and

one ‘‘adder’’. Subtraction and/or shifts may or may not be allowed by the ‘‘adder’’.

We deliberately did not explicitly define the adder-operation A(x, y) because

slightly different (but somewhat related) problems can be derived simply by allowing

or disallowing subtraction and/or shifts (and without modifying Definition 3).

2.3.3 Simplifying Assumptions and the Derivation of the

Adder-Operation for Custom Hardware

As explained in the introduction, in custom hardware, shifts have no cost and addition

and subtraction require approximately the same amount of logic resources. Shifting is

equivalent to multiplying by an integer power of 2, thus the most general form of the

adder-operation for custom hardware is given in (2.1).

A(x, y) = {z ∣ z = 2mx± 2ny, integer m and n} (2.1)

As explained in section 1.2.2, we can assume all targets are integers. Because

shifts are free, factors of 2n (for integer n) can be corrected anywhere this is needed.

Thus without any loss of generality, we can enforce all terms in R to be odd integers.

To facilitate this, we modify the definition of the adder-operation to (2.2). Algorithms

can use this property to remove redundancy within their search space.

A(x, y) = {z ∣ z = 2mx± 2ny,m ∈ ℤ, n ∈ ℤ, z ∈ ℤ,
z

2
∕∈ ℤ} (2.2)

In many of the applications of constant multiplication, after the multiplications

are done, these products are added. Thus for negative constants, we could multiply by

21

2.3. Formal Problem Definitions M.A.Sc. - J. Thong - McMaster

the absolute value but then use subtraction in the summation of products. In many

cases, the sign of the constants can be adjusted elsewhere. To simplify the problem,

we will only consider positive constant coefficients. Combining this with the free-shift

property above, we can enforce all terms to be odd and positive integers. Most of the

work in this area of research also uses this assumption.

Under the constraint that all targets are positive, if R is a valid solution to the

constant multiplication problem in Definition 3, then so is R′, where the elements in

R′ are the absolute values of the elements in R. In other words, subtraction can be

propagated through the logic circuit of a constant coefficient multiplier.

Using (2.2) as the definition of the adder-operation, we will show that if z > 0

and −z ∈ A(x, y), then z ∈ A(∣x∣, ∣y∣) ∪ A(∣y∣, ∣x∣). Stating that −z ∈ A(x, y) is

equivalent to stating that there exists integers m and n such that −z = 2mx±2ny. Let

us examine all combinations of positive or negative x and y with the use of addition

or subtraction. Without loss of generality, assume x, y, z > 0, then for some integers

m and n:

−z ∕= 2mx+ 2ny and −z ∕= 2nx− 2m(−y) because 2mx+ 2ny > 0

−z = 2mx− 2ny or −z = 2mx+ 2n(−y) =⇒ z = 2ny − 2mx ∈ A(y, x)

−z = 2m(−x) + 2ny or −z = 2m(−x)− 2n(−y) =⇒ z = 2mx− 2ny ∈ A(x, y)

−z = 2m(−x)− 2ny or −z = 2m(−x) + 2n(−y) =⇒ z = 2mx+ 2ny ∈ A(x, y)

If the first k elements of R are positive, taking the absolute value of the k + 1tℎ

element in R does not affect the validity of the solution R (because if z > 0 and

−z ∈ A(x, y), then z ∈ A(∣x∣, ∣y∣) ∪ A(∣y∣, ∣x∣)). Notice that the constraints in

Definition 3 are still satisfied if we apply the substitutions x = ri, y = rj, and z = rk

(also, the interchanging of ri and rj is allowed). Because r0 = 1 > 0, by induction,

22

2.3. Formal Problem Definitions M.A.Sc. - J. Thong - McMaster

each element of R can be made positive. The only reason an element in R would need

to be negative is if an element in T were negative (to satisfy T ⊆ R), however we

have constrained all targets to be positive. Since we can enforce all terms in R to be

odd and positive integers, we can again modify the definition of the adder-operation

to (2.3) to encompass this.

A(x, y) = {z ∣ z = ∣2mx± 2ny∣,m ∈ ℤ, n ∈ ℤ, z ∈ ℤ,
z

2
∕∈ ℤ} (2.3)

Notice that (2.3) is symmetric (i.e. A(x, y) and A(y, x) produce identical sets)

whereas (2.2) is not. When addition is used, clearly A(x, y) and A(y, x) produce

identical sets. If subtraction is used, ∣2mx− 2ny∣ can be rewritten as ∣ − (2ny − 2mx)∣,

which is simply ∣2ny−2mx∣. Algorithms can take advantage of this by only performing

subtraction in one direction. Also, the cardinality of A(x, y) will be smaller if

only positive integers are allowed. Conclusively, search algorithms will require less

computational effort if (2.3) is used as the definition of the adder-operation.

By induction, we can expect x and y to be odd and positive integers. To ensure

z ∈ A(x, y) is an odd and positive integer, there are 3 cases of m and n to consider:

m > 0 and n = 0, m = 0 and n > 0, and m = n < 0. The first two cases correspond

to adding an odd and even integer. In the third case, adding two odd integers produces

an even integer, but this can be divided by 2 until it becomes odd. Only one shift is

needed per adder-operation, since the m = n < 0 case is computed as z = 2n∣x± y∣.

For the convenience of notation, let A(X, y) = {z ∣ z ∈ A(x, y), x ∈ X} for a set

X and an element y. Likewise, let A(X, Y) = {z ∣ z ∈ A(x, y), x ∈ X, y ∈ Y } for two

sets X and Y . These conventions will be applied to all operators of sets throughout

this thesis.

23

2.3. Formal Problem Definitions M.A.Sc. - J. Thong - McMaster

2.3.4 Definition of the SCM and MCM Problems

All of the elements are now in place to formally define the problems that are commonly

known as the single constant multiplication (SCM) problem and the multiple constant

multiplication (MCM) problem. In the remainder of this thesis, unless stated otherwise,

SCM and MCM refer to the problems in Definitions 5 and 6, respectively, and (2.3) is

used as the definition of the adder-operation.

Definition 5. The single constant multiplication (SCM) problem is an instance of

the problem given in Definition 3, but under the constraint that all of the targets are

odd and positive integers, the definition of the adder-operation from (2.3) is used,

and ∣T ∣ = 1.

Definition 6. The multiple constant multiplication (MCM) problem has the same

specifications as the SCM problem except that ∣T ∣ ≥ 2.

2.3.5 Related Problems

Solving the MCM problem with an adder-operation that does not allow shifts is

equivalent to solving the multiple exponentiation problem, that is, given a set of

integer coefficients T , for an arbitrary x, find the minimum number of multiplications

or divisions to compute the set {xt ∣ t ∈ T}. Further disallowing subtraction from the

adder-operation is equivalent to not allowing division in the exponentiation (in which

case T must contain only positive integers for a solution to exist).

Consider solving an instance of the problem given in Definition 3 under the

constraint that all targets are positive integers (but not necessarily odd), ∣T ∣ ≥ 2,

and we use an adder-operation that only allows addition (no subtraction or shifts,

24

2.3. Formal Problem Definitions M.A.Sc. - J. Thong - McMaster

i.e. A(x, y) = {z ∣ z = x + y}). The corresponding yes-no decision problem (does

a solution exist for the given problem with up to n adders?) has been shown to be

NP-complete [7, 8]. Both of these proofs use local replacement to obtain a reduction

from the known NP-complete problem ‘‘ensemble computation’’ in [9]. It follows that

finding the minimum number of adders for the given problem is NP-hard.

In the addition-shift-sequence problem presented in [10], the adder-operation is

defined very differently. For the cost of one ‘‘adder’’, either one addition or one left

shift is allowed. The shift can be by an arbitrary number of places and subtraction is

not permitted. This problem is NP-hard since the corresponding decision problem

was proven NP-complete in [10] by using a reduction from the known NP-complete

problem ‘‘vertex cover’’ in [9].

To the best of our knowledge, no proof of the NP-completeness has been established

for either of the two decision problems that correspond to the SCM problem and the

MCM problem. Although many variants of said decision problems have been proved

NP-complete, these proofs do not extend to encompass addition, subtraction, and

shifts. When constrained to addition and left shifts only, all intermediate terms must

build up to each target. An intermediate term that is larger than a target cannot help

to construct this target. By introducing subtraction and right shifts, this fundamental

limitation disappears. Unfortunately, many references incorrectly cite [7] and/or [8]

for proof that the SCM and MCM problems are NP-hard. Even so, it can at least be

conjectured that both the SCM and MCM problems are NP-hard, as they are more

generalized versions of known NP-hard problems. We support this conjecture and to

the best of our knowledge, nobody has formally challenged this conjecture since the

early 1990s when the SCM and MCM problems emerged.

25

Chapter 3

Algorithmic Frameworks

We will not discuss any constant multiplication algorithms in this chapter, the existing

algorithms are presented in chapter 4. However, it is necessary to first introduce

the algorithmic frameworks that most of the existing algorithms use. The solution

of a constant multiplication problem (the add-subtraction-shift decomposition) can

be represented in many different ways. Each algorithmic framework provides a

representation that enables algorithms to efficiently search for the solution. We will

illustrate the beneficial properties of each framework and provide insight on how an

algorithm could search for a solution by exploiting said properties, but we will not

discuss any particular algorithm. Many examples will be provided to better illustrate

the concepts. The algorithmic frameworks are presented in section 3.1 and several

useful properties are discussed in section 3.2. By using the properties presented in

this chapter, we will provide a more unified discussion of the existing algorithms in

chapter 4. Furthermore, these will help to illustrate the similarities and differences in

the underlying intuition of many existing algorithms.

27

3.1. DAG and CSE Framework Notation M.A.Sc. - J. Thong - McMaster

3.1 DAG and CSE Framework Notation

In this section, we will illustrate how to represent constant coefficient multiplication

with directed acyclic graphs (DAGs) and common subexpression elimination (CSE).

As shown in the survey papers [11,12], these are the two most common frameworks.

3.1.1 Directed Acyclic Graph Notation

Assume R is a valid solution to a constant multiplication problem and thus satisfies

the constraints of Definition 3 (section 2.3.2). Except for r0 = 1, one adder is needed

to construct each element in R (recall an adder-operation may involve subtraction).

For each index k ≥ 1, the interpretation of the constraint that rk ∈ A(ri, rj) where

i, j < k is that when a new element rk is added to R, we must use two existing

elements in R (ri and rj in this case) as the operands of the adder that will construct

rk. Thus there is a unidirectional dependency among the elements in R.

The dependencies in R are easy to encompass with a directed acyclic graph. Each

node in the DAG is labeled by the value of the element in R that it represents. Except

for r0 = 1, each element rk has a dependency on two elements ri and rj. This is

represented by two directed edges from the ri and rj nodes to the rk node (if ri = rj,

there will be two directed edges from node ri to node rk). Only the r0 = 1 node has

no edges coming to it. This is known as the source node since 1 multiplied by the

multiplicand comes for free. Using (2.3) as the definition of the adder-operation, if

rk ∈ A(ri, rj), then there exists some integers n and m such that rk = ∣2mri ± 2nrj∣.

The shifts in the adder-operation (which are expressed as multiplication by an integer

power of 2) are also encompassed by the DAG. The directed edge from ri to rk is

labeled with the value 2m and the edge from rj to rk is labeled with ±2n.

28

3.1. DAG and CSE Framework Notation M.A.Sc. - J. Thong - McMaster

7x = 8x− x = (x≪3)− x
113x = 16(7x) + x = ((7x)≪4) + x

53x = 0.5(113x)− 0.5(7x) = ((113x)− (7x))≫1

(a) Mathematical expression

53 1 7 113

8

-1 16

1

0.5

-0.5

(b) Directed acyclic graph

3

x

53x

a b

a + b

a – b

a b

b – a

a b

4

1

7x 113x

(c) Adder tree

Figure 3.1: Three representations of the same implementation of multiplication by 53.
Shifting units in the adder tree describe the routing of wires between the adders and
thus incur no cost. The gray dotted lines represent constant multiplication by other
coefficients that were used to construct 53 (these could be used as outputs if an MCM
instance with T = {7, 53, 113} was used).

29

3.1. DAG and CSE Framework Notation M.A.Sc. - J. Thong - McMaster

DAGs offer a natural representation for constant multiplication. Each node in

the DAG represents one addition or subtraction based on whether an edge coming

to the node is labeled with 2n or −2n, respectively. If a directed edge from node u

to node v has a weight of w, this means u is one of the two operands that are added

or subtracted in order to construct v, and the left shift applied to the operand u

is log2 ∣w∣ (if log2 ∣w∣ < 0, then a right shift by − log2 ∣w∣ is applied). Due to the

one-to-one mapping between the DAG and the set of adder-operations in a valid

solution, it follows that there exists a DAG representation for every valid solution.

An example of one possible way to implement multiplication by the constant

coefficient 53 is given in Figure 3.1. The same constant multiplication decomposition

is shown by a mathematical representation, a DAG, and an adder tree. The objective

of Figure 3.1 is to illustrate the similarities between the three representations. Note

that the shifting units in the adder tree in Figure 3.1(c) are used to describe the

routing of wires between the adders and thus incur no cost. The adders have labeled

inputs and outputs so that when subtraction is used, there is no ambiguity as to which

input should be negated. The gray dotted lines in the adder tree represent constant

multiplication by other coefficients that were used to construct 53. These could be

used as outputs if an MCM instance with T = {7, 53, 113} was used, for example. Note

the same DAG can be used to represent the solution to a SCM instance with t = 53

or an MCM instance with T = {7, 53, 113}. In a constant multiplication problem with

∣T ∣ targets, there will be ∣T ∣ extraction points from within the adder-tree to serve

as the constant multiplication outputs (see Figures 3.1 and 3.2). These extraction

points are not always at the bottom of the adder-tree because targets can be built off

of other targets in the DAG, as illustrated in Figure 3.2.

30

3.1. DAG and CSE Framework Notation M.A.Sc. - J. Thong - McMaster

As illustrated in Figure 3.1(c), in each add-and-shift unit, the shifter can come

before or after the adder. There are two ways to obtain an odd integer if odd and

positive integers are used as the arguments of the adder-operation in (2.3). Adding an

odd integer and an even integer produces an odd integer, however since the operands

to the adder-operation are odd, one and only one of the operands must be left shifted

to be made even. In this case, the shifting must be done before the adder since there

is a nonzero relative shift between the two operands. The other way to obtain an

odd integer is to add two odd integers and then divide the result by 2 until the result

becomes odd. In this case, the shifting must be done after the adder. If (x+ y)≫n

is an integer, then the n least significant bits of x+ y are necessarily zero, however

the addition of the n least significant bits of x and y may produce a carry-out that

affects the result (x+ y)≫n. Thus for the n least significant bits in the adder, only

the carry-out bits (and not the sum bits) need to be computed.

3.1.2 Common Subexpression Elimination Notation

Signed digit notation was introduced in section 2.1.2 to illustrate the CSD transform.

The notation for common subexpression elimination is simply an extension of SD

notation. With CSE notation, a new digit is used to define a pattern (a set of existing

digits). Every instance of the pattern can then be substituted by this new digit.

Let us illustrate with an example. Consider multiplication by 45, which has a CSD

representation of 1010101. Let A represent the arbitrary multiplicand that we want

to multiply 45 by, then 45× A = A0A0A0A = (A≪6)− (A≪4)− (A≪2) + A =

(26 − 24 − 22 + 20)× A. In section 2.1.2, we introduced 1 to denote −1, which means

the corresponding term will be subtracted in the summation. Extending this to other

31

3.1. DAG and CSE Framework Notation M.A.Sc. - J. Thong - McMaster

digits, A represents −A, for example. Let us define a new pattern B = A0A = (A≪2)

−A = 3 × A. Thus we also have B = A0A = −3 × A. In general, the negative of

a pattern is obtained by inverting the sign of every digit in the pattern. Notice the

pattern A0A or its negative occurs twice in A0A0A0A, thus B or B can be substituted

in two locations to get 00B000B (B = A0A is equivalent to 00B = A0A). Substituting

C = B000B, we get 000000C, thus 45×A = C = (B≪4)−B = 15×B = 15× 3×A.

Note the zeros in a pattern are placeholders, i.e. we could substitute D = A000A in

A0A0A0A to get 0000D0D.

Signed digit patterns are a way of representing which existing terms are shifted and

added to created the new term. For example, B = A000A means B = A− (A≪4).

A new pattern must consist of existing digits and have at least 2 nonzero digits. Note

that A0A0A only contains one occurrence of A0A since it can only be substituted

once, although this can be done in two different ways. If B = A0A, then we could get

A000B or 00B0A, but clearly 00B0B ∕= A0A0A.

Given n nonzero digits in the CSE representation of a constant, n− 1 adders are

needed to add the n terms. Likewise, it costs m− 1 adders to create a pattern with

m nonzero digits. The objective in the SCM and MCM problems is to minimize the

number of adders, so it is beneficial to make a pattern if it can be substituted enough

times so that the number of adders saved (by reducing the number of nonzero digits)

is at least as large as the number of adders needed to construct the pattern.

The translation from a set of CSE substitutions to the adder-tree implementation

is straightforward. In Figure 3.2, we show one possible solution to the MCM problem

with T = {45, 75, 211}, this same solution is illustrated with a set of CSE substitutions,

a mathematical expression, a DAG, and an adder-tree implementation.

32

3.1. DAG and CSE Framework Notation M.A.Sc. - J. Thong - McMaster

15x = 16x− x = (x≪4)− x
45x = 4(15x)− (15x) = ((15x)≪2)− (15x)
75x = 4(15x) + (15x) = ((15x)≪2) + (15x)

211x = 256x− (45x) = (x≪8)− (45x)

(a) Mathematical expression

Substitution 45× A 75× A 211× A
A0A0A0A A0A0A0A A0A0A0A0A

B = A000A 0000B0B 0000B0B A00000B0B
C = B0B 0000 0 0C 0000B0B A00000 0 0C
D = B0B 0000 0 0C 0000 0 0D A00000 0 0C
E = A0000000C 0000 0 0C 0000 0 0D 000000 0 0E

(b) CSE substitutions

211 1 15 45

75

16
-1

256
4
-1

4
1

-1

(c) Directed acyclic graph

4

a – b

a b

8

a – b

a b

a b

a + b

2

a – b

a b

2

45x 75x211x

x

(d) Adder tree

Figure 3.2: Four equivalent representations of one possible solution to the MCM
problem with T = {45, 75, 211}.

33

3.1. DAG and CSE Framework Notation M.A.Sc. - J. Thong - McMaster

In Figure 3.2(b), the CSD forms of 45, 75, and 211 were used as the starting

representations for the CSE substitutions. However, it is not possible to generate the

same solution if we instead use the binary forms as the starting representations. For

instance, in Figure 3.2(b), 45× A starts as A0A0A0A, then B = A000A = 15× A is

substituted to give 0000B0B, and finally C = B0B is substituted. Now let us start

with the binary representation A0AA0A. This still has 4 nonzero digits, so we are not

starting with a representation that needs more adders than CSD form. However, there

are no instances of 15× A = AAAA in A0AA0A and thus this cannot be substituted.

There is no need to consider any representation of 15 × A that has negative digits

(such as A000A) since A0AA0A does not contain negative digits. Clearly, the patterns

that can be substituted depend on the initial representation of each constant.

Signed digit notation was first introduced in [13]. Any integer I can be expressed

in the form of

I =
∑
i=0

xi2
i (3.1)

where xi ∈ {1, 0, 1}. For unsigned numbers, both the binary and CSD forms are valid

SD forms. However, for any given integer, there are an infinite number of SD forms,

as the leftmost 1 (the most significant nonzero digit) can be continually replaced by

11, hence no upper limit in the summation in (3.1) is provided. For negative numbers,

unlike the binary representation in 2’s complement where there is a sign bit, in SD

notation, the most significant nonzero digit will simply be negative. Likewise, the

leftmost 1 can be replaced with 11 repeatedly. A general algorithm for generating SD

representations for a given constant is described in section 4.5.3.2.

Although it is a limitation that a pattern needs to appear in the CSE representation

of a constant in order for it to be substituted, this can also be regarded as a tool to

34

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

help CSE-based heuristics prune the search space. For example, if we choose to use

the CSD form of 45, since A0A0A0A does not contain A00A = 7× A or its negative,

a heuristic could assume that 7× A is not a useful intermediate term.

There is one critical limitation of CSE that is independent of which initial SD

forms are considered. For simplicity, assume patterns have two nonzero digits. Notice

the two nonzero digits in a pattern must have a nonzero relative shift between them

because the two digits cannot occupy the same location in the CSE representation. For

example, A0A represents (A≪2) + A, however we cannot represent two instances of

A≪2 (which would be (A≪2) + (A≪2)) in the CSE representation. Only one digit

is allowed per location in the A0A type of representation. In the adder-operation from

(2.3), this limitation is equivalent to restricting m ∕= n (recall the shifts which were

expressed as multiplication by 2m and 2n). Since the adder-operation only produces

odd integers, we lose the m = n < 0 case, which corresponded to adding two odd

integers (with zero relative shift between them) and then dividing the result by 2

until it becomes odd. This argument easily extends to the case where patterns have

more than two nonzero digits. Consequently, not every valid solution to the SCM or

MCM problem can be expressed by CSE substitutions (such as the solution in Figure

3.1). It is difficult to add an extra mechanism to deal with this issue in the general

case, as an arbitrary number of nonzero digits can occupy the same location.

3.2 Useful Properties

In this section, we will introduce some generalized properties associated with DAGs,

CSE, and the adder-operation. We will also show that there is some symmetry in the

SCM and MCM problems that can be exploited by algorithms.

35

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

3.2.1 The Reflective Property of the Adder-Operation

Recall from section 2.3.3 that the adder-operation (2.3) is symmetric. The reflective

property of the adder-operation, as we have named it, was first introduced and proved

in [6] as a tool for finding useful intermediate terms. More specifically, it is used to

compute the adder distance (the concept of adder distance is first introduced in section

3.2.3). The reflective property of the adder-operation is summarized in Theorem 1.

We also provide a more detailed proof than the proof from [6]. In the remainder of

this thesis, we will use ‘‘iff’’ as the short-form for ‘‘if and only if’’.

Theorem 1. Assume x, y, and z are odd and positive integers. Iff z ∈ A(x, y), then

y ∈ A(x, z).

Proof. Let us prove the if part of the above theorem. If z ∈ A(x, y), then there exists

integers n and m such that z = ∣2nx± 2my∣. Consider the case when z = 2nx+ 2my,

then y = 2n−mx − 2−mz. When subtraction is used between x and y, we must

consider two cases. If 2nx − 2my ≥ 0, then z = 2nx − 2my can be rearranged to

y = 2n−mx+ 2−mz. If 2nx− 2my ≤ 0, then z = ∣2nx− 2my∣ = 2my − 2nx ≥ 0 can be

rearranged to y = 2−mz − 2n−m. In each case, y has the form y = ∣2n−mx ± 2−mz∣.

Recall from section 2.3.3 that there are 3 cases of shifts to consider: m > 0 and n = 0,

m = 0 and n > 0, and m = n < 0. It can be seen that if we let n′ = n − m and

m′ = −m, we obtain the same cases of shifts n′ and m′, which are: m′ = n′ < 0,

m′ = 0 and n′ > 0, and m′ > 0 and n′ = 0, respectively. Thus ∣2n−mx ± 2−mz∣ is

an odd and positive integer and y ∈ A(x, z). The proof for the only if part of the

theorem is analogous.

Lemma 1. Since the adder-operation is symmetric, it follows that iff z ∈ A(x, y),

then x ∈ A(y, z), where x, y, and z are odd and positive integers.

36

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

Lemma 2. Recall from section 2.3.3 that A(X, y) = {w ∣ w ∈ A(x, y), x ∈ X}. If

z ∈ A(X, y), there must exist some x ∈ X such that z ∈ A(x, y). By Theorem 1,

y ∈ A(x, z) and thus y ∈ A(X, z). It follows that iff z ∈ A(X, y), then y ∈ A(X, z).

A simple example that uses the property in Theorem 1 is provided at the end of

section 3.2.2.

3.2.2 The Successor Set

A unifying framework for constant multiplication problems was introduced in [6]. In

section 2.3.1, we introduced the ready set R and the target set T , as described in [6].

We will now introduce the successor set S from [6].

Definition 7. The ‘‘successor’’ set S (with respect to R) contains all of the terms that

can be constructed with one ‘‘adder’’ by using any two elements of R as the operands.

Subtraction and/or shifts may or may not be allowed by the ‘‘adder’’. S and R must

be mutually exclusive sets. Formally, S = {s ∣ s ∈ A(ri, rj), ri ∈ R, rj ∈ R, s ∕∈ R}.

By abuse of notation, we also denote this as S = A(R,R)∖R.

The exact definition of the adder-operation is deliberately not provided in Definition

7. Thus the successor set always has an implicit dependence on the ready set R and

the type of adder-operation used. In the SCM and MCM problems, (2.3) is used as

the adder-operation definition. There is no point in spending one adder to construct a

term that already exists, so R and S are mutually exclusive.

Hcub, the algorithm in [6], is an iterative graph construction algorithm in which

one adder is used per iteration (one term is added to R on each iteration). The

successor set was introduced in [6] as a means of specifying which terms are possible

37

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

s
s

s

s

s

s

r r r

(a) Directed Acyclic Graph

R

S

(b) Sets

Figure 3.3: Two representations of the successor set S with respect to the ready set R.
Only the black items are already constructed, the items in gray can be constructed
with one adder.

candidates for being constructed on a given iteration. Our interpretation of S is that

it represents the first step along any possible path that leads to construction of any

target. In other words, no matter which intermediate terms are used to construct an

arbitrary target t, the first intermediate term must be in the successor set.

Constructing a new term corresponds to adding a new node in a DAG, which

means we must also add two directed edges that lead to this new node. The successor

set represents all possible ways of doing this. In Figure 3.3(a), given a DAG with

3 existing nodes (shown in black), all of the possible ways that one node can be

added are shown in gray. Figure 3.3(b) shows the simplified representation that was

introduced in [6].

In the CSE framework, with only one adder, each new pattern must have 2 nonzero

digits. Thus the successor set corresponds to all possible arrangements of any two

existing nonzero digits (the sign of each digit can also be chosen). However, each of

these new patterns must still represent an odd and positive integer.

38

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

As an example to illustrate the reflective property of the adder-operation (from

the previous section), suppose we suspect that the element ri ∈ R can be used as one

of the operands to construct a target t with one adder. If t ∈ A(ri, R), then there

must exist a rj ∈ R such that t ∈ A(ri, rj). Thus we could check if t ∈ A(ri, rj) for

each rj ∈ R. By Theorem 1, this is satisfied iff rj ∈ A(ri, t). Instead of constructing

A(ri, R), it is more efficient to check for a common element between R and A(ri, t),

as only one adder-operation is needed. In other words, check if R ∩ A(ri, t) ∕= ∅.

Assume there are n elements in R and assume t ∕∈ R. It follows that we can check

if t ∈ S by constructing A(R,R) at the expense of n2 adder-operations, or we can

check if R ∩ A(t, R) ∕= ∅ at the expense of n adder-operations and a set intersection.

However, if we want to check if several targets are in S, constructing A(R,R) may

be better since it serves as a common check that can be shared by all targets.

3.2.3 An Introduction to the Adder Distance

The notion of adder distance was first introduced in [14] and later formalized in [6].

We will reuse the notation and the definition of adder distance from [6].

Definition 8. The ‘‘adder distance’’ from a set of existing terms R to a target t

is denoted as dist(R, t) and is defined as the minimum number of adders needed to

construct t starting from R.

We have an additional interpretation of Definition 8. In order to construct the

target t, at least dist(R, t) − 1 intermediate terms must first be constructed (note

we can always add more terms which are functionally useless in terms of helping

to construct t). For example, if dist(R, t) = 2, at least two adders are needed to

construct t. Because t cannot be constructed with one adder, one adder is needed to

39

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

first construct a useful intermediate term, and then using one more adder we will be

able to construct t. As another example, the successor set S contains all of the terms

that can be constructed with one adder, thus if t ∈ S, then t is an adder distance of 1

from R. In this case, t can be constructed without adding any intermediate terms. If

t ∈ R (t is already constructed), then t is an adder distance of 0 from R.

In order to optimally solve the SCM problem for a given target t, we need to find

dist({1}, t). The idea of classifying every constant according to its optimal SCM cost

was introduced in [6]. We will reuse their definition and notation.

Definition 9. The set of ‘‘complexity n’’ constants is denoted as Cn and is defined

as Cn = {t ∣ dist({1}, t) = n}.

As stated in section 2.3.5, it is conjectured that the SCM problem is NP-hard.

Thus computing the adder distance is not easy. Even so, many algorithms estimate

the adder distance in order to quantify how far each target is and also to determine

how useful an intermediate term is. There are many methods for estimating the adder

distance with varying degrees of accuracy and computational effort; methods will be

discussed with their corresponding algorithms. After we introduce some concepts in

sections 3.2.4 and 3.2.5, we will then show an exact method for computing the adder

distance in section 3.2.6.

Consider a SCM problem for a given target t. Assume we have already constructed

some terms (which are placed in R) and we have estimated dist(R, t). Now we would

like to calculate how useful an intermediate term x is. If we construct x (add x to R),

we can estimate dist(R ∪ {x}, t), which represents the remaining adder distance to

the target. Therefore dist(R, t) − dist(R ∪ {x}, t) expresses how much closer we will

move to t if x is constructed. Assume x requires m adders to be constructed. If x

40

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

is useful, we expect m ≤ dist(R, t) − dist(R ∪ {x}, t). In other words, for the cost

of m adders, we should move at least m adders closer to the target. Conclusively,

dist(R, t) − dist(R ∪ {x}, t)−m can be used as a metric in deciding how useful an

intermediate term x is.

Let us illustrate how the adder distance can be estimated with an example. We

will use the CSE framework and constrain all patterns to have 2 nonzero digits (so

it always costs one adder to construct each pattern). Assume we have a partially

solved SCM problem and there are n remaining nonzero digits in the CSE form of the

target t. We need n− 1 adders to add these n terms, thus dist(R, t) ≈ n− 1. Let us

construct a pattern p. If p can be substituted in k locations in the CSE form of t, 2k

existing nonzero digits will be replaced by k new nonzero digits, thus a net loss of k

nonzero digits. Therefore dist(R ∪ p, t) ≈ n − 1 − k. It costs one adder to make p,

thus dist(R, t) − dist(R ∪ p, t)− 1 = k − 1 is the metric that determines how useful

p is. Clearly, we should substitute the pattern that occurs the most (maximum k).

The adder distance can also be used to guide a MCM heuristic. Hcub (section

4.3.3) and our proposed algorithms H3 and H4 (sections 6.1.3 and 6.1.4, respectively)

are examples of this.

3.2.4 Multiplicative Decompositions and Division Tests

We will show an important property of the set C1. Using R = {1}, with one adder

we can to create any element in C1 = A(1, 1) = {z ∣ z = ∣2n1 ± 2m1∣}. The adder-

operation used in the SCM and MCM problems is constrained to produce odd and

positive integers. Recall from section 2.3.3 that there were 3 cases to consider: m > 0

and n = 0, m = 0 and n > 0, and m = n < 0. Because of the symmetry in C1, we can

41

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

ignore the m > 0 and n = 0 case. Recall the m = n < 0 case corresponds to adding

two odd integers and then dividing the even result by 2 until it becomes odd, so in C1

we get 1 + 1 = 2 =⇒ 1. Thus, we have

C1 = {z ∣ z = 2n ± 1, n ∈ ℤ, n ≥ 1}. (3.2)

By an argument similar to that above, it follows that

A(x, x) = {z ∣ z = 2nx± x, n ∈ ℤ, n ≥ 1} = C1 ⋅ x. (3.3)

Note the multiplication of sets is done in the usual element-wise manner, i.e. U ⋅ V =

{u ⋅ v ∣ u ∈ U, v ∈ V }, and we interpret C1 ⋅ x as C1 ⋅ {x}. Likewise, for the division

of integer sets, U/V = {u/v ∣ u ∈ U, v ∈ V, u/v ∈ ℤ}.

Now consider a partially completed SCM problem for a given target t. Assume

there are some already constructed terms in R so that dist(R, t) = 2. As explained in

section 3.2.3, one intermediate term s is needed in order to construct t, where s ∈ S.

Now assume we construct s, which means with one more adder we can construct t.

There are only two ways to do this: t ∈ A(s, s) or t ∈ A(s, R). If we do not use s

as one or both of the operands, then only elements of R can be used as operands,

but t ∕∈ A(R,R) because t is not distance 1. The first case, t ∈ A(s, s) = C1 ⋅ s, is

an example of a multiplicative decomposition, as multiplication by an element in Cn

is needed (in this case n = 1). The second case, t ∈ A(s, R) = A(A(R,R), R), is an

example of an additive decomposition since three instances of some elements in R are

‘‘added’’ to create t. We will discuss additive decompositions in the next section.

Assume there are two nodes p and q within a DAG such that q = cn ⋅ p, where

cn ∈ Cn. Also assume that q was constructed by adder-operating only instances of p.

42

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

ri

rj
ts

Figure 3.4: The distance 2 graph topology t ∈ A(s, s) = C1 ⋅ s, where s ∈ S. Nodes s
and t form a multiplicative subgraph (shown in black). Note that ri, rj ∈ R.

More than one adder-operation can be used, for example q = A(A(p, p), p) = C2 ⋅ p.

Given this, all of the nodes between p and q (including p and q) form a multiplicative

subgraph. In the t ∈ A(s, s) = C1 ⋅ s example above, the nodes s and t form a

multiplicative subgraph, as shown by the black part of the graph in Figure 3.4.

Now let us consider how we would establish whether or not t ∈ C1 ⋅ s, where

s ∈ S (i.e. whether or not t ∈ C1 ⋅ S). If this is satisfied, there must exist a c1 ∈ C1

and a s ∈ S such that t = c1 ⋅ s, or equivalently, s = t/c1. This means that the

only values of s that will permit the construction of t are s ∈ t/C1, where the set

t/C1 = {t/c1 ∣ c1 ∈ C1, t/c1 ∈ ℤ}. If c1 > t, then t/c1 ∕∈ ℤ. Thus the value of t places

an upper bound on the shift value n in C1 = {z ∣ z = 2n ± 1, n ∈ ℤ, n ≥ 1}. If no

element in C1 properly divides t (i.e. divides t with zero remainder), then t/C1 = ∅ is

sufficient proof that t ∕∈ C1 ⋅ S. Since s ∈ S and s ∈ t/C1, we need a common element

between t/C1 and S. Conclusively, iff t/C1 ∩ S ∕= ∅, then t ∈ C1 ⋅ S. This type of

division test was proposed in [6] for computing the adder distance, which is explained

in section 3.2.6.

A classification of directed acyclic graphs was done in [2]. As explained in [2],

multiplicative graphs are composed of two independent subgraphs such that the output

node of the first subgraph is the same node as the input node of the second subgraph.

It is possible that t may be decomposed into a product of more than two terms, thus

43

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

1 tcm

Figure 3.5: The decomposition of a multiplicative graph into two subgraphs.

the subgraphs can also be multiplicative graphs. Thus a target t can be decomposed

as t = cm ⋅ cn, where cm ∈ Cm and cn ∈ Cn. An example with m = 3 and n = 2 is

shown in Figure 3.5. The cm node belongs to both subgraphs. The first subgraph

of the DAG (left side in gray) constructs cm while the second subgraph (in black)

implements multiplication by cn. Given an adder tree which implements cn ⋅ x, if we

put x at the input, we receive cn ⋅ x at the output. However, if we put cm ⋅ x at the

input, we receive cm ⋅ cn ⋅ x = t ⋅ x at the output.

Suppose a SCM heuristic discovered that the given target t could be decomposed

as t = a ⋅ b. One strategy could be to implement SCM for a and SCM for b, then

multiplicatively combine the DAGs. There could be several decompositions of this

form, so the best solution could be selected. This could also be applied recursively. If

t is a prime number, we could instead try to decompose t as t = a ⋅ b+ c.

3.2.5 Additive Decompositions and Vertex Reduction

Recall the example in section 3.2.4 where t ∈ A(A(R,R), R). We finished constructing

t by adding 3 instances of some elements r ∈ R with 2 adders. These 2 adders are

an example of an additive decomposition. To exploit the symmetry in an additive

decomposition, vertex reduction can be used in the corresponding DAG. Vertex

reduction was introduced in [2] as a means to identify equivalent graph topologies

(for algorithms that use the DAG framework), thereby avoiding redundant searching.

44

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

Before we discuss vertex reduction, let us first illustrate the symmetry that can be

exploited in an additive decomposition. Recall that the adder-operation is symmetric.

For any three elements ri, rj, rk ∈ R, it was formally proven in [2] that A(A(ri, rj), rk)

and A(A(ri, rk), rj) are identical sets. We will illustrate the basic idea. Each element

in the set A(A(ri, rj), rk) has the form ∣2a∣2bri ± 2crj∣ ± 2drk∣. If we combine the 2a

shift with the 2b and 2c shifts, the form simplifies to ∣ ± 2mri ± 2nrj ± 2drk∣. In this

representation, it is apparent that we can freely interchange order of the operands ri,

rj, and rk since the set A(A(ri, rj), rk) contains every element of this form. Thus, it

is more natural to represent this set as A(ri, rj, rk). In order to exploit this symmetry,

we extend the definition of the adder-operation to (3.4), in which an arbitrary number

of operands are permitted. In (3.4), the operands are denoted by xi and the shift of

operand xi is denoted by si, for i = 1, . . . , n.

A(x1, . . . , xn) = {z ∣ z = ∣ ± 2s1x1 ± . . .± 2snxn∣, si ∈ ℤ, z ∈ ℤ, z/2 ∕∈ ℤ} (3.4)

Each term created always has a corresponding node in the DAG. Previously, an

adder-operation only had two operands, so each term had two dependents and was

constructed by using one addition (or subtraction). Under these conditions, each

node in the DAG represented one adder and two directed edges came to each node

to represent the dependents. Now, a new term can be constructed using an adder-

operation with n operands (n ≥ 2). In this case, this new term has n dependents,

so the node in the DAG that corresponds to this term must have n directed edges

coming to it. It follows that a node with n directed edges coming to it represents a

term that costs n− 1 adders to construct. In Figure 3.6, we show the vertex reduction

from t ∈ A(A(ri, rj), rk) to t ∈ A(ri, rj, rk).

45

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

ri

rj

rk

t

(a) t ∈ A(A(ri, rj), rk)

ri

rj

rk

t

(b) t ∈ A(ri, rj , rk)

Figure 3.6: Vertex reduction applied to an additive decomposition.

Assume t is not distance 1 (or else we would not bother testing if t could be

constructed with 2 adders). Consider how we can establish whether or not t ∈

A(R,R,R), which is equivalent to t ∈ A(A(R,R), R). We could simply compute

A(R,R,R) but there is a more efficient method to check for membership in this set.

If t ∈ A(A(R,R), R), there must exist an element x ∈ A(R,R) such that t ∈ A(x,R).

By Lemma 2 from section 3.2.1, this is satisfied iff x ∈ A(t, R) for some x ∈ A(R,R).

In other words, there must be a common element between A(t, R) and A(R,R), or

equivalently A(t, R) ∩ A(R,R) ∕= ∅. An element in A(R,R) could also be in R, but

this would mean t ∈ A(A(R,R), R) = A(r, R) where r ∈ R and thus t would be

distance 1. Therefore we are only interested in elements in A(R,R) that are in S.

Instead of testing A(t, R) ∩ A(R,R) ∕= ∅, we test A(t, R) ∩ S ∕= ∅. Conclusively, t is

distance 2 and t ∈ A(R,R,R) iff A(t, R) ∩ S ∕= ∅.

Theorem 1 states that iff t ∈ A(ri, rj), then ri ∈ A(t, rj). By using vertex reduction,

we can extend this to iff t ∈ A(ri, rj, rk), then ri ∈ A(t, rj, rk). This was illustrated in

the above example. In fact, this extends to an arbitrary number of operands. This

was not shown in [6]. Since we extended the definition of the adder-operation, we

shall also extend its reflective property. The proof of Theorem 2 is analogous to the

46

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

proof of Theorem 1 and should be obvious from the t ∈ A(R,R,R) example above.

Although not needed, Lemmas 1 and 2 could also be extended in a similar manner.

Theorem 2. Assume z, x1, x2, . . ., xn are odd and positive integers. Iff z ∈

A(x1, x2, . . . , xn), then x1 ∈ A(z, x2, . . . , xn).

Although vertex reduction was developed for DAGs, we have extended its appli-

cation to the CSE framework. For example, consider 2451 × A, which has a CSD

representation of A0A0A00A0A0A. If only one adder can be used to construct each

new term, this is equivalent to enforcing that all new CSE patterns have only 2

nonzero digits. In this case, we could substitute B = A0A to get A000B00A000B, and

then substitute C = A000B to get 0000C000000C. However, we ultimately substitute

two occurrences of A0A0A, so it does not matter whether we first build A0A, A000A,

or A0A. As explained in section 3.2.3, if patterns only have 2 nonzero digits, a

steepest-descent CSE algorithm substitutes the pattern that occurs the most. In this

case, we have a three-way tie, so an algorithm could choose to substitute all three

options (one at a time), in which case it would go to the same second substitution

three times. To avoid this redundancy, a CSE algorithm could take advantage of the

additive decomposition by immediately constructing A0A0A at a cost of two adders.

3.2.6 Computing the Exact Adder Distance

In section 3.2.3, we introduced the notion of adder distance and provided several

examples to illustrate how and why it is useful. We will now present an exact method

for computing the adder distance. Recall from Definition 8 that dist(R, t) is the

minimum number of adders needed to construct t starting from R. The problem can

be simplified to determining whether or not the target t can be constructed with n

47

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

adders. By doing an exhaustive search for each n and in the order of increasing n, we

are guaranteed to find the minimum number of adders needed to construct t.

An exhaustive search can only be done using directed acyclic graphs. As explained

at the end of section 3.1.2, CSE has an inherent limitation. Since only one nonzero

digit can occupy each location in the CSE representation of a constant, we lose the

m = n < 0 class of shifts in the adder-operation (recall that shifts were expressed as

multiplication by 2m and 2n).

There are only so many ways in which we can arrange n adders, thus we can

enumerate all of the possible corresponding DAG topologies. All of the possible vertex

reduced graph topologies for up to 5 adders are shown in Figure 5 in [2]. These

represent all of the possible ways of using n adders (n ≤ 5) to construct a target t.

In SCM, we are constrained to put r0 = 1 at the source node of a DAG. However,

when computing the adder distance, we are allowed to use any of the existing in R

to construct t. It follows that by splitting the source node and asserting an element

in R at each of the newly split source nodes, we obtain the equivalent topology

for computing whether or not we can construct t using this topology starting with

elements in R. An example is illustrated in Figure 3.7.

If t can be constructed with n adders, at least one graph topology with n adders

can construct t. Thus, for each topology with n adders, we need to design a test to

determine if t can be constructed with this topology. If none of these corresponding

tests succeed, then t cannot be constructed with n adders.

The avid reader should realize that we have already done this for distance 1 and 2.

For distance 1, we can only adder-operate two elements in R. As shown in section

3.2.2 (where we presented the successor set), for distance 1, we can either test if t ∈ S

48

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

1 t

(a) Graph topology for SCM.

ri

rj

rk

t

(b) Graph topology for adder distance.

Figure 3.7: By splitting the source node of a SCM graph topology, we obtain the
corresponding adder distance graph topology. Note that ri, rj, rk ∈ R.

or if A(t, R) ∩R ∕= ∅. For distance 2, we must first construct one intermediate term

before t can be constructed. As explained in section 3.2.4, there are only two ways in

which this can be done: t ∈ C1 ⋅ S or t ∈ A(R, S). These correspond to the two cost 2

graph topologies shown in Figure 4 of [1] or Figure 5 of [2]. In section 3.2.4, using a

division-based test, we proved that iff t/C1 ∩ S ∕= ∅, then t ∈ C1 ⋅ S. In section 3.2.5,

we proved that iff A(t, R) ∩ S ∕= ∅, then t ∈ A(R, S).

We have named the method used to derive the above tests as the inverse graph

traversal (IGT) method. The target is used to find all of the useful intermediate

terms, where said intermediate terms are one adder away from the target. In the

general case, these useful intermediate terms are then used to find all of the useful

intermediate terms that are two adders away from the target, and so on, until we

reach S or R to check for a common element.

49

3.2. Useful Properties M.A.Sc. - J. Thong - McMaster

Alternatively, for distance 2, we could compute both C1 ⋅ S and A(R, S). Let us

define the 2nd order successor set S2 = (C1 ⋅ S) ∪ A(R, S), then a target t is distance

2 if t ∈ S2. This method could be called forward graph traversal since we build up to

to the target. This approach is used in the MAG algorithm (sections 4.1.1 and 4.1.2).

The computational effort of these tests depends largely on the size of R, S, and

T . If R is small but there are numerous targets, then creating S2 may be a more

efficient test because S2 serves as a common checking criteria for all of the targets.

Conversely, if R is large and there are only a few remaining targets, using IGT may

be more efficient. In general, IGT is superior because S is typically much larger than

R or T , thus much more computational effort is needed to construct C1 ⋅S than T/C1,

and more computational effort is needed to construct A(R, S) than A(R, T).

As one should expect, for distance 3, we need to enumerate all of the possible graph

topologies with 3 adders and then design a constructability test for each topology.

For example, the topology in Figure 3.7 corresponds to t ∈ A(R, S) ⋅ C1. It can be

shown that the corresponding test is A(t
C1
, R) ∩ S ∕= ∅. Distance 3 tests are discussed

in detail in section 6.1.3.1, where we also illustrate another property that can be

exploited. Distance 4 tests are summarized in section 6.1.4 and some distance 5 tests

are derived in section 5.2.2. Note that in practice, the adder distance can only be

computed exactly for small n. The number of unique vertex reduced graph topologies

grows very quickly with n. As computed in [2], there are 2, 5, 15, 54, 227 unique

vertex reduced graph topologies at adder distance 2, 3, 4, 5, and 6, respectively. Also,

the test for each topology requires more computation as the number of adders increase

since we have to traverse through more nodes. To the best of our knowledge, we are

the first to attempt distance 4 and 5 tests using IGT.

50

Chapter 4

Existing Algorithms

4.0 Existing Algorithms

Figure 4.0: hello

In this chapter, we will provide a survey of existing techniques for solving the

SCM, MCM, and other closely related problems. Since the existing algorithms span

over two decades, we will only cover the algorithms which are closely related to

the contributions in this thesis and the algorithms which proposed the fundamental

approaches and ideas that were frequently reused and/or improved by later algorithms.

We strongly advise the reader that much of the discussion in this chapter utilizes

the concepts introduced in chapter 3. We will first provide an overview of what we

will cover in this chapter. In sections 4.1 to 4.5, we will discuss exhaustive optimal

algorithms, an overview of iterative heuristic algorithms, DAG-based algorithms which

use a bottom-up approach, DAG-based algorithms which use a top-down approach,

and CSE-based algorithms, respectively. Other existing approaches for solving the

MCM problem are very briefly discussed in section 4.6. In section 4.7, we introduce

problems related to SCM and MCM which have different objectives and/or metrics

that the algorithms try to minimize. Finally, some theoretical lower and upper bounds

on the SCM and MCM problems are presented in section 4.8.

51

4.0. Existing Algorithms M.A.Sc. - J. Thong - McMaster

H3+DiffAG
(§6.1.7)

Lefѐvre, Pasko
(§4.5.2)

SCM
Type of
approach: bottom-up hybrid top-down bottom-up hybrid top-down

MCM

be
tte

r
pe

rf
or

m
an

ce
 i

n
 m

in
im

iz
in

g
 a

dd
er

s
be

tte
r

co
m

pu
ta

tio
na

l
ef

fic
ie

nc
y

BH
(§4.3.1)

BHM
(§4.3.1)

RAG-n
(§4.3.2)

Hcub
(§4.3.3)

H3
(§6.1.3)

H4
(§6.1.4)

DiffAG
(§4.4.2)

Heuristic

Optimal

Bernstein
(§4.4.1)

Hartley
(§4.5.2)

Park & Kang
(§4.5.3)

H(k)
(§4.5.3)

H(k)+ODP
(§5.1)

BBB
(§4.4.1)

MAG
(§4.1.1,
§4.1.2)

BIGE
(§5.2)

BFSmcm
(§4.1.3)

BDFS
(§6.3)

Min spanning
tree

(§4.4.2)

Figure 4.1: A summary of the algorithms discussed in this thesis. The arrows denote
some relationship between the algorithms which is discussed in the corresponding
sections. Our contributions are shown in gray (existing algorithms are in black). The
performance of algorithms in terms of minimizing adders is only compared within
SCM and within MCM (i.e. the relative vertical placement on the left side is unrelated
to the right side). Optimal algorithms are not classified by the type of approach.

52

4.0. Existing Algorithms M.A.Sc. - J. Thong - McMaster

Figure 4.1 provides a summary of the algorithms we will discuss in this thesis. An

arrow between algorithms denotes that the later algorithm reuses some approach or

idea presented in the earlier algorithm. The exact nature of each dependency will be

discussed in the corresponding sections. The existing algorithms are shown in black

and the algorithms we propose in this these algorithms are shown in gray.

The performance of algorithms in terms of minimizing adders is only compared

within SCM and within MCM (i.e. the vertical placement on the left side of Figure 4.1

is unrelated to the right side). We deliberately defined the SCM and MCM problems

as two mutually exclusive problems since the best performing algorithm(s) for each

problem are designed differently. Every SCM algorithm can solve the MCM problem

by solving an SCM problem for each target in T and then collecting all intermediate

terms used in any of the SCM instances into one set R. However, the inherent inability

to share intermediate terms between targets suggests this is a poor approach. Every

MCM algorithm can solve a SCM problem, as a SCM problem for a given target t

is equivalent to a 2 constant MCM problem with T = {1, t}. SCM algorithms only

share terms within one constant whereas MCM algorithms also share terms between

targets, so a SCM algorithm can be fine-tuned to better solve just the SCM problem.

Note that a SCM algorithm can be used to solve a subproblem in the MCM problem

(for example, from Figure 4.1, RAG-n uses the MAG algorithm). The BBB algorithm

introduced the idea of using a hybrid algorithm composed of two subalgorithms, each

with very different approaches. Better solutions are obtained by searching different

areas of the solution space. We reuse this idea in our proposed H3+DiffAG hybrid

algorithm. As shown in section 6.1, it is the best performing MCM heuristic (optimal

exhaustive algorithms can only solve small problem sizes).

53

4.1. Exhaustive Search Methods M.A.Sc. - J. Thong - McMaster

Within each subsection, the algorithms will be presented roughly in chronological

order, as the older algorithms provided the fundamental ideas that were later reused

and/or improved by later and more sophisticated algorithms. For example, a later

algorithm could use an exact method to solve a subproblem that was previously solved

by a heuristic. Also, the algorithms span more than two decades, over which time the

amount of compute power has increased by orders of magnitude. The older algorithms

are quite simple compared to the algorithms of today, but in fairness the algorithms

of today would not have been practical one decade ago.

Many of the algorithms we will discuss predate the formalization of concepts like

the successor set, adder distance, and the common sets like the ready set R, the

successor set S, the target set T , and the complexity-n sets Cn. However, we will

describe the algorithms with these unifying concepts in order to better emphasize the

similarities and differences between the existing algorithms.

4.1 Exhaustive Search Methods

In this section, we will illustrate how an exhaustive search can be done to find an

optimal SCM or MCM solution. This can only be done using directed acyclic graphs.

As explained at the end of section 3.1.2, CSE has an inherent limitation. Since only

one nonzero digit can occupy each location in the CSE representation of a constant,

we lose the m = n < 0 class of shifts in the adder-operation (recall that shifts were

expressed as multiplication by 2m and 2n).

54

4.1. Exhaustive Search Methods M.A.Sc. - J. Thong - McMaster

4.1.1 The MAG Algorithm (Optimal SCM)

To the best of our knowledge, Dempster and Macleod [1] proposed the first optimal

SCM algorithm in 1994, which was named the minimized adder graph (MAG) algo-

rithm. It exhaustively checks whether or not a solution with 1 adder exists. If found,

the algorithm stops, otherwise it exhaustively checks for 2 adders, then 3 adders,

and so on. By exhaustively checking in the order of increasing adder cost, we are

guaranteed to find the optimal solution (with the minimum number of adders).

With n adders, there are only so many possible ways of arranging add-subtract-shift

units in an adder tree. We can therefore enumerate all of the possible corresponding

graph topologies. In Figure 4 in [1], all of the possible graph topologies are shown

for n = 1, 2, 3, 4. For each graph topology, we compute all of the possible values that

could be constructed at the ending node in the DAG. We can then compare these

values with the given SCM target t to determine if the graph topology can construct

t. Since we search in the order of increasing adder cost, if we compute all possible

values for all of the graph topologies with n adders and we still cannot construct t,

this is sufficient proof that t requires at least n+ 1 adders.

Due to the ‘‘first construct, then check against the target’’ nature of the MAG

algorithm, it can be used to find the optimal SCM solution for several targets at the

same time. In fact, Dempster and Macleod used the MAG algorithm to generate the

optimal SCM solutions for all constants up to a bit width of 12. The algorithm creates

a lookup table so that later when a SCM problem needs to be solved for a given target

t, the solution can be accessed from the table. The search was limited to 4 adders

due to the limited compute power in desktop computers at the time. In [1], it was

discovered that all constants up to 12 bits can be constructed with 4 adders.

55

4.1. Exhaustive Search Methods M.A.Sc. - J. Thong - McMaster

x y t1

(a) Original graph

1 t yx

(b) DAG

Figure 4.2: Graph number 4, cost 3, in [1] enables the construction of A(1, C1 ⋅ C1).

Let us illustrate how to generate all of the possible values for a given graph

topology. Consider graph number 4, cost 3, in Figure 4 in [1]. We show the original

graph in Figure 4.2(a) and we translate it to our style of DAGs in Figure 4.2(b). Note

that [1] predates the notion of the complexity-n sets Cn, however we will use this to

simply our explanations. From the labeling in Figure 4.2, clearly x ∈ A(1, 1) = C1,

y ∈ A(x, x) = C1 ⋅ x, and t ∈ A(1, y). Thus it follows that t ∈ A(1, C1 ⋅ C1). It was

proven in [1] that the shifts that we need to consider in each adder-operation are

bounded above by O(b), where b is the bit width of t. In other words, even if shifts

larger than this bound are used, a better solution for t will not be found. The bound

is b+ 2 for this particular graph topology [1].

4.1.2 Extension of the MAG Algorithm

In [2], an analysis and classification of graphs was performed to gain insight on how

the we can exploit the symmetry between different graph topologies of the same cost.

As a result, vertex reduction was introduced for additive graphs (as discussed in

section 3.2.5) and partitioning was introduced for multiplicative graphs (as discussed

in section 3.2.4). The identification of unique vertex reduced DAGs facilitated a more

efficient exhaustive search. In 2002, the MAG algorithm was extended to 5 adders

56

4.1. Exhaustive Search Methods M.A.Sc. - J. Thong - McMaster

1 t

(a) Graph number 1 (cost 3) from [1]
t ∈ A(A(A(1, 1), 1), 1)

1 t

(b) Graph number 7 (cost 3) from [1]
t ∈ A(A(1, 1),A(1, 1))

1 t

(c) Equivalent vertex reduced DAG
t ∈ A(1, 1, 1, 1)

Figure 4.3: The merging of equivalent graphs (a) and (b) via vertex reduction produces
(c).

in [2], and it was discovered that all constants up to 19 bits have an optimal SCM

solution with no more than 5 adders.

As an example of identifying redundant graphs via vertex reduction, graphs

number 1 and 7 (cost 3) in Figure 4 in [1] are equivalent. Graph number 1 produces

A(A(A(1, 1), 1), 1) and graph number 7 produces A(A(1, 1),A(1, 1)), both of these

essentially add (or subtract) 4 items of the form 1≪n, where n is some arbitrary shift.

As shown in Figure 4.3, both of these graphs are equivalent to the vertex reduced

graph corresponding to A(1, 1, 1, 1).

As explained in [2], multiplicative graphs can be decomposed into two subgraphs

such that the ending node of the first subgraph is the same node as the source node

of the second subgraph. Assume the target t can be decomposed as t = a ⋅ b, where a

57

4.1. Exhaustive Search Methods M.A.Sc. - J. Thong - McMaster

1 t

(a) Graph number 3 (cost 3) from [1], t ∈ A(1, C1) ⋅ C1

1 t

(b) Graph number 5 (cost 3) from [1], t ∈ C1 ⋅ A(1, C1)

Figure 4.4: Transposing a multiplicative graph does not change set of possible
outputs. The gray subgraph implements multiplication by C1 and the black subgraph
implements multiplication by A(1, C1).

and b are integers. The first subgraph implements multiplication by a and the second

subgraph by b. However, we will still construct t even if we interchange the position

of the two subgraphs, i.e. the ending node of the second subgraph now becomes the

same node as the source node of the first subgraph. It follows that graphs number 3

and 5 (cost 3) in Figure 4 in [1] are equivalent and thus only one of them needs to be

searched in the MAG algorithm. As shown in Figure 4.4, graph number 3 produces

A(1, C1) ⋅ C1 and graph number 5 produces C1 ⋅ A(1, C1). Using the naming from [2],

graph number 3 is the ‘‘transpose’’ of graph number 5, and vice versa.

The transpose is obtained by taking the left/right reflection of the vertex reduced

graph. In SCM, a graph and its transpose produce the same set of possible values

(since the source node is constrained to r0 = 1). However, when computing the

adder distance (as discussed in section 3.2.6), once the source node is split, we obtain

different topologies. Thus for adder distance, we must consider both topologies.

58

4.1. Exhaustive Search Methods M.A.Sc. - J. Thong - McMaster

4.1.3 An Optimal MCM Algorithm

To the best of our knowledge, the first optimal MCM algorithm BFSmcm [15] was

proposed in 2008. It is a DAG-based breadth-first exhaustive search which uses some

pre-computed sets, but with no pruning. It was only proposed recently due to limits

in the amount of compute power, which has significantly increased over the years.

BFSmcm can only solve small problem sizes, however [15] showed that the heuristic

Hcub (section 4.3.3) is close to optimal. We depend on this fact when we propose a

more compute-efficient optimal MCM algorithm with pruning in section 6.3.

Earlier attempts have been made at solving MCM optimally by using CSE and

0-1 integer linear programming (0-1 ILP) to find the maximal sharing of intermediate

terms. Examples of such include [16--21]. However, the results of [15] clearly indicate

that BFSmcm provides better solutions than the exact CSE-based method in [20]

which maximizes the sharing of intermediate terms. As explained in detail in section

3.1.2, the terms that can be shared depend on the starting CSE form. To the best of

our knowledge, only the binary form or signed-digit (SD) forms with the minimum

number of nonzero digits were considered by all of the existing CSE/ILP algorithms.

As discussed in section 4.5.3.1, better solutions can be found by considering other

SD forms, but as shown in section 5.1.4, numerous SD forms are needed. Given the

present amount of compute power, it is infeasible to use an exact method for the large

number of SD forms that are required to produce very good solutions.

While CSE is a great tool for heuristics, the results from [15] clearly indicate that

graphs are more suitable than CSE for exhaustive searches. For this reason, all of

the exact approaches that we will use in this thesis are graph based, for both optimal

algorithms and subproblems (like computing the adder distance).

59

4.2. An Overview of Iterative Heuristics M.A.Sc. - J. Thong - McMaster

4.2 An Overview of Iterative Heuristics

All of the algorithms in sections 4.3, 4.4, and 4.5 are iterative heuristics. On each

iteration, one or more terms are constructed (added to R) until T ⊆ R at which point

the algorithm ends. Let us denote the remaining targets as T ′, thus each algorithm

initializes T ′ = T , when a target t is constructed then t is removed from T ′, and

each algorithm ends when T ′ = ∅. We will therefore describe the behavior of these

algorithms for the current iteration. Any sets associated with the algorithm (such as

R, S, and T ′) must be updated between iterations.

When intermediate terms are needed (i.e. if no target is distance 1), algorithms

have the choice to construct intermediate terms that are close to the targets (close in

terms of adder distance) or intermediate terms that are close to the existing terms in

R. It only makes sense to choose an intermediate term that is closer than each of the

targets that it will help to construct. Thus in the first approach, over a few iterations

we should expect the intermediate terms to get progressively closer to the existing

terms. This is a top-down approach, as we build down from the targets. Conversely,

if we choose intermediate terms that are close to the existing terms (for example,

those in the successor set), over several iterations we will build up to the targets, thus

this is a bottom-up approach. Algorithms typically use only one approach, however

they can be combined to each solve different subproblems in a hybrid algorithm.

One interesting case is distance 2 targets. For a target t at distance of 2 from R,

there must be at least one intermediate term which is distance 1 from R and that is

also within one adder from t. If an algorithm can detect distance 2 targets as well as

find the useful intermediate terms, it makes little difference whether a bottom-up or

a top-down approach is used. We will revisit this idea in section 6.1.6.

60

4.3. Bottom-Up Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

4.3 Bottom-Up Graph-Based Algorithms

4.3.1 The BH and BHM Algorithms

In 1991, Bull and Horrocks [7] proposed the BH algorithm, a graph-based MCM

heuristic that could be applied with: addition only, addition and subtraction, addition

and shifts, and all three operators. We will describe all four variants of the BH

algorithm in one generalized form, however note each will use a different definition of

the adder-operation based on which operators are allowed. Also note that right shifts

were not considered in [7]. The algorithm tries to minimize the number of additions

or subtractions (if shifts are allowed, they incur no cost).

The BH algorithm constructs one target at a time in ascending order. With only

addition, larger terms can be built from smaller terms but not the other way around.

Let us consider how to construct the current target t. The BH algorithm pre-dates

the notion of adder distance, so instead, it tries to minimize the difference between t

and the closest element in R to t. The error " is defined in (4.1) and it represents the

smallest term that we would like to have so that t can be constructed with one more

adder. The error will decrease after each iteration until it eventually becomes zero.

" = min
r∈R

t− (r≪n) subject to n ≥ 0, n ∈ ℤ, and t > (r≪n) (4.1)

If shifts are not allowed, then simply constrain n = 0 in (4.1). The error " is always

positive, so intermediate terms must be less than t. Let r′ denote the (r≪n) that

minimized (4.1), i.e. r′ = t− ". If " ∈ R, the algorithm constructs t with one more

adder and we move on to the next target (this ends the current iteration). Otherwise,

two terms will be constructed on this iteration according to (4.2) and (4.3).

61

4.3. Bottom-Up Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

s = arg min
s∈S

"− s subject to " ≥ s (4.2)

w = r′ + s (4.3)

In (4.2) and (4.3), s gets as close as possible to the error ", and then by adding it

to r′ (which is closest existing term to t), w now becomes the closest term to t and the

new error will be smaller. For the SCM and MCM problems, we are only concerned

with the variant of BH that uses addition, subtraction, and shifts.

In 1994, Dempster and Macleod [1] proposed the BHM (Bull Horrocks Modified)

algorithm. It still uses the same fundamental error-minimization approach as BH,

however some weakness in BH were remedied. In order to better utilize subtraction,

the error (4.1) was now allowed to be negative and all terms were constrained to be

no larger than 2 ⋅max(T), where max(T) denotes the largest target. Since shifts incur

no cost, we can constrain all terms to be odd integers without loss of generality, as

explained in section 1.2.2, yet this was not exploited in the BH algorithm (instead,

powers of 2 of each new term were also added to R). This issue is resolved in BHM,

along with the ability to use right shifts. Finally, targets are now constructed in the

order of increasing SCM cost, which could be evaluated using the MAG algorithm

(optimal SCM, section 4.1.1) or could be estimated by, for example, the CSD cost.

Although not stated in [1], our interpretation is that there are generally fewer ways

to construct low cost terms than high cost terms simply since there are fewer ways

to arrange operands and operators given fewer adders. With more ways of being

constructed, the high cost terms are more likely to benefit from reusing existing terms

(they are more likely to have a smaller remaining adder distance than the SCM cost).

In summary, for the current target t, BHM uses equations (4.4), (4.5), and (4.6)

in place of (4.1), (4.2), and (4.3), respectively.

62

4.3. Bottom-Up Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

" = min
r∈R

∣t− (r≪n)∣ subject to n ≥ 0 and n ∈ ℤ (4.4)

{s,m} = arg min
s∈S,m∈ℤ,m≥0

∣"− (s≪m)∣ (4.5)

w = r′ ± (s≪m) (4.6)

A significant improvement was obtained by fine-tuning the BHM heuristic to

better match the SCM and MCM problems, yet BHM still has no notion of adder

distance. Even so, many later algorithms (such as RAG-n and Hcub in sections 4.3.2

and 4.3.3, respectively) reuse this iterative graph construction methodology with the

notion of reducing some kind of error in order to get closer to the target. RAG-n and

Hcub use the adder distance as this error metric in order to obtain better solutions.

4.3.2 The RAG-n Algorithm

In 1995, Dempster and Macleod [14] proposed the n-dimensional reduced adder graph

(RAG-n) algorithm. To the best of our knowledge, this was the first algorithm to

introduce the idea of adder distance and the successor set, although these concepts

were not formalized until 2007 by Voronenko and Püschel in [6]. Another extremely

important contribution from [14] is the separation of the iterative graph construction

process into an optimal part and a heuristic part. Because shifts are free, we can

assume that all targets given in the MCM problem are not shifted versions of each

other. Therefore, at least one adder is needed to construct each target. If any t ∈ T ′

satisfies t ∈ S, then RAG-n immediately constructs t on this iteration (this ends the

iteration). This is known as the optimal part of RAG-n since at least one adder for

each target will be needed at some point anyways. The advantage of using one adder

63

4.3. Bottom-Up Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

now (as opposed to later) to construct t is that other terms can then be built off the

newly constructed target. Unlike BHM, targets are not constructed in a pre-defined

order in RAG-n. If there is no t ∈ S (i.e. no target is distance 1), then the heuristic

part of RAG-n is used on this iteration.

If R is a valid solution to the constant multiplication problem, then T ⊆ R, thus

∣R∣ ≥ ∣T ∣. In other words, the best we can do is to construct all of the targets without

any intermediate terms. This happens if RAG-n is able to construct all of the targets

by only using its optimal part. Thus, in some cases, a heuristic algorithm can provide

a solution that is known to be optimal. Because of this global optimality, almost all

of the algorithms created after RAG-n reuse the optimal part of RAG-n, thus these

algorithms can also be divided into an optimal and heuristic part. In the general

case (except for the optimal part), there is no proof that taking the steepest descent

on each iteration leads to global optimality (a solution with the absolute minimum

number of adders). To the best of our knowledge, the only way to guarantee global

optimality in general is to use an exhaustive search.

Let us now describe the heuristic part of RAG-n. First we check if any target t

can be constructed with 2 adders. Note an exact adder distance 2 test is not used.

Rather, two heuristic tests are performed:

1. for each target t and each r ∈ R, check if ∣t− r∣ ∈ C1,

2. for each target t and each s ∈ S, check if ∣t− s∣ ∈ C0 (i.e. ∣t− s∣ has an adder

cost of zero and thus is some integer power of 2).

As soon as one of these tests succeed, we will know which target t is distance 2 and

which intermediate term will enable t to be constructed with 2 adders (this intermediate

term will be an element of C1 or S if test 1 or test 2 succeeds, respectively). As soon as

64

4.3. Bottom-Up Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

a target is found to be distance 2, it is constructed along with its useful intermediate

term, which ends the current iteration. Otherwise, if none of the tests succeed for any

target, then the target with the smallest optimal SCM cost is constructed (every term

in the SCM solution is constructed). This ends the current iteration. The optimal

SCM solutions are provided by the MAG algorithm [1].

BHM constructs one target at a time in the order of increasing SCM cost whereas

RAG-n tries to construct the closest target in terms of adder distance. As R increases

in size (as more terms get constructed), it is expected that the SCM cost becomes a

less accurate estimate of the remaining adder distance because of the ability to build

off of the existing terms (this is a weakness in BHM). However, one weakness that

both of these algorithm share is the inability to choose intermediate terms that jointly

benefit all of the remaining targets (when the optimal part of RAG-n is not used).

4.3.3 The Hcub Algorithm

Voronenko and Püschel proposed Hcub (short for Heuristic of Cumulative Benefit) [6]

12 years after RAG-n, in which time the amount of computation power in desktop

computers had increased by orders of magnitudes. Thus it is feasible for Hcub to

use more computation in order to achieve a more precise heuristic. With the optimal

part of RAG-n already identified, the challenge is now to design good heuristics.

When intermediate terms are needed, Hcub attempts to maximize the joint benefit

that it provides to all of the remaining targets. For example, consider a MCM

instance with T = {23, 81}. Both targets are distance 2 from R = {1}. RAG-n

could choose to construct 23x as 23x = (3x ≪ 3) − x where 3x = (x ≪ 1) + x.

In this case, 81 is still distance 2 (from R = {1, 3, 23}). However, by considering

65

4.3. Bottom-Up Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

intermediate terms that are useful to both 23 and 81, we can instead construct 23x as

23x = (x≪5)− (9x) where 9x = (x≪3) + x. Now only one more adder is needed to

construct 81x = ((9x)≪3) + (9x).

On each iteration, Hcub spends one adder to construct one term, thus this term

must be in the successor set S. Although Hcub reuses the optimal part of RAG-n, it is

done a more computationally efficient manner by incrementally updating S (which was

not done in RAG-n). Let r′ denote the newly constructed term on this iteration, then

Rnew = Rold∪{r′}. By definition, S = A(R,R)∖R, thus we need to consider the adder-

operation of all possible pairs of elements in R. If we add r′ to R, the only new pairings

will be r′ with itself and r′ with each element in Rold. Thus the new elements to add to

the successor set are Supdate = A(r′, r′)∪A(r′, Rold) = (C1 ⋅ r′)∪A(r′, Rold). To ensure

R and S are mutually exclusive sets, it follows that Snew = (Sold ∪ Supdate)∖Rnew.

Let us consider one iteration of the heuristic part of Hcub, which is used when

t ∕∈ S for all t. As defined in [6], Hcub selects a successor s for construction according

to (4.7). Also defined in [6] is the weighted benefit function, as shown below in (4.8).

Note that we have changed the notation from [6]. The weighted benefit function in [6]

was denoted with B, but we do not want to confuse this with our CSE notation.

Hcub(R, S, T) = arg max
s∈S

(∑
t∈T ′

B̂(R, s, t)

)
(4.7)

B̂(R, s, t) = 10−dist(R∪{s}, t) (dist(R, t)− dist(R ∪ {s}, t)) (4.8)

Recall from section 3.2.3 that dist(R, t) denotes the adder distance from the existing

terms in R to the target t. For each target t and each successor s, (4.8) is a quantitative

measure of how ‘‘useful’’ s is in terms of helping to construct t. Note that there is

66

4.4. Top-Down Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

more than one way to measure this ‘‘usefulness’’, (4.8) is just Hcub’s chosen metric.

Summing this usefulness over all t ∈ T ′ allows us to measure how much joint benefit

the successor s provides over all of the remaining targets. If s is useful, we would

expect the remaining adder distance to decrease if s were constructed. In other words,

if s is useful, dist(R ∪ {s}, t) < dist(R, t). Closer targets are given more benefit

because we can use targets to build other terms (i.e. using the target(s) as operand(s)

in an adder-operation) and thus it is generally more beneficial to construct targets

sooner than later. This is facilitated by the exponent in (4.8).

The adder distance must be computed in order to evaluate (4.7) and (4.8). It is

computationally expensive to compute the adder distance exactly for large distances,

so Hcub computes the adder distance exactly only up to distance 3. Beyond this, the

distance is estimated. Exact distance 2 tests (to establish whether or not a target is

distance 2) were discussed in section 3.2.6. Exact distance 3 tests and the tests for

distance estimation are discussed in sections 6.1.3.1 and 6.1.3.2, respectively.

4.4 Top-Down Graph-Based Algorithms

4.4.1 Bernstein’s Software-Oriented SCMAlgorithm and the

BBB Algorithm

The constant multiplication problem first emerged in the 1970s for implementing

constant multiplication in software. Many microprocessors at the time (such as Intel’s

8008) did not have multipliers, so multiplication had to be done with additions,

subtractions, and shifts. Even when the multiply instruction first became available

in software, it would typically take more clock cycles to execute than an addition,

67

4.4. Top-Down Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

subtraction, or shift, thus solving the constant multiplication problem could lead to

a reduction in execution time. Today, with high throughput pipelined multipliers

and out of order execution, solving the constant multiplication problem provides no

benefit in software. Algorithms for solving constant multiplication in software can be

applied to the SCM and MCM problems (for custom hardware) by setting the cost of

shifts to zero. Addition and subtraction typically have the same execution time in

software and require approximately the same amount of logic resources in hardware.

In 1986, Bernstein [22] proposed a SCM algorithm. It can be described by the

recursive formulas in (4.9). Note that every input argument x to the function Cost(x)

must be an odd integer. If the SCM target t is even, then we must incur an extra

cost of SℎiftCost(w), where t/2w is an odd integer (and Bernstein’s algorithm would

be applied to t/2w). In (4.9), a, b, c, and d are integers, c ≥ 1, and d ≥ 1.

Cost(1) = 0

Cost(t) = 1 + min

⎧⎨⎩

Cost((t− 1) / 2a) + AddCost+ SℎiftCost(a)

Cost((t+ 1) / 2b) + SubtractCost+ SℎiftCost(b)

Cost(t / (2c − 1)) + SubtractCost+ SℎiftCost(c)

Cost(t / (2d + 1)) + AddCost+ SℎiftCost(d)

(4.9)

The cost of the shifts in (4.9) are a function of how many bits the operand

was shifted. In microprocessors that only support single bit shifts, SℎiftCost(x) is

proportional to x. For microprocessors that support shifting by an arbitrary number of

bits, SℎiftCost(x) is a constant. In the SCM problem, SℎiftCost(x) = 0. Although

(4.9) is expressed in a depth-first manner, the search is computed breadth first since

we are interested in finding the minimum cost of t.

68

4.4. Top-Down Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

Bernstein’s algorithm is a branch and prune heuristic. The pruning arises from

only allowing certain values of a, b, c and d in (4.9). Disregarding Cost(1) = 0,

the first two branches of (4.9) are additive decompositions whereas the last two

branches are multiplicative decompositions (note that Bernstein’s algorithm predates

these concepts). The first two branches realize t ⋅ x as t ⋅ x = ((u ⋅ x)≪a) + x and

t ⋅ x = ((u ⋅ x)≪ b) − x, respectively. Since t is odd, t ± 1 is even. Every input

argument of Cost(⋅) must be an odd integer, so there are unique values for a and b

such that (t− 1)/2a and (t+ 1)/2b) are odd integers. In the last two branches of (4.9),

t is realized by multiplying some term by C1 (although Bernstein’s algorithm predates

the notion of the Cn sets). Recall from section 3.2.4 that every element in C1 has the

form 2n ± 1 where n ≥ 1 and n ∈ ℤ. The set t
C1

may contain several elements, so

several values of c or d could be used in the last two branches. Since only two specific

additive decompositions are considered per recursion, Bernstein’s algorithm typically

produces solutions that are mostly multiplicative.

It was observed in [23] that Bernstein’s algorithm favors multiplicative decomposi-

tions whereas BHM favors additive decompositions (the error minimization strategy

in BHM is purely additive). In [23], the BBB algorithm (better of Bernstein or BHM)

was proposed. For a SCM problem, it runs both of these algorithm independently

and then simply selects the better result. BBB is an example of a hybrid algorithm.

As shown in [23], usually one of the two methods will be better than the other for

one constant, but for a different constant the other method may be better, thus

much better solutions are obtained on average (over several problem instances). Our

interpretation is that by choosing heuristics that can typically search the solution

space with little overlap, much more of the total solution space can be explored.

69

4.4. Top-Down Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

4.4.2 Difference-Based Heuristics and the DiffAG Algorithm

Difference-based MCM algorithms typically try to build targets off of other targets,

i.e. ti ∈ A(tj, tk). When intermediate terms are needed, they are selected from some

kind of difference set (which contain shifted differences of the targets, this will be

explained in more detail below). In [24--26], a minimum spanning tree problem is

solved on each iteration to determine which dependencies between targets are the

most useful (i.e. if target ti can be built off of tm or tn, we must decide which is

the better option). These works introduced the idea of recursively searching for

the best differential term between targets, hence the use of iterations. In [27], the

difference problem is considered only once (no recursion). A weighted minimum set

cover problem is solved to determine the best differences and then a CSE algorithm is

used to implement the multiplication by the necessary differential terms.

In 2007, Gustafsson [28] proposed the DiffAG algorithm, which is short for the

Difference-based Adder Graph heuristic. DiffAG combines the optimal part of RAG-n

with the idea of recursively searching for the best differential term. When intermediate

(non-output) terms are needed, DiffAG tries to create supporting intermediate terms

between targets. The idea is to first construct intermediate terms that will later

allow many of the targets to be constructed by the optimal part of the algorithm.

However, the useful intermediate terms may be far away (in terms of adder distance

from the existing terms in R). Instead of constructing a term at the expense of several

adders, DiffAG adds another target with the value of the desired intermediate term.

This facilitates a recursive search for useful intermediate terms. Like other top-down

approaches, these terms will get progressively closer to R over several iterations, as

explained in section 4.2.

70

4.4. Top-Down Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

In [28], Gustafsson explains that given two targets ti and tj, eventually both

targets will be constructed (in order to satisfy the T ⊆ R constraint in the SCM

and MCM problems), so we should pick an intermediate term w such that once ti is

constructed, we can construct tj using w and only one adder. In other words, tj can

be constructed optimally if ti ∈ R and w ∈ R. Formally, this means tj ∈ A(ti, w).

From Theorem 1 in section 3.2.1, this is satisfied iff ti ∈ A(tj, w). Notice that if either

target is constructed, the other remaining target can be constructed with w and one

adder. It also follows that the set of useful intermediate terms between ti and tj is

W = A(ti, tj). This is the underlying intuition of DiffAG, which favors the creation of

terms that are shifted differences between the targets. Although not mentioned in [28],

this will typically lead to decompositions that are mostly additive (also notice that

DiffAG does not consider ti ∈ C1 ⋅ tj, perhaps due to the unidirectional relationship).

We will now summarize DiffAG. Assume the current iteration uses the heuristic

part of DiffAG (i.e. t ∕∈ S for all t). All of the elements in R are placed in the node N0.

Each remaining target ti ∈ T ′ (indexing starts at i = 1) is placed in a node Ni (one

target per node). Each node contains a set that is initialized with a cardinality of 1,

except for N0. Nodes have the property that once any element ni ∈ Ni is constructed,

then all of the elements in Ni can be constructed. Obviously this property is satisfied

if Ni contains one element. For two or more elements, we require that ni ∈ A(R, n′i)

for all pairs of elements ni, n
′
i ∈ Ni. In other words, there must exist an element

r ∈ R such that ni ∈ A(r, n′i). From Theorem 1 in section 3.2.1, this is satisfied

iff r ∈ A(ni, n
′
i) or equivalently A(ni, n

′
i) ∩ R ∕= ∅. Let us define the difference set

Di,j = A(Ni, Nj) for a pair of nodes Ni, Nj where i ∕= j. Because the adder-operation

is symmetric, we can enforce 0 ≤ i < j without loss of generality. It follows that if

71

4.4. Top-Down Graph-Based Algorithms M.A.Sc. - J. Thong - McMaster

ri

rj Ni

s

Nj

Figure 4.5: The topology corresponding to Di,j ∩ S ∕= ∅, where Di,j = A(Ni, Nj).

Di,j ∩R ∕= ∅, then we can merge nodes Ni and Nj because the ability to construct all

targets in the node once any target is constructed will be maintained. If nodes are

merged, we will need to update the indexing and the difference sets. The merging

of nodes is done exhaustively. Let D denote the union of the Di,j over all indexes

0 ≤ i < j, then we have finished merging nodes when D ∩R = ∅.

Now that the remaining targets have been classified into nodes, let us search

for useful intermediate terms. D represents the set of all useful intermediate terms

between any pair of nodes, thus the terms in D are close to the targets in adder

distance. Among the terms in D, we should choose one that is closest to R (to try

to minimize the number of adders needed in the MCM problem). Since D ∩R = ∅,

the next best case is to find a d ∈ D such that d ∈ S. For each successor s ∈ S,

we count how many times s occurs in each of the Di,j sets. If the largest count is

not zero (D ∩ S ∕= ∅), then DiffAG constructs the s with the largest count on this

iteration (which ends the current iteration). Otherwise, none of the differential terms

in D are distance 1. In this case, a new target will be created instead of constructing

a successor. Let the set P be comprised of the elements in D that have the minimum

CSD cost (the CSD cost is used to estimate the adder distance from R). For each

p ∈ P , we count how many times p occurs in each of the Di,j sets. Assume p′ has the

72

4.5. CSE-Based Algorithms M.A.Sc. - J. Thong - McMaster

highest count. On this iteration, DiffAG will construct a new target p′, i.e. p′ is added

to T ′ and no update is made to R or S. This ends the current iteration.

4.5 CSE-Based Algorithms

We will discuss both bottom-up and top-down CSE algorithms in this section, as both

approaches have a similar underlying intuition.

4.5.1 An Introduction to CSE Algorithms

In 1991, Hartley [29] introduced common subexpression elimination (CSE) as means

to exploit the redundancy in a set of constants. The CSE representation facilitates

the use of a pattern searching algorithm in order to determine which patterns are

‘‘useful’’. As illustrated in detail in section 3.1.2, patterns are a collection of nonzero

digits which represent how two or more existing terms have been added to create

a new term. A pattern needs to appear in the CSE representation of a constant in

order for it to be substituted. This can be used to help CSE-based heuristics prune

the search space. For example, the CSD form of 45, which is A0A0A0A, does not

contain A00A = 7×A (or its negative A00A), so a heuristic could assume that 7×A

is not a useful intermediate term. Furthermore, A0A = 3× A or its negative occurs

twice whereas A0A = 5× A or its negative occurs only once, thus the heuristic could

assume 3× A is a more useful intermediate term than 5× A.

Recall from section 3.2.3 that the number of nonzero digits can be used to estimate

the adder distance. Assume the target ti has ni nonzero digits, then ni − 1 adders are

needed to construct ti, so the total remaining adder distance is
∑

i(ni − 1). A pattern

73

4.5. CSE-Based Algorithms M.A.Sc. - J. Thong - McMaster

can occur in multiple places in each target; we are interested in the total number

of places that it occurs in all of the targets. A new pattern with m nonzero digits

can be constructed with m − 1 adders, where m ≥ 2. Every time this new pattern

is substituted somewhere in the CSE form of any target, m existing nonzero digits

are replaced by one new nonzero digit. If this pattern can be substituted k times,

the remaining adder distance will decrease by k ⋅ (m − 1), but we have also used

m− 1 adders to construct the pattern, thus the net savings is (k− 1) ⋅ (m− 1) adders.

Clearly, this should be maximized. Only k ≥ 2 is beneficial (if k = 1, the pattern

simply represents how the remaining terms are added together).

4.5.2 Top-Down Versus Bottom-Up Heuristics

CSE-based algorithms iteratively find and replace patterns in order to reduce the

number of adders. Most of the CSE-based algorithms take a steepest descent approach

on each iteration. However, there is no proof this leads to the global optimum. Most

CSE algorithms use one of the two following strategies. On each iteration, one strategy

is to find and substitute the pattern with 2 nonzero digits that occurs the most; the

other strategy is to find and substitute the pattern that has the most nonzero digits

subject to this pattern occurring at least twice in all of the targets.

The first strategy uses a bottom-up approach. With only 2 nonzero digits, each

newly created pattern must be in the successor set, so over several iterations we will

build up to the targets (we consider the creation and substitution of one pattern as

one iteration). Hartley [30] presents an algorithm using this strategy. Since patterns

have m = 2 nonzero digits, choosing the pattern that occurs the most (maximum k)

maximizes the net savings in adders (we will save (k − 1) ⋅ (m− 1) = k − 1 adders).

74

4.5. CSE-Based Algorithms M.A.Sc. - J. Thong - McMaster

The second strategy uses a top-down approach. Pasko [31] and Lefèvre [32] propose

algorithms with this strategy. Once the pattern is constructed, some targets should be

constructible with only a few adders. Several adders may be needed to construct the

pattern, but we can search for patterns within this pattern to reduce the number of

adders. Applied recursively, intermediate terms are first created close to the targets

(in terms of adder distance) and over several iterations come closer to the existing

terms in R, hence we build down from the targets.

Let us illustrate these two strategies with an example. Consider the CSD form of

2451 × A, which is A0A0A00A0A0A. Using a bottom-up approach, we would first

substitute B = A000000A = 129 × A get 0000000B0B0B. Since no new pattern

occurs at least twice, we can now collect the terms, thus 2451× A = (B≪4) + (B≪

2)−B = 19×B. Alternatively, using a top-down approach, we would first construct

C = A0A0A = 19× A, which costs 2 adders. This could be substituted in the CSD

form to give 0000C000000C, thus 2451× A = (C≪8) + C = 129× C.

Hartley indicated in [29] that substituting a pattern with m nonzero digit n

times is equivalent to substituting a pattern with n nonzero digits m times (for

patterns within one constant only). Notice that we end up decomposing 2451× A as

129× 19× A regardless of whether we build the pattern B or we instead build the

pattern corresponding to the collection of the B terms (which is actually the pattern

C = A0A0A, the B terms were collected as B0B0B).

Our interpretation of this is that 2451× A can be decomposed in two ways since

it is a multiplicative decomposition (as discussed in section 3.2.4). The construction

of B corresponds to a subgraph that implements multiplication by an element in C1

whereas C corresponds to a subgraph that implements multiplication by an element

75

4.5. CSE-Based Algorithms M.A.Sc. - J. Thong - McMaster

in A(1, C1). Subgraph C is an additive decomposition, so vertex reduction can be

used, as shown in section 3.2.5. Two adders are needed to construct C, but notice

that we did not define the intermediate term that would have been created after only

one of the adders had been used.

As illustrated in section 3.2.5, an algorithm that allows patterns with more than 2

nonzero digits can take advantage of vertex reduction. To the best of our knowledge,

none of the algorithms that use this strategy refer to notion of vertex reduction,

the algorithms are only described as a top-down approach. In the MCM problem,

more computational effort is required to find the pattern with the most nonzero

digits compared to finding the pattern with 2 nonzero digits that occurs the most.

Conclusively, there is a tradeoff between the two strategies in terms of the number of

iterations versus the computational complexity of each iteration. In both strategies,

typically an exhaustive search is used to find the best pattern on each iteration.

There is also the choice of which starting CSE representation should be used for

the targets. The earliest CSE algorithms used the CSD form, but it was later found

that other starting forms could produce better solutions, as discussed in section 4.5.3.1.

There are corner cases which many algorithms do not discuss. For example, [30--32]

do not specify which pattern should be substituted if there are several ‘‘best’’ patterns.

These issues are discussed in relation to our proposed algorithm in section 5.1.5.

4.5.3 The H(k) Algorithm

4.5.3.1 Using SD Forms with Extra Nonzero Digits

Prior to our work, H(k) [33] was the best existing SCM heuristic. The optimal SCM

algorithm in [2] can only find solutions with up to 5 adders, which limits it 19 bits

76

4.5. CSE-Based Algorithms M.A.Sc. - J. Thong - McMaster

(there is a 20 bit constant that requires 6 adders). Thus for constants represented on

larger bit widths, a heuristic is needed.

As explained in section 3.1.2, a pattern needs to exist in the CSE representation

of the constant in order to be substituted. Recall the example from section 3.1.2 in

which 15× A could be substituted in the CSD form of 45× A whereas 15× A could

not be substituted in the binary form of 45× A. This suggests that better solutions

could be found if we consider different starting representations.

The remaining adder distance can be estimated by the number of nonzero digits

in a CSE algorithm, as explained in section 3.2.3. CSE algorithms typically take

a steepest descent approach on each iteration. If we consider the subproblem of

choosing the starting CSE representation as one iteration, taking the steepest descent

corresponds to choosing the representation with the minimum number of nonzero

digits. This is why many CSE algorithms start with the CSD form of the constant.

Park and Kang [34] proposed an algorithm to find all of the representations with

the minimum number of nonzero digits. These were named the minimum signed digit

(MSD) representations, since ‘‘CSD’’ was already reserved for the representation with

no adjacent nonzero digits. Park and Kang then applied a CSE algorithm to each

MSD form. This produces better solutions compared to only considering the CSD

form, as shown by the results of [34]. The H(k) algorithms takes this a step further.

H(k) considers all SD forms of the constant with up to k extra nonzero digits (k more

digits than the CSD form). The Hartley algorithm [30] is used to search and replace

patterns in each of these SD forms (each SD form is considered independently from

the other SD forms). The H(k) algorithms selects the best solution that was found by

the Hartley algorithm among any of the SD forms considered.

77

4.5. CSE-Based Algorithms M.A.Sc. - J. Thong - McMaster

H(0) is analogous to Park and Kang’s algorithm. Park and Kang improved over

existing methods by considering multiple ‘‘best’’ solutions at the stage before pattern

searching begins (when choosing the starting representation). H(k) further improves

the solutions by not being forced to take the steepest descent in this starting stage,

although both Park and Kang and H(k) take the steepest descent on all subsequent

iterations. In section 5.1.1, several detailed examples are provided to illustrate the

benefits and the remaining limitations of considering more initial SD forms.

4.5.3.2 The Generation of SD Representations

In [35], the algorithm for creating all of the SD representations of the constant with

up to k extra digits is presented. We will provide a summary, the reader is referred

to [35] for details. An exhaustive branch and bound approach is used. We initialize a

‘‘remainder’’ r to the value of the target and the corresponding SD form is initially

empty. Let n(r) denote the degree of evenness of r (this is the largest integer n such

that 2−nr is an integer). From each current r and its associated partially constructed

SD form, we create two new r (along with their new associated SD forms). One

instance will have a new remainder of r − n(r) and the new SD form will be the old

SD form with the digit 1≪ n(r) added to it. The other instance will have a new

remainder of r + n(r) and the new SD form will be the old SD form with the digit

1≪ n(r) added to it. At any time, if we add the remainder and the number that

the associated SD form represents, we must get the value of the target (every time

1≪ n(r) is added to the SD form, we subtract 2n(r) from the remainder). Clearly,

whenever the remainder reaches zero, the associated SD form is a valid representation

of the target (at this point we can launch the Hartley algorithm).

78

4.6. Other MCM Algorithms M.A.Sc. - J. Thong - McMaster

7
null

1ത
8

1
6

1001ത
016

1ത001ത 1ത1
8

11
4

111
0

1ത11
8

1ത01ത1
16

101ത1
032

1ത1ത001ത
0

11ത001ത

+16 െ16 +8 െ8 +4 െ4

+8 െ8 +2 െ2

+1 െ1

Remainder (base 10)

SD form (signed-digit base 2)

Remainder

SD form

Remainder

SD form

Remainder

SD form

Figure 4.6: The signed-digit representation generating algorithm applied to the
constant 7 with k = 1 extra nonzero digit. The branch values denote the evenness of
the parent’s remainder. We have highlighted all of the valid SD forms.

This process can be regarded as a construction of a tree, where the two new

instances are the children. If a node is at depth d in the tree (the root of the tree is

d = 0), then the SD form in this node will have d nonzero digits. Given that the CSD

cost of the target is z, we must stop the tree construction at a depth of z + k (k is

the number of extra nonzero digits and is specified by the user). An example for the

constant 7 and with k = 1 is shown in Figure 4.6.

4.6 Other MCM Algorithms

In this section, we will briefly discuss a few MCM algorithms that are somewhat

related to this thesis. Note that we may use concepts that predate the algorithm we

are describing (simply to keep the discussion concise).

Aksoy [36] proposed the idea of removing unnecessary intermediate terms after

a valid solution to a SCM or MCM problem has been found. Basically, for each

79

4.6. Other MCM Algorithms M.A.Sc. - J. Thong - McMaster

intermediate term r ∈ R where r ∕∈ T , we temporarily remove r from R, then we

check whether R∖{r} is still a valid solution to the SCM or MCM problem. This may

involve reordering the elements in R∖{r} so that we can still satisfy the rk ∈ A(ri, rj)

constraints for each k, where 0 ≤ i, j < k (from Definition 3 in section 2.3.2). We

will not discuss the algorithm in [36] because its heuristic is incomplete. For targets

distance 3 or higher, the heuristic in [36] cannot determine which successor(s) are

useful. Thus if no targets are distance 2, the heuristic will make an arbitrary choice,

effectively taking a shot in the dark. Even so, the post-removal of unnecessary

intermediate terms can be applied to any algorithm, and we will use it to enhance

some of the algorithms proposed in this thesis.

As discussed in sections 3.1.2, 4.5.3.1 and 5.1.1.1, the patterns that can be found

and substituted by a CSE algorithm depend on the starting CSE representation of

each target. In [37], a CSE-based MCM algorithm is proposed in which addition and

subtraction is used to generate new patterns that otherwise would not be found by

merging signed digits, as is done in CSE. Only the CSD form is considered in [37].

For example, 49× A = A0A000A does not contain any instances of A0A = 5× A or

A00A = 9×A or their negatives, yet we have 49x = ((5x)≪3) + (9x). However, [37]

cannot apply this technique within a constant, it can only do it between constants.

We will discuss the details of how CSE patterns go missing and how to recover the

simplest cases in sections 5.1.1 and 5.1.2, respectively. There was no analysis of the

underlying problem with CSE in [37], they only mention that using addition and

subtraction can lead to better solutions. In sections 5.2 and 6.1, we will revisit the

idea of combining the CSE and DAG frameworks.

80

4.7. Problems Related to SCM and MCM M.A.Sc. - J. Thong - McMaster

4.7 Problems Related to SCM and MCM

We will briefly describe some of the related problems to SCM and MCM. These are

variants of the SCM or MCM problem in which a secondary objective (or constraint)

has been added and/or a slightly different minimization metric is used.

4.7.1 Depth Constraining

One of the common secondary problems is to enforce a depth constraint in the solution

to a SCM or MCM problem. The adder depth is defined as the maximum number

of adders that we pass through along any path from the input to any of the outputs

in the constant multiplication logic circuit. The adder depth is an estimate of the

longest path through the logic circuit, which is known as the critical path. Because of

the physical construction, logic gates have a propagation delay, which is the length

of time between when stable inputs are asserted to when all of the outputs become

stable. As more logic gates are placed serially between the input and the output,

the critical path becomes longer and the logic circuit must be clocked at a slower

speed, which results in a lower computational throughput. The critical path is also a

function of other things like the delay of each gate and the transit time along wires,

however we will make abstraction of this in order to solve real-sized SCM and MCM

problems within reasonable amounts of time. Most (if not all) of the work in this area

of research uses the adder depth to estimate the length of the critical path.

Given the same problem instance, the number of adders increases as the depth

constraint is made smaller. A solution may not exist if the depth is overly constrained.

The depth constraint can also be used to prune the search space, as explained in detail

in section 6.2.1.

81

4.7. Problems Related to SCM and MCM M.A.Sc. - J. Thong - McMaster

Examples of MCM algorithms that minimize the number of adders subject to a

depth constraint include [20, 21, 37, 38]. Said algorithms use techniques that have

already been described in this thesis, but they must also keep track of the depth of

each term. In section 6.2, we will propose a depth constrained MCM algorithm and

we will show in detail how the depth constraint is managed in our algorithm.

4.7.2 Minimization of Single-Bit Adders

For small problem sizes, it is feasible to use a more accurate (less abstracted) metric

to estimate the amount of logic resources required to implement constant coefficient

multiplication. As justified in section 1.2.2, the number of additions or subtractions is

used as the metric in much of the work in this area of research. To minimize the logic

required, it is assumed that ripple-carry adders are used. A ripple-carry adder is a

set of single-bit adders connected serially. Notice that when we compute addition by

hand, we only need to compute one sum digit and one carry at a time (a single-bit

adder computes this in binary). Each carry is passed from right to left, hence the

name ripple-carry adder.

For the same SCM or MCM problem, an algorithm can find several ‘‘best’’ solutions

in terms of additions or subtraction. In this case, it would be beneficial to break the tie

by considering a more accurate metric, such as the number of single-bit adders. In [1],

this was mentioned as a feature that could be added to the MAG algorithm. In an

iterative algorithm that uses adder-operations as the metric, on each iteration, there

could be several ‘‘best’’ intermediate terms. This tie can be resolved by considering

single-bit adders, as done in [39, 40]. The algorithm in [41] directly minimizes the

number of single-bit adders without considering the number of adder-operations.

82

4.8. Bounds on the SCM and MCM Problems M.A.Sc. - J. Thong - McMaster

In section 5.3, we will propose an optimal SCM algorithm which first minimizes

the number of adder-operations. Among the equally good solutions, the one with the

minimum number of single-bit adders is selected. The minimum adder depth is used

to resolve any remaining tie, but beyond this, the choice is arbitrary.

4.8 Bounds on the SCM and MCM Problems

4.8.1 Theoretical Analysis

In this section, we provide some theoretical analysis on the upper and lower bounds

in the SCM and MCM problem. Let n denote the number of constants and assume

the largest constant is representable on b bits (b denotes the bit width).

We first consider the SCM problem (n = 1). As shown in section 2.1.2, a constant

of bit width b has a maximum of ⌈ b+1
2
⌉ nonzero digits in the CSD form, thus the worst

case number of adders is ⌈ b+1
2
⌉ = O(b). To the best of our knowledge, the CSD upper

bound is the tightest asymptotic bound known. The CSD form has the minimum

number of nonzero digits. If the CSD form has m nonzero digits, at least ⌈log2m⌉

adders are needed. This can be shown using CSE. Given m nonzero digits, a pattern

with 2 nonzero digits can only be substituted up to ⌊m
2
⌋ times. At best we can halve

the number of nonzero digits using 1 adder. Applying this recursively, it follows that

the number of adders is bounded below by ⌈log2 csd(t)⌉, where csd(t) denotes the

number of nonzero digits in the CSD form of the target t.

We can also consider the depth constraint in SCM. Obviously the depth is no

larger than the number of adders, i.e. an adder-tree cannot have 4 serial additions if

there are only 3 adders, hence the depth is bounded above by the CSD cost, which

83

4.8. Bounds on the SCM and MCM Problems M.A.Sc. - J. Thong - McMaster

is O(b). Given that the CSD form of a number has m digits, the depth is bounded

below by ⌈log2m⌉. Following a similar argument as with the number of adders, every

time the depth increases by 1, at most half of the nonzero digits can be substituted.

Assume depth 1 is the level closest to the input and depth d is the output of the adder

tree. Only 2 terms can be present at depth d− 1, as these are added to produce the

final answer. At depth d− 2, there can be up to 4 terms to produce the 2 terms on

depth d− 1. Applying this recursively, we obtain a bound of d ≥ ⌈log2m⌉.

Now consider the MCM problem (n ≥ 2). Note that we can solve a MCM problem

by solving a SCM problem for each target and then combine all of the terms from

all of these SCM solutions into one ready set R. Thus, given n targets of bit width

b, each target requires up to ⌈ b−1
2
⌉ adders, thus the total number of adders is upper

bounded by n ⋅ ⌈ b−1
2
⌉. Clearly, this is O(nb). By sharing intermediate terms between

constants, we may be able to reduce the number of adders in comparison to solving

SCM for each target. At least one adder is needed per target since targets are not

shifted versions of each other. This is encompassed by the optimal part of RAG-n.

However, if no target is an element of C1, then clearly at least one intermediate term

is needed to construct any of the targets and thus to solve the MCM problem. It

follows that the best we can do is to optimally construct one target (we should choose

the target with the smallest optimal SCM cost) and then use one adder per remaining

target. We need at least mint∈T ⌈log2 csd(t)⌉ adders to construct the first target (from

the SCM lower bounds) and n− 1 adders for the remaining targets, hence the total

number of adders is bounded below by mint∈T ⌈log2 csd(t)⌉+ n− 1.

In the MCM problem, the depth still cannot be larger than the number of adders.

The depth can be minimized by not sharing any terms between targets (for each target,

84

4.8. Bounds on the SCM and MCM Problems M.A.Sc. - J. Thong - McMaster

we can independently construct an adder tree of minimum depth). Thus the depth is

bounded below by the worst case SCM depth of any target. By sharing terms between

targets, we may save adders but we cannot reduce the depth. Likewise, in order to

satisfy a depth-constraint, some terms may not be sharable. This is one of reasons

why a tradeoff exists between minimizing the number of adders and minimizing the

depth.

All of the above derivations were provided in [42] although we have independently

derived the above bounds. In [42], many other bounds are also provided, but these

are not closely related to this thesis. In [43], it was proved that the lower bound for

both the average and the worst case number of adders in SCM is on the order of b
logb

.

4.8.2 Justification for Not Providing the Asymptotic Run

Time Analysis of the Algorithms

We will provide only a minimal amount of asymptotic run time analysis. The worst

case run time of our proposed heuristic SCM algorithm H(k)+ODP in section 5.1

is exponential with respect to the bit width of the constant. Since H(k)+ODP is

reused in all of our heuristics (including MCM), it follows that all of our algorithms

are of exponential order (the optimal algorithms are exhaustive searches, which

is clearly exponential). However, in digital signal processing, it is uncommon to

represent numbers with extremely large bit widths (such as hundreds bits) or to

require simultaneous multiplication by thousands of constants (although one may

need to solve numerous SCM or MCM problem instances independently in order to

realize a DSP system). Thus, extremely large problem sizes have little or no practical

significance. Because of this, it is acceptable to use a heuristic with exponential run

85

4.8. Bounds on the SCM and MCM Problems M.A.Sc. - J. Thong - McMaster

time provided that the absolute run time is reasonable. Furthermore, our algorithms

are generally faster than the best existing methods.

In [6], a thorough run time analysis of BHM, RAG-n, and Hcub were provided.

Many algorithms are able to traverse the CSD solution to construct each target if

nothing better is found. In this case, the solution to the SCM or MCM problem

will have up to n ⋅ ⌈ b−1
2
⌉ adders, where n is the number of constants and b is the bit

width. If the algorithm is iterative, the number of iterations is bounded by O(nb)

since at least one term is constructed per iteration. Knowing the maximum size

of R, we pre-allocate memory for it, for example. Examples of iterative algorithms

that produce solutions no worse than CSD include: RAG-n, Hcub, DiffAG, and our

proposed algorithms H3 and H4 (sections 6.1.3 and 6.1.4, respectively).

In all of the prior work, the shifts used in the adder-operation are bounded by

O(b) (usually a bound of b+ 1 is used, but b+ 2 is also considered). Thus for elements

x and y, the size of the set A(x, y) is O(b). It follows that the size of A(X, Y) is

O(b ⋅ ∣X∣ ⋅ ∣Y ∣), recall ∣X∣ denotes the cardinality of X. For example, the size of the

successor set S = A(R,R)∖R is O(b ⋅ nb ⋅ nb) = O(n2b3). Each element in the Cn set

(for a given n) is constructed with n adder-operations with respect to R = {1}, so the

size of Cn is O(bn). By applying this analysis, one could calculate the size and thus

how much computation is needed to construct a set using adder-operations and/or

divisions by Cn. For example, this is used for computing the exact adder distance, as

described in section 3.2.6. Also, S is sorted so intersecting with S adds a factor of

O(log(n2b3)) = O(log nb) in the exact distance tests. However, for the same reasons

that we have justified the use of a heuristic with exponential run time, we will not

provide the asymptotic run time for each distance test since it has little relevance.

86

Chapter 5

New SCM Algorithms

In this chapter, we will propose several new algorithms for the single constant mul-

tiplication problem. We begin with a heuristic approach using CSE. To the best of

our knowledge, the H(k) algorithm [33] was the best SCM heuristic (prior to our

work). In section 5.1, we modify H(k) so that better solutions can be produced in

significantly less run time. An insightful analysis of the CSE framework is provided

to expose the properties that we exploit. In section 5.2, we propose an optimal SCM

algorithm that uses both the CSE and DAG frameworks. Unlike all of the existing

optimal SCM algorithms which create a lookup table for all constants up to 2b, we

solve the SCM problem for the given constant. Our algorithm is exhaustive but uses

very sharp pruning. The average run time is less than 10 seconds at 32 bits whereas

the MAG algorithm [1] is limited to 19 bits. In section 5.3, we propose an algorithm

which considers the number single-bit adders. Compared to the algorithm in section

5.2, better solutions are obtained at the expense of more run time. Finally, some

concluding remarks are provided in section 5.4.

87

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

5.1 Heuristic SCM

Our contributions in this section have been published in [44], but we will provide

additional analysis and an experimental evaluation between more existing algorithms

in this thesis. We will begin by examining some cases in which CSE algorithms cannot

find the optimal solution. In section 5.1.1, we illustrate the CSE digit clashing problem

in detail. The simplest cases of this problem can be resolved by using overlapping

digit patterns (ODPs), which we propose in section 5.1.2. Also in section 5.1.2, we

explain how ODPs are incorporated into our proposed algorithm H(k)+ODP. This

is a variant of the H(k) algorithm [33], the best existing SCM heuristic. We will

discuss the remaining limitations of H(k)+ODP in section 5.1.3. In section 5.1.4, we

justify the use of ODPs primarily to reduce the run time of H(k) instead of focusing

on reducing the number of adders. Implementation details are briefly discussed in

section 5.1.5. Experimental results are provided in section 5.1.6.

5.1.1 Examples of Non-Optimal CSE Solutions

5.1.1.1 Problems Due to the Initial SD Form

As shown in section 2.1.2, the CSD transform is a simple method to reduce the

number of adders in constant multiplication. In section 2.2, we demonstrated that

signed-digit (SD) forms could be factored to further reduce the number of adders.

This factoring is facilitated by finding and replacing patterns in the CSE form of the

constant, as illustrated in section 3.1.2. CSE provides a means to collect common

terms once we have decided which signed powers of two will be used to construct the

constant. A CSE algorithm may not find an optimal solution if the initial SD form

88

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

of the constant does not have the appropriate signed powers of two. For example,

5× A = A0A = (A≪2) + A only requires one adder, but it is impossible to find a

solution with 1 adder by using AA0A, as 1 adder can only add 2 nonzero digits.

As stated in section 4.5.3.1, Park and Kang [34] found better solutions by applying

CSE to all MSD forms of the constant (SD forms of the constant with the minimum

number of nonzero digits). Even better solutions are obtained with H(k), which

applies CSE to all SD forms of the constant with up to k more digits than the CSD

form. For example, the CSD form of 105×A, A0A0A00A, has no patterns that occur

at least twice. Without being able to factor common terms, 3 adders are needed to

add the 4 terms. However, one MSD form of 105 × A is A00AA00A, in which the

pattern B = A00A can be substituted twice to yield 000B00B. In this case, 2 adders

are used (one to create B and one to add the remaining terms). The problem was

due to the CSD form being constrained to have no adjacent nonzero digits. Notice

the leftmost nonzero digit of 000A000A is adjacent to the rightmost nonzero digit of

A000A000, which obviously cannot be represented by the CSD form.

This first case in which H(0) produces a non-optimal solution is 363× A. There

are only two MSD forms, A0A00A0A0A and AA00A0A0A, neither of which have a

common pattern, thus H(0) requires 4 adders. However, H(1) can find the optimal

solution by using the representation A0AA0A0AA. The pattern B = A0000A is

substituted to produce 00000B0BB, thus the total cost is 3 adders (1 to create B, 2

to add the remaining terms). Recall from section 3.2.3 that the adder distance can

be estimated by the number of nonzero digits. If a pattern with 2 nonzero digits is

substituted n times, a total of 2n old digits will be replaced with n new digits. This

results in a savings of n−1 adders (the adder distance estimate has decreased by n but

89

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

we have used one adder to construct the pattern). Since the MSD forms of 363× A

have no common patterns, it is impossible to reduce the initial estimate of the adder

distance. Although A0AA0A0AA has a larger initial estimate of the adder distance,

this is more than offset by the three instances of B = A0000A, which indicate that

we can reduce the adder cost to less than that of the MSD forms.

5.1.1.2 The CSE Digit Clashing Problem

In the 363× A example above, several digits need to be placed adjacently in order to

observe the three instances of B = A0000A, but when these digits are collapsed into

a SD form with fewer nonzero digits, the patterns become obfuscated. By considering

SD forms with extra nonzero digits, we can recover patterns that need adjacent digits,

however this does not allow us to recover patterns in which the digits collide.

As an example, the first case in which H(k) produces a non-optimal solution for

any k is 805 × A. The optimal solution requires 3 adders. As indicated in section

4.8.1, if we start with more than 8 nonzero digits, then more than 3 adders will be

needed. The CSD form of 805×A has 5 nonzero digits, thus we only need to consider

all SD forms with up to 3 extra nonzero digits. H(3) cannot find the optimal solution,

and this is sufficient proof that H(k) is not an optimal algorithm for any k.

In order to find the optimal solution for 805×A, we will need to consider an unusual

case. Notice that ((A0A)≪2)+A0A = AA00A. This translates to 22(5×A)+(5×A) =

25× A. The left digit of A0A aligns with the right digit of ((A0A)≪2) to produce a

zero in this position and a carry one position to the left. Thus, if B = A0A, we can

substitute B in AA00A to get 00B0B even though A0A does not appear at either

location of where B was substituted. This is an example of a class 1 overlapping digit

90

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

pattern, as formally defined in section 5.1.2.3. Now consider representing 805× A as

AA00A00A0A. We substitute B = A0A to get 00B0B0000B, thus only 3 adders are

needed (1 to make B, 2 to add the remaining terms).

This digit alignment problem was recognized in [12] and was identified as clashing.

We thus refer to this problem as the CSE digit clashing problem. However, [12]

presented clashing as a motivation to limit the value of k in the H(k) algorithm, as

H(k) is not likely to produce better solutions by further increasing k beyond a certain

point. Assume we know that a solution with n adders exists (which could be found

with CSD, for example). The upper bounds from section 4.8.1 indicate that the SD

form of the constant cannot have more than 2n digits or else we are guaranteed to

need at least n + 1 adders. It is argued in [12] that k should be limited well below

this theoretical bound. More importantly, [12] does not even suggest that one should

attempt to solve the clashing problem. We will propose a solution to the simplest

cases of clashing in the next section. Based on our results (section 5.1.6), most of the

obfuscated patterns can be recovered by resolving only the simplest cases.

All of the above examples involve a multiplicative decomposition (105×A, 363×A

and 805×A were decomposed as 7×15×A, 11×33×A and 5×161×A, respectively).

Adding a pattern with a shifted version of itself is equivalent to multiplying it by C1.

When the CSE digit clashing problem arises in SCM, we have observed that many

of the optimal solutions can be obtained by resolving a multiplicative decomposition

(where n instances of the same existing pattern are added, n ≥ 2) rather than an

additive decomposition (where one instance each of n different existing patterns are

added). This is because the solution to a SCM problem typically contains only a few

adders (results are in section 5.1.6). This observation does not apply to MCM.

91

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

5.1.2 The H(k)+ODP Algorithm and Overlapping Digit

Patterns

5.1.2.1 Limiting the Scope of the Problem

In general, in order to substitute a pattern with m nonzero digits n times, we need

to have m ⋅ n nonzero digits. By considering clashing, we can substitute this in

less than m ⋅ n nonzero digits. However, as justified in section 5.1.4, our goal is to

significantly reduce the run time of H(k) without increasing the average number of

adders. Thus we will only consider m = 2 and n = 2, which are the simplest cases

of clashing. Furthermore, we will only consider two instances of the same pattern.

Under this constraint, only one pair of nonzero digits can align. For example, in

((A0A)≪ 2) + A0A = AA00A, the left digit of A0A aligns with the right digit of

((A0A)≪2). Given that patterns have two nonzero digits, we cannot align two pairs

of nonzero digits. This is impossible because it would require having two patterns

with no relative shift between them. As emphasized at the end of section 3.1.2, only

one digit may occupy each location in the CSE form (the A0A type of representation).

If we relax any of the above constraints, it becomes possible to align more than

one pair of nonzero digits. This makes the CSE digit clashing problem much more

difficult to solve and thus it would require more computation to solve. Several pairs of

nonzero digits could align and thereby produce multiple carries (i.e. a carry produced

the middle digit in AA00A in the above example). Each carry may also now propagate

to produce a nonzero digit several positions away. For example, consider decomposing

75× A as 5× 15× A = ((15× A)≪2) + (15× A). If we express 15× A as AAAA,

notice two pairs of digits align in the middle of ((AAAA)≪2) + AAAA = A00A0AA.

In this case, one carry propagated all the way to most significant digit. To substitute

92

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

a pattern with 4 nonzero digits twice, we expect 8 digits, however A00A0AA only

has 4 digits. In the general case, the obfuscated patterns may be represented with an

arbitrary number of digits less than that expected (we expect m ⋅ n digits).

In this thesis, overlapping digit patterns (ODPs) strictly refer to the non-standard

CSE patterns that we will use to identify clashing cases for only two instances of a

the same pattern, where this pattern has exactly two nonzero digits. In the earlier

example, AA00A is an ODP. We will only enumerate the cases for m = 2 and n = 2,

however the strategies used to derive ODPs can be applied to arbitrary m and n.

An ODP cannot contain any instances of the pattern that was used to construct it

(for example, AA00A does not contain any instances of A0A). If an ODP did contain

such an instance, we would instead substitute the regular pattern (with 2 nonzero

digits) and not bother with the ODP. ODPs are not applicable to graphs since DAGs

have no restrictions due to their representation. ODPs are also not applicable to

CSE algorithms that select the pattern with the most nonzero digits, such as [31,32],

however this is of little relevance. Hartley indicated in [29] that substituting a pattern

with p nonzero digit q times is equivalent to substituting a pattern with q nonzero

digits p times. Our interpretation is that we will not be able to use vertex reduction,

but Hartley’s algorithm and H(k) do not use this anyways.

5.1.2.2 Integrating ODPs Into H(k)

Searching for non-standard patterns is unrelated to the generation of SD representa-

tions. Our proposed algorithm, H(k)+ODP, uses the same initial SD forms as H(k)

and we also search each SD form independently and then select the best solution

found at the end. ODPs are integrated into Hartley’s search and replace algorithm,

93

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

which H(k) applies to each SD form. Although we are actually modifying Hartley’s

algorithm, it is futile to be restricted to only the CSD form of the constant like Hartley,

as better solutions can be found by considering alternate SD forms. Furthermore,

there is more potential for clashing as the density of nonzero digits increases, thus

ODPs are more beneficial when large values of k are used in H(k).

5.1.2.3 The Three General Classes of ODPs

Let P represent a pattern in the form (S≪ i)±S, where i is a positive nonzero integer

and S in some existing term (for example, S can be the input which we earlier labeled

A or it can be an intermediate term). Note that P may also represent the negative of

the pattern (which is obtained by inverting the sign of each digit). Two instances of

P will have the form (P≪n)± P . Usually this will produce 4 digits of S, in which

there is no clashing, thus a CSE algorithm does not need ODPs to be able to find

and substitute this. However, (P ≪ n) ± P may produce three digits of S. These

three digits make an ODP. In general, there are two main strategies for aligning two

instances of P to produce an ODP:

1. Align the left digit of P and the right digit of P≪n so that the two aligned

digits of S produce a zero at this position and a nonzero digit one position to

the left due to a carry.

2. Position the left digit of P with respect to the right digit of P≪n so that these

two digits produce SS or SS, which are actually 0S and 0S, respectively.

Class 1 ODPs use the first strategy. The earlier example of ((A0A)≪2) + A0A =

AA00A was a demonstration of a class 1 ODP in which S = A and P = (S≪ 2)

+ S = A0A. Thus, if we find AA00A, we can substitute B = A0A to get 00B0B.

94

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

Table 5.1: The formal definition of the first three general ODP Classes.

(a) Class 1 ODPs

If P = (S≪ i) + S Search for: ±[(S≪(2i)) + (S≪(i+ 1)) + S]

Replace it with: ±[(P≪ i) + P]

If P = (S≪ i)− S Search for: ±[(S≪(2i))− (S≪(i+ 1)) + S]

Replace it with: ±[(P≪ i)− P]

(b) Class 2 ODPs

If P = (S≪ i) + S Search for: ±[(S≪(2i+ 1)) + (S≪ i)− S]

Replace it with: ±[(P≪(i+ 1))− P]

If P = (S≪ i)− S Search for: ±[(S≪(2i+ 1))− (S≪ i)− S]

Replace it with: ±[(P≪(i+ 1)) + P]

(c) Class 3 ODPs

If P = (S≪ i) + S Search for: ±[(S≪(2i− 1))− (S≪(i− 1))− S]

Replace it with: ±[(P≪(i− 1))− P]

If P = (S≪ i)− S Search for: ±[(S≪(2i− 1)) + (S≪(i− 1))− S]

Replace it with: ±[(P≪(i− 1)) + P]

Class 2 and class 3 ODPs use the second strategy above. An example of a class 2

ODP is ((A0A)≪3)− (A0A) = A0AA0A = A00A0A. Notice the middle two digits in

A0AA0A are positioned as specified in strategy 2, and then AA→ 0A as also specified

in strategy 2. Thus, if we find A00A0A, we can substitute B = A0A to get 00B00B.

The formal definition of these three general classes of ODPs is provided in Table 5.1

and several examples are provided in Tables 5.2 and 5.3.

Recall from section 5.1.1 that we discussed cases where patterns became obfuscated

due to placing digits adjacently or due to digits colliding. The latter case is known as

the CSE digit clashing problem and cannot be resolved by searching for patterns in

SD forms with more nonzero digits. In general, class 1 ODPs will resolve the simplest

95

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

Table 5.2: Examples of the first three classes of ODPs with B = A00A.

Class 1 Class 2 Class 3

Desired Substitution 000B00B 000B 000B 000B0B

Regular pattern positions A00A A00A A 0 0A
A00A A00A A00A

Intermediate result A0A 0 00A A00AA00A A0AA0A

Final result: the ODP to find A0A 0 00A A00 0A00A A00A0A

Table 5.3: Examples of the first three classes of ODPs with B = A00A.

Class 1 Class 2 Class 3

Desired Substitution 000B00B 000B 000B 000B0B

Regular pattern positions A00A A00A A 0 0A
A00A A00A A00A

Intermediate result A0A 0 00A A00AA00A A0AA0A

Final result: the ODP to find A0A 0 00A A00 0A00A A00A0A

cases of clashing (there are likely more complex clashing cases that class 1 ODPs

cannot resolve). We illustrated this with the 805× A example in section 5.1.1.2. In

the case where digits are placed adjacently, we can use class 2 and class 3 ODPs to

directly resolve the simplest cases without needing to search SD forms with more

nonzero digits. This can significantly improve the run time. As shown in section

5.1.4, the number of SD forms grows very quickly with respect to the number of extra

nonzero digits.

We will now examine the type of restrictions that are removed by considering

ODPs. Let us try to substitute C = (B≪ n) + B given that B = (A≪ i) + A or

substitute C = (B≪n)−B given that B = (A≪ i)−A. If n = i, then C is composed

of three digits of A. We can only find and make these substitutions by considering

class 1 ODPs. If n ∕= i, then C has 4 digits of A, thus there is no clashing so ODPs

are not needed. By considering class 2 and class 3 ODPs, a different set of restrictions

96

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

Table 5.4: The non-general class 4 ODPs.

Pattern definition P = S00S P = S0S

Desired Substitution 0 0 0P0 P 0 0P 00P

Regular pattern positions S 0 0 S S0S
S0 0S S0S

Intermediate result S0SS0 S S0SS0S

Final result: the ODP to find S0S0 S S 0S0S

are removed. Let us try to substitute C = (B≪n) +B given that B = (A≪ i)− A

or substitute C = (B≪n)−B given that B = (A≪ i) +A. If n = i+ 1 or n = i− 1,

then C is composed of 3 digits of A. Class 2 ODPs enable us to use n = i+ 1 and class

3 ODPs permit n = i− 1. The proof of said claims is trivial and can be immediately

seen from Tables 5.1, 5.2 and 5.3. In the special case of n = i, C will have only two

digits of A (these two digits form a pseudo-ODP, we will later discuss class 5 and class

6 pseudo-ODPs). All other relations between n and i result in C having 4 nonzero

digits of A in which there is no clashing, so a CSE algorithm could find and substitute

these patterns without considering ODPs. Notice that in all three classes, we recover

multiplicative decompositions.

5.1.2.4 Non-General Class 4 ODPs

If we use a small value of i in P = (S≪ i)± S, there are alternate ways to align two

instances of P such that three digits of S are produced. By placing all four nonzero

digits close together, we can perform multiple digit recodings due to adjacent nonzero

digits. Notice that 101101 = 32− 8− 4 + 1 = 21 = 10101. There are only two specific

cases of non-general class 4 ODPs, as shown in Table 5.4. For example, if we find

A0A0A, we can substitute B = A00A to get 00B0B.

97

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

Table 5.5: The general class 5 pseudo-ODPs.

Search for: ±[(S≪(2i))− S]

If P = (S≪ i) + S, replace it with: ±[(P≪ i)− P]

If P = (S≪ i)− S, replace it with: ±[(P≪ i) + P]

Recall from section 5.1.1.1 that H(0) produces a non-optimal solution for 363× A.

H(1) to finds the optimal solution but it has to examine many more SD forms compared

to only the 2 SD forms searched by H(0). H(0)+ODP uses the same SD forms as H(0)

but it can find the optimal solution by using class 4 ODPs. The CSD form of 363×A

is A0A00A0A0A. We can substitute B = A0A to get 00B000B00B. This solution

uses only 3 adders. Again, we have resolved a multiplicative decomposition, as we

have decomposed 363× A as 3× 21× A in this example.

5.1.2.5 General Class 5 Pseudo-ODPs

With class 1 ODPs, we resolved one case of digit clashing. However, instead of

adding digits to produce a carry, the aligned digits could cancel. For example,

((A0A)≪2) + A0A = A000A. However, notice that ((A0A)≪2) − A0A = A000A,

therefore if we find A000A, we could substitute either B = A0A to get 00B0B or

B = A0A to get 00B0B. In general, a class 5 pseudo-ODP has the form (S≪(2i))−S,

and if we find this, we can substitute P = (S≪ i) + S or substitute P = (S≪ i)− S.

This is illustrated in Table 5.5.

ODPs have 3 nonzero digits whereas pseudo-ODPs have 2. When an ODP is

substituted, 3 old digits are replaced by 2 new ones, thus each substitution decreases

the remaining adder distance by 1. Each substitution of a regular pattern (with 2

nonzero digits) also has the same effect on the adder distance, thus one instance of

an ODP is functionally equivalent to one instance of a regular pattern. Recall that

98

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

((A0A)≪2) + A0A = AA00A, thus we interpret that there are two ‘‘occurrences’’ of

A0A in AA00A00A0A. Substituting pseudo-ODPs does not reduce the adder distance

because there is no net loss of nonzero digits, thus we do not count pseudo-ODPs as

an ‘‘occurrence’’ of a pattern. For example, there is only one occurrence of A0A in

A0A00A000A even though we could substitute B = A0A to get 00B00A000A or to

get 00B0000B0B.

However, by substituting a pseudo-ODP, we may affect the patterns that can

be substituted in the next stage. Without class 5 pseudo-ODPs, the first case in

which H(k)+ODP cannot find the optimal solution for any k is 4875 × A. Let us

represent 4875× A as A0A0A000A0A0A, then B = A0A can be substituted to yield

00B000B0B000B, and finally C = B000B is substituted to produce 000000C00000C.

This solution costs 3 adders. Without considering class 5 pseudo-ODPs, we could

have substituted the middle B0B, thus preventing the second substitution. This

would produce a solution with 4 adders. Note it is also possible that substituting a

pseudo-ODP could hinder further substitutions. In H(k)+ODP, when a pseudo-ODP

can be substituted, we search for patterns in the next stage both with and without

the substituted pseudo-ODP.

Pseudo-ODPs can only provide a benefit in future stages of substitution. Note

we can emulate the process of making more than one substitution by considering

patterns with more than two nonzero digits. Thus, pseudo-ODPs provide us with a

partial ability to solve the clashing problem for patterns with more than two nonzero

digits. In the above example, 4875 × A = (C≪6) + C, where C = (B≪4) − B =

(A≪ 6) + (A≪ 4) − (A≪ 2) − A. Notice the rightmost A digit of C≪ 6 (which is

actually A) and the leftmost A digit of C are aligned and will cancel when added.

99

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

Table 5.6: The non-general class 6 pseudo-ODPs.

Pattern definition P = S0S P = S0S P = S0S

Desired Substitution 0 0PP 0 0P0P 0 0 0PP

Regular pattern positions S 0 S S0S S 0 S
S0S S0S S0S

Intermediate result SSSS SS 0 0S SSSS

Final result: the ODP to find S0 0 S S 0 0S S0 0 0 S

5.1.2.6 Non-General Class 6 Pseudo-ODPs

Like the class 4 ODPs, when small patterns are used, all four nonzero digits can be

used to create special cases. There are only three specific cases of class 6 pseudo-ODPs,

as defined in Table 5.6. Without class 6 pseudo-ODPs, the first case where H(1)+ODP

produces a non-optimal solution is 2325× A. One optimal solution can be obtained

by substituting B = A0A in A0AA000A0A0A to get 00B000BB000B, and then by

substituting C = B000B to get 000000C0000C. This costs 3 adders, but without

considering class 6 pseudo-ODPs, we would not be able to substitute the middle BB.

This prevents the second substitution and thus we would need 4 adders.

5.1.3 The Remaining Limitations of H(k)+ODP

We will present the smallest coefficients in which H(k)+ODP produces a non-optimal

solution (for different k) and an analysis of why this happens. The smallest coefficient

that H(0)+ODP produces a non-optimal solution for is 1829. H(1) can find the

optimal solution. If we represent 1829 × A as A000AAA00A0A, we can substitute

B = A0000A to get 00000B000B0B. Without an extra nonzero digit in the initial SD

form, 0AAA must necessarily be represented as A00A. Thus, H(0)+ODP has only

one SD form to search, but A00A00AA00A0A does not have two occurrences of any

100

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

pattern, even if we consider each ODP as one occurrence of the pattern that it was

built from. In order for H(0)+ODP to find the optimal solution, we would need to

resolve clashing for 3 occurrences of the same pattern (or if we allow patterns to have

3 nonzero digits, then we could consider 2 occurrences of this type of pattern).

The first non-optimal case for H(1)+ODP is 3255 × A. H(2) can find the op-

timal solution. Starting with A00AAA0AAA00A, substitute B = A00A to get

000B000BB000B, then substitute C = B000B to obtain 0000000C0000C. In order

to find the optimal solution with only up to one extra nonzero digit in the SD form,

we would need to resolve clashing for 4 occurrences of the same pattern. The problem

is similar to the case in which H(0)+ODP produces the first non-optimal solution.

Without 2 (or more) extra nonzero digits in the initial SD form, either 0AAA col-

lapses into A00A or 0AAA collapses into A00A, however we need both of these to be

represented in the form with more digits in order to find and substitute the patterns

as shown above.

H(2)+ODP faces a similar problem. The first non-optimal solution is produced

for 5049× A. The optimal solution is as follows: starting with A00AAA0AAA00A,

substitute B = A00A to get 000B000BB000B, then substitute C = B000B to get

0000000C0000C. This optimal solution was found by H(3).

For any value of k, the first non-optimal case for H(k)+ODP is 21403 (thus

H(k)+ODP produces solutions which happen to be as good as optimal for all constants

up to 14 bits). The problem in this case arises from selecting the wrong instance

of the pattern. The optimal solution can be expressed within the ODP framework.

Starting with A0A0A000AA00A0A, substitute B = A0A to get 00B0A00000B0B0A,

then substitute C = B0A to get 0000C00000B000C. Notice that in AA00A0A (the

101

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

rightmost digits of the starting SD form), the rightmost digit of the ODP AA00A

competes with the leftmost digit of A0A. In this case, we could substitute B = A0A

to get 00B0B0A or AA0000B. Unfortunately, H(k)+ODP selects the latter case,

which does not lead to an optimal solution.

Better solutions can be obtained by resolving this digit contention problem, however

this requires extra computation. As justified in section 5.1.4, since our primary goal is

to reduce the run time, we do not solve the digit contention problem in H(k)+ODP.

In section 5.1.5, we will discuss how substitutions are selected when there is more

than one best option.

5.1.4 Run Time Versus Minimizing Adders

To the best of our knowledge, H(k) is the best existing SCM heuristic. As shown

in [33], H(2) is very close to optimal. For all constants up to 19 bits, it produces

solutions that require on average only 1.0% more adders than the optimal. Thus,

there is a strict limitation on how much improvement can be made. This applies to

any new algorithm. Any two algorithms that are nearly optimal will inherently have

a similar performance in terms of minimizing adders. Whether a heuristic produces

solutions within 1% or 1.5% of the optimum usually has little impact in practice.

Furthermore, the results are not guaranteed to be optimal. Instead of trying to

improve the performance to within 0.5% of the optimal, we believe that it is more

useful to make an algorithm that is at least as good as H(k) in terms of minimizing

adders but can run in significantly less time. As shown in our results (section 5.1.6),

H(k)+ODP sometimes achieves over one order of magnitude in run time reduction

compared to H(k) while still marginally improving the number of adders.

102

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

Table 5.7: An estimate of the average number of SD forms used by H(k) at each bit
width and each k.

k = 0 k = 1 k = 2 k = 3
20 bits 5 40 164 465
24 bits 7 68 328 1075
28 bits 10 111 602 2216
32 bits 13 161 976 4018
40 bits 20 293 2197 11060
48 bits 44 760 6588 38511

As shown in section 5.1.2.3, class 2 and class 3 ODPs do not resolve clashing but

rather enable us to find patterns and make substitutions that would otherwise require

SD forms with more nonzero digits. Recall that H(0) cannot find the optimal solution

for 363× A whereas both H(1) and H(0)+ODP can. H(0)+ODP does a little more

searching within each SD form while H(1) searches many more SD forms. In Table

5.7, we show that each increment in k causes the average number of SD forms to

increase extremely fast. These values are estimates, as we experimentally obtained

them using uniformly distributed random constants at each bit width and each k

(1000 constants up to 32 bits, 100 constants at 40 and 48 bits). Good solutions (in

terms of minimizing adders) require a large k, however for constants of large bit width,

numerous SD forms must be searched which translates to long run times. ODPs

facilitate a more efficient search and substitution of patterns in each SD form, so it

may be possible to search fewer SD forms (in order to reduce the run time) and still

produce solutions that are at least as good (compared to using more SD forms and

not using ODPs). Conclusively, we are interested if H(k)+ODP can produce better

solutions in less run time than H(k + n) for n ≥ 1. Note that H(k)+ODP requires

more run time than H(k) because the same SD forms are searched, but H(k)+ODP

must also search for ODPs, thus we are not interested in a comparison between them.

103

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

5.1.5 Implementation Details

We implemented H(k) with optional ODPs in C. We will first describe the common

components of H(k) and H(k)+ODP. Both algorithms use the same initial SD forms

(given the same k). Using a recursive function, we implemented a depth-first version

of the SD generation algorithm in [35], which is described in detail in section 4.5.3.2.

The Hartley algorithm [30] is used to search and substitute patterns in each SD form.

However, neither Hartley nor H(k) specified which pattern should be substituted if

several occur the maximum number of times. Furthermore, which pattern instance

should be substituted is not specified. For example, given A0A0A0A0A, we could

substitute B = A0A to get 00B0A000B or A000B000B, or substitute B = A000A to

get A00000B0B, or substitute B = A00000A to get 0000A0B0B. The choice made

now may affect which patterns can be substituted on the next iteration. However,

our objective is to improve the run time, so we will not consider every possible best

option. At each iteration, for each pattern that has the maximum occurrence, we

will substitute all occurrences with a right bias (for example, substitute B = A0A

in A0A0A0A0A to get A000B000B) and all occurrences with a left bias (to get

00B000B0A). At each iteration, each substitution is done one at a time. Notice that

we have missed 00B0A000B in this example.

Our version of the Hartley algorithm is a branch and prune algorithm. More than

one substitution at each stage of substitution causes branching, and only considering

maximally occurring patterns is a form of pruning. Thus, the worst case run time

of H(k)+ODP is of exponential order with respect to the bit width of the SCM

constant, however the absolute run time is typically reasonable for the problem sizes

of most importance in practice. The justification for using an exponential heuristic

104

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

was provided in section 4.8.2. We implemented our version of the Hartley algorithm

in a depth-first recursive manner to minimize the memory usage.

If we consider ODPs in the Hartley algorithm, we must also decide whether an

ODP or a regular pattern (with 2 nonzero digits) should take priority if both compete

for the same digit. As illustrated in section 5.1.3, the rightmost digit of the ODP

AA00A competes with the leftmost digit of A0A in AA00A0A. Since each CSE

representation has a limited number of digits, we prefer to substitute regular patterns

since these only consume 2 nonzero digits (compared to 3 digits for an ODP), thus

leaving more digits that could be substituted. If we want all substitutions to have a

left bias, we search from left to right. Once a pattern is found, all digits in the pattern

instance are labeled as ‘‘used’’ (a different marker is used for each type of pattern).

This prevents multiple instances of the same pattern from competing for the same

digit. Thus, first we search and label regular patterns, then we do this for ODPs.

However, we experimentally discovered that better solutions are obtained if ODPs

that contain the leftmost digit in the CSE representation are given first priority (then

the priority goes to regular patterns, and finally to ODPs that do not contain the

leftmost digit). An analogous set of priority rules are used when searching from right

to left (for right biased substitutions).

5.1.6 Experimental Results

All of the experimental results in this thesis were benchmarked on a set of identical

3.06 GHz Pentium 4 Xeon workstations running Linux. All algorithms were imple-

mented in C or C++ and were compiled with gcc 3.2.3. In this section, we will

compare H(k) and H(k)+ODP with several existing algorithms. All algorithms were

105

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

4

5

6

7

8

9

10

11

20 24 28 32 36 40 44 48

av
er

ag
e

nu
m

be
r o

f a
dd

er
s

bit width

Lѐfevre
BBB
Hcub
H(0)+ODP
Optimal

Figure 5.1: The average SCM cost versus the bit width.

tested with the same constants at each bit width. We used all constants up to 20 bits.

At larger bit widths, uniformly distributed random constants were used. We used

100000 constants at 24, 28, and 32 bits, 1000 constants at 40 bits, and 100 constants

at 48 bits.

Lefèvre [32] presents a CSE algorithm that searches for the pattern with the most

nonzero digits using only the CSD form. We used the C implementation written by

Rigo from Lefèvre’s website [45]. We expect this algorithm to perform similarly to

Hartley’s algorithm [30] since substituting a pattern with m nonzero digits n times is

equivalent to substituting a pattern with n nonzero digits m times, as shown in [30].

Prior to H(k), the best existing SCM algorithm was BBB (better of Bernstein or

BHM, section 4.4.1). We implemented BBB in C. We believe our implementation is

no less efficient than any of the other algorithms that we implemented. However, as

expected, H(0)+ODP outperforms both Lefèvre and BBB, as shown in Figure 5.1.

106

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

The best existing MCM algorithm in terms of its SCM performance is Hcub [6].

We used the C++ implementation from the website of the authors [46]. From Figure

5.1, H(0)+ODP on average outperforms Hcub. In fairness, the heuristic in Hcub is

catered towards a slightly different problem. In MCM, one may share intermediate

terms within a constant or between constants. MCM heuristics generally try to do

both whereas SCM heuristics can focus on maximizing the sharing of terms only within

a constant. Our results confirm that MCM algorithms do not perform SCM as well as

algorithms designed solely for SCM.

Although not shown, the average run times of both Lefèvre and BBB are faster

than H(0) and the average run time of Hcub is typically between that of H(0) and

H(1). The run times for H(k) are provided in Table 5.9.

In order to produce good solutions, a large value of k is needed. In Figure 5.1, we

compare H(0)+ODP and our optimal algorithm from section 5.2. Clearly, a non-trivial

improvement in the average number of adders is possible by increasing the value of

k. We tested H(k) with k = 0, 1, 2, 3 and H(k)+ODP with k = 0, 1, 2. The average

number of adders is shown in Table 5.8. When we check if H(k)+ODP produces better

solutions than H(k + n) for n ≥ 1, the comparisons can be quite close. The average

run times are provided in Table 5.9. For bit widths up to 32 bits, the average percent

more adders than the optimal is shown in Figure 5.2. At 20 bits, H(2)+ODP is within

0.2% of the optimum (compared to 0.9% for H(2)). Thus, we are able to recover most

of the obfuscated patterns by resolving only the simplest cases of clashing. However,

the solutions become increasingly farther from the optimal as the bit width increases.

With more adders, more complex cases of clashing can occur (i.e. more occurrences of

a pattern with more nonzero digits).

107

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

0

1

2

3

4

5

6

7

8

9

10

11

12

20 24 28 32

av
er

ag
e

pe
rc

en
t m

or
e

ad
de

rs
 th

an
 th

e
op

tim
al

bit width

H(0) H(0)+ODP

H(1) H(1)+ODP

H(2) H(2)+ODP

H(3)

Figure 5.2: The average percent more adders than optimal versus bit width.

Table 5.8: The average number of adders versus bit width.

20 bits 24 bits 28 bits 32 bits 40 bits 48 bits
H(0) 4.563 5.267 5.938 6.588 7.843 9.079
H(0)+ODP 4.414 5.073 5.710 6.332 7.531 8.723
H(1) 4.394 5.038 5.665 6.278 7.451 8.605
H(1)+ODP 4.345 4.947 5.548 6.110 7.228 8.348
H(2) 4.369 4.983 5.586 6.162 7.290 8.400
H(2)+ODP 4.338 4.915 5.506 6.026 7.106 8.173
H(3) 4.362 4.956 5.553 6.100 7.205 8.285
Optimal 4.329 4.864 5.437 5.875 --- ---

108

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

Table 5.9: The average run time (seconds) versus bit width.

20 bits 24 bits 28 bits 32 bits 40 bits 48 bits
H(0) 0.001 0.001 0.003 0.006 0.044 0.234
H(0)+ODP 0.001 0.001 0.003 0.008 0.056 0.324
H(1) 0.004 0.012 0.035 0.096 0.871 5.338
H(1)+ODP 0.006 0.016 0.045 0.125 1.152 7.717
H(2) 0.022 0.076 0.241 0.831 9.066 63.878
H(2)+ODP 0.029 0.099 0.317 1.081 12.125 87.093
H(3) 0.075 0.313 1.228 4.738 55.589 218.857
Optimal 0.006 0.046 0.325 8.851 --- ---

As expected, both H(k + 1) and H(k)+ODP perform better than H(k) at the

expense of run time. However, compared to H(k), H(k + 1) typically requires several

times the amount of run time due to the number of initial SD forms (as explained

in section 5.1.4). Conversely, only about 30% more run time is typically needed for

H(k)+ODP to also search for ODPs (in addition to regular patterns that both it and

H(k) search for). By increasing k, we expand the search space by providing more

combinations of signed powers of two. As explained in section 5.1.1.1, CSE provides a

means to collect common terms once we have decided which signed powers of two

will be used to construct the constant (i.e. which digits are in the initial SD form).

Conversely, by using ODPs and pseudo-ODPs, we are able to more efficiently search

and replace patterns in each SD form. Conclusively, increasing k increases the size of

the search space whereas using ODPs improves the ability to search within the search

space provided by the initial SD forms. Our results show that much less computation

is needed to search for ODPs compared to increasing k. Also, improving the efficiency

of the search may lead to better solutions than simply searching more items.

We are interested if H(k)+ODP can produce better solutions in less run time than

H(k + n) where n ≥ 1. A summary of when this happens and the improvement in

109

5.1. Heuristic SCM M.A.Sc. - J. Thong - McMaster

Table 5.10: The average improvement in run time when H(k)+ODP can produce
better average solutions than H(k + n) for n ≥ 1. The improvement is specified as a
ratio (i.e. how many times faster).

Bit H(1)+ODP H(2)+ODP
width Outperforms Improvement Outperforms Improvement

in the run time in the run time
20 H(3) 13.2x H(3) 2.6x
24 H(3) 19.7x H(3) 3.2x
28 H(3) 27.3x H(3) 3.9x
32 H(2) 6.6x H(3) 4.4x
40 H(2) 7.9x H(3) 4.6x
48 H(2) 8.3x H(3) 2.5x

run time is provided in Table 5.10. Although not shown in Table 5.10, H(0)+ODP

outperforms H(3) for constants up to 13 bits and outperforms H(1) up to 14 bits.

ODPs become increasing beneficial as the amount of clashing increases (as well as

other pattern obfuscation problems, such as those caused by placing digits adjacently).

The likeliness of clashing is related to the density of nonzero digits (as opposed to the

number of nonzero digits). As the bit width increases, each increment in k increases

the density of nonzero digits by a lesser extent. Consequently, H(1)+ODP outperforms

H(3) only up to 28 bits, although H(1)+ODP outperforms H(2) up to at least 48 bits

(we did not test beyond 48 bits, as such large bit widths are less relevant in practice).

H(2)+ODP outperforms H(3) up to at least 48 bits.

The improvement in the number of adders decreases as k increases (i.e. the

improvement from H(2) to H(3) is less than from H(1) to H(2)). It becomes increasingly

difficult to improve the solutions as we approach the optimum. It therefore seems

counter-intuitive that the run time of an optimal algorithm can sometimes be faster

than H(k) and H(k)+ODP, as shown in Table 5.8. This will be discussed in the next

section, where we propose our optimal SCM algorithm.

110

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

5.2 Optimal SCM

In this section, we will propose the bounded inverse graph enumeration (BIGE)

algorithm. It is an exhaustive optimal SCM algorithm which uses aggressive pruning.

An outline is provided in section 5.2.1 and we will discuss the exhaustive search

methodology in section 5.2.2. Details regarding the adder-operation are illustrated in

section 5.2.3. Finally, the experimental results are presented in section 5.2.4 along

with many statistical distributions that were previously unknown. We benchmark up

to 32 bits (compared to 19 bits in the MAG algorithm [1]), as we believe this caters

to the problem sizes of the most practical importance in digital signal processing.

5.2.1 Outline of the BIGE Algorithm

5.2.1.1 The Bounding, Inverse Graph, and Enumeration Components

In the BIGE algorithm, we introduce the idea of a bounding function. Although

H(k)+ODP is a heuristic, it can be reused within our optimal algorithm. If H(k)+ODP

finds a solution with n adders, we use an exhaustive search to either find a solution

with up to n− 1 adders or prove that no solution with up to n− 1 adders exists (in

which case we have exhaustively verified that the solution found by H(k)+ODP is

optimal). Not needing to exhaustively search the last adder results in a significant

decrease in the size of the search space, thus we can search larger constant coefficients

within a reasonable amount of time. However, a tight bounding heuristic is required in

order to take advantage of this approach. If the bounding heuristic typically produces

solutions that are far from optimal, it provides little or no benefit compared to using

only an exhaustive search.

111

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

The BIGE algorithm uses both the CSE and DAG frameworks. The CSE-based

heuristic H(k)+ODP finds the upper bound (number of adders) while the DAG-based

exhaustive search finds the lower bound. We progressively tighten both bounds until

they meet, at which point we have an optimal solution.

Unlike the MAG algorithm, we do not create a lookup table for all constants

up to 2b. Instead, we solve the SCM problem for the given constant. This avoids

the need for a table which grows exponentially in size with respect to the bit width.

Furthermore, it is unlikely that large parts of this table will be used in practice. We

conjecture that most designs will not contain several thousands or millions of SCM

instances, but at 32 bits, there are more than 2 billion odd and positive integers.

Since we solve the problem for the given target t, we can use t to find all of the

useful intermediate terms that are one adder away from t. Using these terms, we find

all of the useful terms that are two adders away from t, and so on. This is exactly

like the inverse graph traversal (IGT) technique that was used to compute the adder

distance in section 3.2.6. Once we project backwards far enough, we check for a

common element between the backwards projection and the successor set S (or the

ready set R). For a single target, this requires much less computation than blindly

constructing all of the possible terms with n adders and then checking whether or not

the target was constructed. Blind construction is better for finding the SCM solutions

of numerous targets simultaneously, as is done in the MAG algorithm.

An exhaustive search for adder distance n requires one to enumerate and test each

of the possible graph topologies that have n adders. By doing this in the order of

increasing n, we are guaranteed to find the minimum number of adders. As explained

in section 4.1.3, graphs are more suitable than CSE for an exhaustive search.

112

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

Input : the SCM target t
Output: the optimal SCM solution for t

if (t ∈ C1) { return solution of c1, where t = c1 and c1 ∈ C1 }1

if (t ∈ C2) { return solution of c2, where t = c2 and c2 ∈ C2 }2

if (t ∈ C3) { return solution of c3, where t = c3 and c3 ∈ C3 }3

if (t ∈ C4) { return solution of c4, where t = c4 and c4 ∈ C4 }4

comment: at this point, no solution with up to 4 adders exists, so a solution
with 5 adders is optimal even if found by a heuristic

[hk odp solution, hk odp cost] = get solution(H(1)+ODP)5

if (hk odp cost==5) { return hk odp solution }6

for i = 1 to 10 {7

if (solution found by exact cost 5 test(i)) { return solution found }8

}
comment: at this point, no solution with up to 5 adders exists
if (hk odp cost==6) { return hk odp solution }9

comment: try tightening the heuristic bound
[hk odp solution, hk odp cost] = get solution(H(2)+ODP)10

if (hk odp cost==6) { return hk odp solution }11

comment: intrinsic cost 6 tests
for i = 1 to 3 {12

if (solution found by exact cost 6 test(i)) { return solution found }13

}
comment: non-intrinsic cost 6 tests, create all possible R sets with 2 elements
(which means 1 adder was spent) and use exact distance 5 tests

for each c1 ∈ C1 {14

R = {1, c1}15

for i = 1 to 17 {16

if (solution found by exact distance 5 test(i) with the current R) {17

return solution found18

}
}

}
comment: at this point, no solution with up to 6 adders exists
if (hk odp cost==7) { return hk odp solution }19

else { print ‘‘no solution found’’, return null }20

Algorithm 1: The bounded inverse graph enumeration (BIGE) algorithm. Note it
is limited to 7 adders and there are multiple exit points (but every path is covered).

113

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

5.2.1.2 The Strategy and the Choice of the Bounding Heuristic

The BIGE algorithm is described in Algorithm 1. We use a lookup table to check

whether the target has a solution with up to 4 adders. This is expressed in lines 1-4 of

Algorithm 1. We precompute the sets C1, C2, C3, and C4, as these do not depend on t.

These Cn sets are sorted and a binary search is used to check if t ∈ Cn. One solution

is stored for each element in Cn. At 32 bits, C4 contains less than 6 million elements,

so all of the elements and solutions in C4 only require a few tens of megabytes to

store. We will discuss the creation of these Cn sets in section 5.2.2.2.

Based on the increase in size of Cn as we increment n and other statistical

projections, we estimate that C5 at 32 bits will contain around 300 million elements.

Precomputing C5 would require a lot of computation and a few gigabytes to store,

which limits its practicality. Thus, we switch to a new strategy at 5 adders.

Before we created the BIGE algorithm, we were already aware that H(1)+ODP

produced solutions with about 0.4% more adders than the optimal on average at 19

bits (using the MAG algorithm as the reference). Since the number of adders is an

integer, this means that H(1)+ODP produces a non-optimal solution roughly every 1 in

250 cases (assuming we are very infrequently off by more than 1 adder). H(2)+ODP

averages about 0.2% more adders than optimal, but at a substantial increase in

run time (refer to Table 5.9 in section 5.1.6). If we could confirm that H(1)+ODP

happened to produce an optimal solution, we would not need to use H(2)+ODP,

thereby saving run time. This is the fundamental reason why the BIGE algorithm

can sometimes produce optimal SCM solutions in less run time than H(k)+ODP,

especially if k is large. We could apply this same argument to H(0)+ODP, however

the absolute run time of H(1)+ODP at 32 bits is on average 0.1 seconds. We decided

114

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

to use H(1)+ODP directly because the improvement over H(0)+ODP is considerable

(at 19 bits, about 2% more than optimal compared to 0.4% more, we later found that

at 32 bits this grows to 7.8% versus 4.0%).

H(k)+ODP is nearly optimal and we will show in section 5.2.4 that the final solution

returned by the BIGE algorithm is very often found by this bounding heuristic. We

will discuss the exhaustive search parts of the BIGE algorithm in section 5.2.2. After

we have exhaustively confirmed that no solution with 5 adders exists, if the original

solution found by H(1)+ODP has 6 adders, then the solution is optimal (line 9 in

Algorithm 1). If not, we could now use an exhaustive search immediately or we could

first attempt to tighten the bound. Although H(2)+ODP produces generally solutions

that are marginally better, at 32 bits its absolute run time is about 1 second whereas

typically a couple minutes are needed to do an exhaustive search at 6 adders. We

tighten the bounding heuristic using H(2)+ODP because increasing the run time of

many cases by 1 second and decreasing the run time of a few cases by a couple minutes

still results in an overall decrease in the average run time. Although not shown in this

thesis, the improvement from H(2)+ODP to H(3)+ODP is very limited and requires

roughly 5x more run time. We do not use H(3)+ODP in the BIGE algorithm.

Note that when we use H(2)+ODP, we only search and substitute patterns in SD

forms with exactly 2 extra non-zeros digits, to avoid repeating the search already done

by H(1)+ODP. Recall from section 4.5.3.2 that when we generate SD forms, if we

are at depth d in the tree, the SD form will have d nonzero digits. Let z denote the

CSD cost of t. We would normally apply the Hartley algorithm to any valid SD form

found at a depth of up to z + 2, now we only do so at a depth of exactly z + 2.

115

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

5.2.2 Exhaustive Searching in the BIGE Algorithm

5.2.2.1 A Generalized Approach for Exhaustively Searching SCM

Consider the problem of determining if t has a SCM solution with m adders (by

progressively increasing m, we will find the minimum SCM cost). We can use distance

k tests to determine if t can be constructed with k more adders. If we enumerate

every possible way to use m− k adders to construct some terms and then for each of

these cases we apply the distance k tests, we will have an exhaustive search for m

adders. Thus, we must construct every possible set R with m− k+ 1 elements. Given

a set of already constructed terms R, in order to test for distance k (not cost k), we

must test each graph topology with k adders (the inverse graph traversal method was

illustrated in section 3.2.6 and we will provide more examples in this section).

In the BIGE algorithm, adder costs 1-4 are tested in the same way as the MAG

algorithm (we use precomputed lookup tables). At cost 5 (m = 5), we use distance

k = 5 tests, thus we only need to consider all possible sets of R with m− k + 1 = 1

element. There is only R = {1}. At cost 6, we cover some topologies with k = 6 and

R = {1} (the intrinsic tests on line 13 of Algorithm 1) and the remaining topologies are

covered with k = 5 and all of the possible sets of R with 2 elements (the non-intrinsic

tests on line 17 Algorithm 1).

Although the BIGE algorithm as described in Algorithm 1 is limited to 7 adders,

this can easily be extended. For example, to exhaustively search at 7 adders, we could

create all possible sets of R with 3 elements (so 2 adders have been used) and then to

each of these, we would apply the distance 5 tests. This would enable us to confirm a

heuristic solution with 8 adders is optimal. We could extend this to all possible sets

of R with 4 elements, and so on.

116

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

For a fixed m, as we increase k, more pruning can be done because we will traverse

further backwards in the adder distance tests. This also means less adders are used to

construct terms in all of the possible ways, which obviously has no pruning. However,

using adder distance tests with larger k requires precomputed Cn sets with larger n.

In general (for an arbitrary R), in order to test for distance k, one of the tests that is

always be needed is t/Ck−1∩S ∕= ∅. Although Ck−1 is precomputed once, we will need

to divide t by every element in Ck−1 for every SCM problem instance. For example,

one must consider whether constructing C5 and computing t/C5 is worthwhile so that

general distance 6 tests can be used (versus using distance 5 tests and one more adder

in R). However, if R only has 1 or 2 elements, we can exploit some properties to

reduce the computation. Due to this, at cost 6 (not distance 6), using distance 5 tests

requires less computation. At higher costs, this may no longer be the case.

We have not investigated this tradeoff between pruning and precomputing, as it

has little practical importance. In most DSP applications, constants are typically

represented on up to 32 bits. In our benchmark experiments, all of the 100000 random

32 bit constants each required only up to 7 adders. Even if there is a 32 bit constant

that requires 8 adders, it is so unlikely that it is of negligible practical importance.

5.2.2.2 Construction of the C1 to C4 Sets

This is essentially the original MAG algorithm [1], but as shown in [2], vertex reduc-

tion and multiplicative partitioning can be used to identify equivalent graphs, thus

eliminating redundancy in the exhaustive search. This was explained in detail in

section 4.1.2. All of the possible vertex reduced graph topologies are shown in Figure

5 in [2]. Using these topologies, it follows that C1 to C4 are constructed as follows.

117

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

C1 = A(1, 1) (5.1)

C2 = A(C1, 1) ∪ (C1 ⋅ C1) (5.2)

C3 = A(C2, 1) ∪ (C2 ⋅ C1) (5.3)

C4 = A(C3, 1) ∪ (C3 ⋅ C1) ∪ (C2 ⋅ C2) ∪ A(z, C1 ⋅ A(z, 1)) for each z ∈ C1 (5.4)

5.2.2.3 The Cost 5 Tests

In this section, we will show how line 8 of Algorithm 1 is evaluated. Note that cost 5

tests are not the same as the distance 5 tests (on line 17). The distance 5 tests are

used to test for adder distance, i.e. they establish whether or not t can be constructed

with 5 more adders. The cost 5 tests are functionally equivalent to using the distance

5 tests when R = {1}. However, when R = {1}, we can exploit some properties to

reduce the computation.

We will check whether each graph topology permits the construction of t by using

the inverse graph traversal technique (the IGT method was illustrated in detail for

distance 2 in section 3.2.6). Let us illustrate how we apply the same technique to

a graph topology with 5 adders. Consider graph number 11 (cost 5) from Figure 5

in [2], which we show in Figure 5.3(a). First we apply inverse vertex reduction so that

each node represents one adder and thus has two edges coming to the node. This is

shown in Figure 5.3(b). There are generally multiple solutions, so we pick the one

that yields the least amount of computation when it is used to perform an inverse

graph traversal test. As explained in section 3.2.6, we obtain the topology for the

distance 5 test by splitting the input node, which is shown in Figure 5.4.

118

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

R x t

(a) Vertex reduced form of
graph number 11.

w

R

x y z

t

(b) Non-vertex reduced form of graph number 11.

Figure 5.3: Cost 5, graph topology number 11 from Figure 5 in [2].

t

zy

ri

rj

rk

rl

x

w

Figure 5.4: Cost 5, graph topology number 11 for testing adder distance. Note that
ri, rj, rk, rl ∈ R and thus w ∈ S.

Now let us illustrate how to design an inverse graph traversal test for graph number

11. Based on the labeling in Figure 5.4, t ∈ A(z,R). From Lemma 2 in section 3.2.1,

it follows that z ∈ A(t, R). If we are to construct t using this topology, the only

allowed values of z are z ∈ A(t, R). Now let us traverse further backwards. Clearly,

z ∈ A(x, y) and y ∈ A(x, x) = C1 ⋅ x. Thus z ∈ A(x,C1 ⋅ x) = (A(1, C1)) ⋅ x ⊆ C2 ⋅ x.

In other words, the subgraph formed by nodes x, y, and z implements multiplication

by some of the elements in C2. Knowing all of the possible values of z that will

permit the construction of t with this topology, it follows that all of the possible

values allowed for x are x ∈ z
C2

. This type of division test was explained in detail in

section 3.2.4. Because some elements in C2 are constructed as C1 ⋅ C1, by enforcing

119

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

x ∈ z
C2

, we will actually test another graph topology at the same time (this other

graph topology is identical to Figure 5.4 except that z ∈ A(y, y)).

So far, we have established that all of the permitted values of x are x ∈ z
C2

= A(t,R)
C2

.

Continuing the backwards traversal, x ∈ A(w,R), thus the only permitted values of

w are w ∈ A(x,R) = A(A(t,R)
C2

, R). Since w ∈ A(R,R), it is possible that w ∈ R, but

this would mean t is distance 4 (if w ∈ R, we would only need 1 adder to construct x,

2 for y, 3 for z, and 4 for t). Since we search in the order of increasing adder cost in the

BIGE algorithm, we know t is not distance 4. Thus, we are only interested in w ∈ S.

We have established that w ∈ A(x,R) = A(A(t,R)
C2

, R), so we should check if there is a

common element between S and A(A(t,R)
C2

, R). Conclusively, t is constructible with

this topology iff A(A(t,R)
C2

, R) ∩ S ∕= ∅.

In graph topology number 11, if R = {1}, notice that z has a SCM cost of 4

adders, thus z ∈ C4. Recall that C4 is precomputed so that we can use a lookup table

approach to check if t ∈ C4 in the BIGE algorithm. As stated above, z ∈ A(t, R).

When R = {1}, it follows that t can be constructed with this graph topology iff there

is a common element between C4 and A(t, R), or equivalently, iff A(t, R) ∩ C4 ∕= ∅.

This requires much less computation than the generalized test A(A(t,R)
C2

, R) ∩ S ∕= ∅

(C4 is only ever computed once and is reused for every SCM problem instance).

In Table 5.11, we provide a summary of all of the cost 5 tests. Each test may

simultaneously test for multiple topologies. This arises when we divide by Cn for

n ≥ 2, as there are several topologies that are identical except for the subgraph that

implements multiplication by Cn. This was illustrated in the above example. In Table

5.11, * denotes the transpose of the graph from [2]. The transpose is the left/right

reflection of the topology. For SCM, a graph and its transpose produce the same set

120

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

Table 5.11: A summary of the cost 5 tests.

Case Test Graphs covered in [2]

1
t

C1

∩ C4 ∕= ∅ 13-26

2
t

C2

∩ C3 ∕= ∅ 27-29

3 A(t, 1) ∩ C4 ∕= ∅ 1-11

4 A(t, C2) ∩ C2 ∕= ∅ 12

5 for each y ∈ C2 : A
(
A(t, y)

C1

, y

)
∩ {1} ∕= ∅ 31, 32*

6 for each x ∈ C1 : A
(
A(t, x)

C2

, x

)
∩ {1} ∕= ∅ 31*, 32

7 for each x ∈ C1 : A
(
A(t, x)

C1

, x

)
∩ C1 ∕= ∅ 33

8 for each x ∈ C1 :

A
(
A(t, x)

C1

, 1

)
x

∩ C1 ∕= ∅ 30

9 for each x ∈ C1 : A
(
A(t, C1 ⋅ x)

C1

, x

)
∩ {1} ∕= ∅ 33*

10 for each x ∈ C1 and for each y ∈ A(x, 1): 34

A
(
A(t, y)

C1

, y

)
∩ {x} ∕= ∅

of values (due to multiplicative partitioning, as discussed in section 4.1.2), however

when testing for adder distance, different topologies are obtained after we split the

input node, thus we must test both topologies. We share common sets between

different tests whenever possible. For example, cases 4 and 5 from Table 5.11 both

first compute A(t, C2) before performing different operations. These tests are done

together to avoid redundancy or storing any intermediates. Aside from this grouping,

the tests are sorted roughly by run time since we stop after the first solution is found.

121

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

Table 5.12: A summary of the intrinsic cost 6 tests.

Case Test Graphs covered in [2]

1
t

C2

∩ C4 ∕= ∅
13*, 14*, 15*, 16*, 17, 18, 19*, 20*, 21,
22, 22*, 23, 23*, 24*, 25*, 26, 26*, 27, 28

2
t

C3

∩ C3 ∕= ∅ 24, 25, 27*, 28*, 29

3
t

C1

∩ C5 ∕= ∅ 13, 14, 15, 16, 19, 20

5.2.2.4 The Intrinsic Cost 6 Tests

As mentioned earlier, we can search for cost 6 by applying distance k = 5 tests to each

possible R with 2 elements. To test for distance 5, we do a test for each graph topology

with 5 adders, but some tests (for some of these topologies) can be simplified when R

has 2 elements. These simplified tests (which are not applicable if R is arbitrary) are

known as the intrinsic cost 6 tests (line 13 of Algorithm 1) since we can directly solve

for cost 6 without guessing what is in R. There are three cases summarized in Table

5.12. Note in case 3, we do not construct C5, but rather the cost 5 tests (summarized

in Table 5.11) are performed for each element in t
C1

.

5.2.2.5 The Non-Intrinsic Cost 6 Tests Using Distance 5 Tests

Not all of the graph topologies are covered by the cost 6 intrinsic tests. For the

remaining topologies, we will use distance 5 tests for each possible R with 2 elements

(line 15 in Algorithm 1). Thus R has form R = {1, c1} where c1 ∈ C1. Note that

the distance 5 tests in this section can be applied to arbitrary R. It is possible that

several intermediate terms can form a closed loop, in which case it is difficult to use

the IGT method to design tests. This happens when a graph is a ‘‘leapfrog’’ graph

(this naming comes from the classification of graphs done in [2]).

122

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

y R w t

Figure 5.5: Cost 5, graph topology number 30.

x

ri

rj

rk

w
y z

t

Figure 5.6: Cost 5, graph topology number 30 for testing adder distance.

Consider graph number 30 from Figure 5 in [2]. We show the original graph in

Figure 5.5 and the corresponding adder distance DAG is shown in Figure 5.6. Based

on the labeling in Figure 5.6, t ∈ A(w, z). It follows that w ∈ A(t, z) and z ∈ A(t, w),

but we do not know either w or z. When we illustrated the IGT method for graph

number 11, t ∈ A(z, R). Since t was constructed with only one unknown term z, so

the other known term R could be used to deduce all possible values of the unknown

term (recall z ∈ A(t, R)). Unfortunately, we cannot do this in graph number 30.

Leapfrog graphs contain subgraphs that ‘‘leap’’ over each other and have a cyclic

inter-dependency among the intermediate terms. Notice that w, x, y, and z form a

closed loop in Figure 5.6. Leapfrog graphs need at least 4 adders [2]. Although IGT

was first introduced in [6], they only considered up to distance 3, thus we are the first

to illustrate how to handle cyclic inter-dependencies between the intermediate terms.

In order to use IGT in a leapfrog graph, we have to guess the value of one of the

intermediate terms in the loop, use IGT to traverse all the way around the loop, and

123

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

then check whether our initial guess was correct. Since w ∈ A(R,R), we will do this

for each w ∈ S (each w is tested independently). Note that an element in A(R,R)

may also be in R, but if w ∈ R, then this topology turns into a distance 4 test. We

could assert any one of w, x, y, or z, but we choose w because the closer the term is

to R, the less possible values it can take.

Knowing t and assuming a value for w, then all of the possible values for z are

z ∈ A(t, w). Since z ∈ C1 ⋅ y, then y ∈ z
C1

= A(t,w)
C1

. Clearly, y ∈ A(x,R), thus all the

possible values of x are x ∈ A(y,R) = A(A(t,w)
C1

, R). Since x ∈ C1 ⋅ w, it follows that

w ∈ x/C1 = A(A(t,w)
C1

, R) / C1. Conclusively, t is constructible with this topology iff

there exists a w ∈ S such that w ∈ A(A(t,w)
C1

, R) / C1. Note that testing for a common

element between S and A(A(t,w)
C1

, R) / C1 is meaningless due to the inter-dependencies.

Since we have assumed a value for w and we have the relation that x ∈ C1 ⋅ w,

instead of checking if w ∈ x
C1

, we could check if x
w
∈ C1. This is more efficient since we

will divide all possible values of x by a single element w instead of by a set of values C1.

Intersection with C1 is fast because C1 is sorted (recall that C1 is precomputed) thus

facilitating the use of a binary search. Conclusively, t is constructible with topology

number 30 if

A
(
A(t, w)

C1

, R

)
w

∩ C1 ∕= ∅ (5.5)

is satisfied for some w ∈ S, and t is not constructible if no w ∈ S satisfies (5.5).

Alternatively, we could have traversed around the loop in the opposite direction

(assuming a value for w, find all of the possible values for x, then y, then z, and

then finally check if w ∈ A(t, z)). However, traversing in this direction involves

multiplication by C1, which does not prune the search space like division (since we

require that elements divide with zero remainder).

124

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

Like the cost 5 tests, common sets are shared whenever possible to reduce the

computation. In topology number 30, it is possible that multiple values of w could

produce the same value of z. We can prevent a redundant searching of terms by

only considering unique z. If z can be constructed by multiple w, when we get to

the division by w part of the test in (5.5), we divide by every w that permitted the

construction of z. Let us define the set Ats = A(t, S). As we construct every possible

value of z (which is the set AtS), each z is tagged with the w used. Once AtS is

constructed, for each unique z, we can identify all of the supporting w terms. For

a given u ∈ AtS, let us define Atsd(u) = {z ∣ u ∈ A(t, z), z ∈ S}. In other words,

for a given u ∈ AtS, Atsd(u) denotes the set of dependents in S that enable u to be

constructed. Thus, topology number 30 can construct t if

A
(
u

C1

, R

)
AtSd(u)

∩ C1 ∕= ∅ (5.6)

is satisfied for some u ∈ AtS, and t is not constructible if no u ∈ AtS satisfies (5.6).

Note that AtSd is also used for graph topology number 33. Other commonly used

sets include: AtR = A(t, R), C1S = C1 ⋅S, and ARS = A(R, S). For a given u ∈ C1S

or a v ∈ ARS, C1Sd(u) and ARSd(v) denote the set of all elements in S that enable

u or v to be constructed, respectively. Like AtSd, these are sets of dependents. In

order to remove duplicates and/or facilitate a quick intersection using binary search,

we always keep the following sets sorted: R, S, AtS, each AtSd, C1S, each C1Sd,

ARS, and each ARSd. In Table 5.13, we provide a summary of the distance 5 tests

which search the graph topologies that were not covered by the intrinsic cost 6 tests.

Again, each IGT test may search more than one topology, common sets are shared

125

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

Table 5.13: A summary of the distance 5 tests for cost 6 which cover the topologies
missed by the intrinsic cost 6 tests. Note AtR = A(t, R), AtS = A(t, S), C1S = C1 ⋅S,
and ARS = A(R, S). For each u ∈ AtS, AtSd(u) denotes the set of dependents in S
that enable u to be constructed (C1Sd(u) and ARSd(u) have an analogous definition).

Case For each Test Graphs covered
in [2]

1 u ∈ AtR u

C3

∩ S ∕= ∅ 2, 3*, 5, 8*, 10*

2
u

C2

∩ ARS ∕= ∅ 10, 11

3 A
(
u

C1

, R

)
∩ C1S ∕= ∅ 3

4 A
(
u

C1

, R

)
∩ ARS ∕= ∅ 8

5 u ∈ AtS u

C2

∩ S ∕= ∅ 7*, 9

6 for each v ∈ AtSd(u) :
u

C2

∩ A(v,R) ∕= ∅ 31*, 32

7
u

C1

∩ ARS ∕= ∅ 7

8 A
(
u

C1

, AtSd(u)

)
∩ S ∕= ∅ 33

9

A
(
u

C1

, R

)
AtSd(u)

∩ C1 ∕= ∅ 30

10 u ∈ C1S A(t, u) ∩ C1S ∕= ∅ 12

11 A(t, u) ∩ ARS ∕= ∅ 6

12 for each v ∈ C1Sd(u) :
A(t, u)

C1

∩ A(v,R) ∕= ∅ 33*

13 A
(
A(t, u)

C1

, u

)
∩R ∕= ∅ 32*

14 u ∈ ARS A(t, u) ∩ ARS ∕= ∅ 1

15 for each v ∈ ARSd(u) :
A(t, u)

C1

∩ A(v,R) ∕= ∅ 4

16 A
(
A(t, u)

C1

, u

)
∩R ∕= ∅ 31

17 A
(
A(t, u)

C1

, u

)
∩ ARSd(u) ∕= ∅ 34

126

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

whenever possible (the dependent sets were deliberately created to facilitate sharing),

tests with common sets are done together, and tests are sorted roughly by run time.

Note that some tests by themselves are not efficient, but take advantage of terms

that other tests need anyways. For example, case number 2 in Table 5.13 intersects

A(t,R)
C2

with A(R, S), but it is much more expensive to construct A(R, S) than to

construct A(A(t,R)
C2

, R) and then intersect it with S. However, case 16 in Table 5.13 is

a leapfrog case in which a closed loop is formed between elements that are at least 2

adders away from R. As explained earlier, we assume a value for closest node, use

IGT to go around the loop, and then check if the assumption was valid. Since we

must test all possible assumed values (one at a time), we must construct A(R, S) for

case 16 anyways, so case 2 takes advantage of this.

5.2.3 Details Specific to the Adder-Operation

Unless the shifts m and n in the adder-operation are bounded, A(x, y){z ∣ z =

∣2mx± 2ny∣} contains an infinite number of elements. It was proved in [1] that the

shift bounds are finite (allowing larger shifts will not decrease the number of adders

in the solution). Upper bounds were provided in [1], i.e. optimality is guaranteed if

we consider all shifts up to this bound. Nothing was proved on the lower bounds of

the shifts that are needed to guarantee optimality. Also, [1] predates vertex reduction

and [2] did not discuss how the bounds change if we only consider vertex reduced graph

topologies. For example, graphs a and b may be identical under vertex reduction, but

if we only search graph a, the shift bound to cover both graphs is at least as large

as that to cover graph a but it is otherwise unknown. More research is needed to

establish the minimum bounds on the shifts that are needed to guarantee optimality.

127

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

The exact adder distance tests in both RAG-n [14] and Hcub [6] use an adder-

operation that is constrained to A(x, y) ≤ 2b+1, where b is the bit width of the largest

constant. The values of x and y implicitly place constraints on the shifts. Recall

from section 2.3.3 that there are three cases of shifts to consider: m > 0 and n = 0,

m = 0 and n > 0, and m = n < 0. In the first case, we must have 2mx ≤ ∣2b+1 ± y∣,

which imposes a limit on m. By symmetry, we will not consider the second case. The

third case corresponds to adding x and y and then dividing the result by 2 until it

becomes odd. Thus, if both x ≤ 2b+1 and y ≤ 2b+1, then A(x, y) ≤ 2b+1. Since we

initialize R = {1}, by induction, all terms can be enforced to be no larger than 2b+1.

One may be tempted to enforce A(x, y) ≤ 2b+1 and claim that an exhaustive search

based on the tests in section 5.2.2 is optimal under the constraint that all intermediate

terms are no larger than 2b+1. However, this is not true, and a specific example is

provided in section 6.1.3.5. When vertex reduction is used, we can miss some solutions

that would otherwise be valid by combining terms in the wrong order.

Initially we arbitrarily chose to enforce A(x, y) ≤ 2b+2 in the BIGE algorithm. We

later experimented with bounds of 2b+1 and 2b+3. Our results indicate that changing

the bound has an extremely negligible impact on the number of adders in the solutions

(details are provided in section 5.2.4). At 32 bits, the average adder cost decreases

(increases) on order of 10−4 by incrementing (decrementing) the bounding exponent

by 1. While the BIGE algorithm is not truly optimal from a theoretical perspective,

we argue it is close enough to optimal for all practical purposes. Furthermore, each

increment in the bounding exponent causes about 20% increase in the run time. Recall

from section 5.2.1.2 that part of the motivation for creating the BIGE algorithm

was to further reduce the value of k used in the H(k)+ODP algorithm. The BIGE

128

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

Input : odd and positive integers x and y, the bounding value 2k

Output: A(x, y)

tmp = x+ y1

do { tmp = tmp/2 } while (tmp is even)2

add element tmp to the set A(x, y)3

tmp = ∣x− y∣4

do { tmp = tmp/2 } while (tmp is even)5

add element tmp to the set A(x, y)6

i = 17

while (((x≪ i) + y) ≤ 2k) {8

add element (x≪ i) + y to the set A(x, y)9

add element ∣(x≪ i)− y∣ to the set A(x, y)10

i = i+ 111

}
while (∣(x≪ i)− y∣ ≤ 2k) {12

add element ∣(x≪ i)− y∣ to the set A(x, y)13

i = i+ 114

}
i = 115

while (((y≪ i) + x) ≤ 2k) {16

add element (y≪ i) + x to the set A(x, y)17

add element ∣(y≪ i)− x∣ to the set A(x, y)18

i = i+ 119

}
while (∣(y≪ i)− x∣ ≤ 2k) {20

add element ∣(y≪ i)− x∣ to the set A(x, y)21

i = i+ 122

}
return A(x, y)23

Algorithm 2: A computationally efficient method for computing the adder-
operation subject to A(x, y) ≤ 2k.

129

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

algorithm is sometimes faster than H(k)+ODP. We believe 20% run time is more

important than producing a worse solution on the order of once in every 104 cases.

In Algorithm 2, we provide the pseudo-code used by all of our algorithms any

time the adder-operation is computed (the BIGE algorithm uses k = b + 2). Note

that values are not always stored. For example, as we generate each element, we may

check for membership in a set and then discard the element. To minimize storage, we

typically compute the tests in Tables 5.11, 5.12, and 5.13 in a depth-first manner.

One special case is to test whether A(x, y) ∩ {1} ∕= ∅. Let odd(n) = odd(n/2)

if n is even and odd(n) = n if n is odd. Given odd and positive integers x and y,

A(x, y)∩{1} ∕= ∅ is satisfied iff at least one of the following are satisfied: odd(x+1) = y,

odd(x− 1) = y, odd(y + 1) = x, odd(y − 1) = x, odd(x+ y) = 1, or odd(∣x− y∣) = 1.

We exploit this property in cases 5, 6, and 9 of the cost 5 tests (from Table 5.11).

5.2.4 Experimental Results

As stated in section 5.2.3, we can tradeoff run time for quality of solution by changing

the bound on the largest intermediate term to consider. The results of our benchmark

were obtained by enforcing A(x, y) ≤ 2b+2. We later experimented with different

bounds, but since the results changed by a negligible amount, repeating the entire

benchmark is pointless (also, our results have experimental error due to the use of

random constants). For example, the average number of adders and average run

times (in seconds) at 32 bits are respectively: 5.87494 and 7.457 with a bound of 2b+1,

5.87471 and 8.851 with a bound of 2b+2, and 5.87442 and 10.052 with a bound of

2b+3. For each increment in the bounding exponent, the run time increases roughly

20% and the number of adders decreases by about 3 ⋅ 10−4. Although not shown, the

130

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 4 8 12 16 20 24 28 32

av
er

ag
e

nu
m

be
r o

f a
dd

er
s

bit width

0.001

0.010

0.100

1.000

10.000

16 20 24 28 32

av
er

ag
e

ru
n

tim
e

(s
ec

on
ds

)

bit width

Figure 5.7: The average number of adders and average run time of the BIGE algorithm.
The average run time is less than 1 millisecond for bit widths up to 16.

131

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

Table 5.14: Bit width versus the sizes of the Cn sets and the total run time (in seconds)
required to compute all 4 sets. The run time is an average of 10 trials. Given a SCM
constant of bit width b, the BIGE algorithm uses Cn sets that contain all elements up
to 2b+1.

Bit width of the C1 size C2 size C3 size C4 size Total run time
SCM constant
12 24 279 2083 1710 0.02
16 32 559 6172 24718 0.16
20 40 935 20617 333041 0.73
24 48 1407 41431 1133053 2.37
28 56 1975 72789 2798831 5.64
32 64 2639 116819 5769889 13.02

number of adders changes by even less as the bit width decreases. Since the number

of adders is an integer, this means that we will find a worse solution roughly 3 times

in every 104 cases for each increment. The minimum bound to guarantee optimality

is at least 2b+3 and more research is needed to establish it. However, for practical

purposes, using a smaller bound leads to good solutions in less run time.

We implemented the BIGE algorithm in C. As mentioned in section 5.1.6, all

experiments were run on 3.06 GHz Pentium 4 Xeon workstations running Linux. We

implemented the MAG algorithm in C to precompute the Cn sets for n = 1, 2, 3, 4.

For constants up to 20 bits, we used all constants. At each bit width at or above 21

bits, we used 100000 uniformly distributed random constants (the same constants

were used in the comparison with the heuristics in section 5.1.6 for bit widths 20, 24,

28, and 32). The average number of adders and the average run time are shown in

Figure 5.7. Due to the exhaustive nature of the BIGE algorithm, the average run

time appears to grow exponentially. Our results suggest that the average number of

adders increases in a sublinear manner with respect to the bit width. The authors of

the MAG algorithm [1] were the first to observe this trend. They explain that there

132

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

Table 5.15: Smallest numbers that require a specific part of the BIGE algorithm.

Adders / Method Number Bit Width
1 / lookup table 3 2
2 / lookup table 11 4
3 / lookup table 43 6
4 / lookup table 683 10
5 / H(1)+ODP 14709 14
5 / graphs 349725 19
6 / H(1)+ODP 699829 20
6 / H(2)+ODP 23242013 25
6 / intrinsic graphs 43667339 26
6 / non-intrinsic graphs 79269941 27
7 / H(2)+ODP 224227085 28

are many more ways to share intermediate terms as the number of adders increase, so

it becomes increasingly likely that a solution better than the CSD cost exists. The

average CSD cost grows linearly with respect to the bit width [4], and as computed

in [2], there are 2, 5, 15, 54, 227 unique vertex reduced graph topologies for SCM

solutions with 2, 3, 4, 5, and 6 adders, respectively.

The sizes of the Cn sets are shown in Table 5.14, along with the average run time

(over 10 trials) needed to compute the sets. In Table 5.15, we show the smallest

constant that uses each part of the BIGE algorithm. For example, since we search in

the order of increasing adder cost, the first time that H(1)+ODP is used is for the

smallest number that requires 5 adders, which is 14709. We try a heuristic before an

exhaustive search, thus from Table 5.15, the first case in which H(1)+ODP cannot

find a solution with 5 adders is 349725. Since random constants are used for bit widths

of 21 and above, some of the values in Table 5.15 are estimates.

Finally, in Table 5.16, we examine what percent of the solutions are found by each

part of the BIGE algorithm as well as the average run time for each part. As shown

133

5.2. Optimal SCM M.A.Sc. - J. Thong - McMaster

Table 5.16: Detailed distributions for each part of the BIGE algorithm.

(a) What percent of the solutions were produced by each part of the BIGE algorithm.

Adders / Method 16 bits 20 bits 24 bits 28 bits 32 bits
0 / lookup table 0.026 0.002
1 / lookup table 0.343 0.034 0.004
2 / lookup table 3.456 0.480 0.040 0.013
3 / lookup table 28.238 6.464 1.022 0.161 0.010
4 / lookup table 65.768 52.592 17.381 3.525 0.579
5 / H(1)+ODP 2.168 40.358 67.860 38.881 11.727
5 / graphs 0.068 7.692 9.880 3.563
6 / H(1)+ODP 0.0001 6.001 46.370 60.292
6 / H(2)+ODP 0.912 7.254
6 / intrinsic graphs 0.096 2.602
6 / non-intrinsic graphs 0.161 10.024
7 / H(2)+ODP 0.001 3.949

(b) The average run time (in seconds) of each part of the BIGE algorithm.

Adders / Method 16 bits 20 bits 24 bits 28 bits 32 bits
0 / lookup table <0.001 <0.001
1 / lookup table <0.001 <0.001 <0.001
2 / lookup table <0.001 <0.001 <0.001 <0.001
3 / lookup table <0.001 <0.001 <0.001 <0.001 <0.001
4 / lookup table 0.001 0.002 0.005 0.012 0.023
5 / H(1)+ODP 0.007 0.012 0.022 0.036 0.055
5 / graphs 0.034 0.114 0.190 0.284
6 / H(1)+ODP 0.190 0.353 0.585 0.921
6 / H(2)+ODP 1.437 2.343
6 / intrinsic graphs 1.918 3.527
6 / non-intrinsic graphs 3.152 14.924
7 / H(2)+ODP 86.290 165.140

134

5.3. Minimization of Single-Bit Adders M.A.Sc. - J. Thong - McMaster

in Table 5.16(a), the bounding heuristic typically produces most of the solutions

returned by the BIGE algorithm. This was expected since we knew that H(k)+ODP

is nearly optimal before we created the BIGE algorithm. Thus in most cases, we

only need to exhaustively search up to n− 1 adders in order to show a solution with

n adders is optimal. From Table 5.16(b), exhaustively searching 6 adders requires

about 3 minutes at 32 bits whereas more than 60% of the solutions at 32 bits have 6

adders and are found in less than one second on average. The exhaustive solution

space explodes with each extra adder, thus not having to search the last adder is very

beneficial. Note we exhaustively search 6 adders to prove that a 7 adder solution is

optimal. When solving the SCM problem for the given target, the BIGE algorithm is

much more computationally efficient than the MAG algorithm. The MAG algorithm

must exhaustively search up to the last adder and it does not use the target to prune

the search for useful intermediate terms.

5.3 Minimization of Single-Bit Adders

In this section, we will use single-bit adders to estimate of the amount of logic needed

to implement a constant coefficient multiplier. This is a more accurate metric than the

number of additions or subtractions (less abstraction), thus we expect better solutions.

We will begin by examining how shifts affect the number of single-bit adders. In

section 5.3.2, we propose an optimal algorithm that first minimizes the number of

adder-operations. Among the equally good solutions, it keeps the one(s) with the

minimum number of single-bit adders. The minimum adder depth is used to break

any remaining tie (beyond this, the choice is arbitrary). Experimental results and a

discussion of the results are presented in section 5.3.3.

135

5.3. Minimization of Single-Bit Adders M.A.Sc. - J. Thong - McMaster

5.3.1 Single-Bit Adders

We will assume ripple-carry adders are used since our objective is to minimize the

amount of logic resources. As a case study, we will only consider single-bit full adders

in FPGAs. In FPGAs that use 4-input look-up tables (LUTs) as the programmable

logic elements, each single-bit adder requires 1 LUT (in most FPGAs, the carry

chain is passed through adjacent LUTs in a different manner than how logic elements

are typically used). The derivations that we will provide can easily be modified for

single-bit half adders in ASICs, for example.

Assume x is representable on b bits, then c ⋅ x can be represented on ⌈log2 ∣c∣⌉+ b

bits, where c is an odd integer constant. If c ⋅x has the form c ⋅x = (d ⋅x)± ((e ⋅x)≪n)

where d and e are odd integer constants, notice that the n least significant bits of

d ⋅ x are added with the zeros that serve as placeholders in (e ⋅ x)≪n. Thus, the least

significant n bits of c⋅x incur no cost, so we only need ⌈log2 ∣c∣⌉+b−n single-bit adders.

However, if we subtract the non-shifted term (i.e. c ⋅x = ((e ⋅x)≪n)− (d ⋅x)), then all

⌈log2 ∣c∣⌉+b single-bit adders are needed, as negating the least significant n bits of d ⋅x

does not come for free. The only other case to consider is c ⋅ x = ((d ⋅ x)± (e ⋅ x))≫n.

Since (c ⋅x)≪n requires ⌈log2 ∣c∣⌉+ b+n bits to be represented, (d ⋅x)± (e ⋅x) requires

⌈log2 ∣c∣⌉+ b+ n single-bit adders. The n least significant bits of (d ⋅ x)± (e ⋅ x) are

necessarily zero, but we still need ⌈log2 ∣c∣⌉+ b+ n LUTs in an FPGA because the n

least significant bits may produce a carry which affects the final answer c ⋅ x.

It is favorable to add or subtract the left-shifted term and unfavorable to use

right shifts. If all terms are positive and the subtracted term is left-shifted, we will

likely produce a negative number (the left-shifted term is typically larger than the

non-shifted term after considering shifts). By allowing negative numbers in the search,

136

5.3. Minimization of Single-Bit Adders M.A.Sc. - J. Thong - McMaster

we facilitate the use of subtraction in such a way that less single-bit adders are needed,

so we can obtain better solutions. For example, with only positive numbers, there

is only one solution for 105x that uses the minimum number of adder-operations:

105x = ((7x)≪4)− (7x), where 7x = (x≪3)− x. It follows that 7x requires b+ 3

single-bit adders and 105x requires another b+ 7 single-bit adders. Notice that we can

propagate the subtraction through the solution: 105x = (−7x)− ((−7x)≪4), where

−7x = x− (x≪3). In this case, −7x costs b+ 3− 3 = b single-bit adders and 105x

requires another b+ 7− 4 = b+ 3 adders, thus 7 single-bit adders were saved.

We will consider negative terms and thus we will find better solutions at the

expense of more run time (obviously the solution space is larger with negative terms).

Clearly, a different definition of the adder-operation is needed (we use (2.2) from

section 2.3.3) and the Cn sets must be adjusted accordingly (their definitions in terms

of adder-operations were provided in section 5.2.2.2). Note that 5 ∈ C1 whereas

−5 ∕∈ C1 since we are not allowed to use two negations in one adder-operation

(i.e. −5x = −(x≪2)− x costs 2 adder-operations). As another example, −3 ∈ C1.

5.3.2 An Exhaustive Search

5.3.2.1 Justification for First Minimizing Adder-Operations

We name the exhaustive algorithm in this section the single-bit adder cost (SBAC)

algorithm. It first minimizes the number of adder-operations, then the number of

single-bit full adders, and then the adder depth (beyond this, the choice is arbitrary).

The SBAC algorithm is not optimal in terms of minimizing single-bit adders,

however we conjecture that it is unlikely that a solution with more adder-operations

will have fewer single-bit adders than the best solution among all of the ones that have

137

5.3. Minimization of Single-Bit Adders M.A.Sc. - J. Thong - McMaster

the minimum number of adder-operations. If we directly tried to minimize the number

of single-bit adders, we would need to search for solutions with more adder-operations.

In addition to not knowing where to stop, the solution space grows extremely fast

with respect to the number of adder-operations.

To maintain practical amounts of computation, the SBAC algorithm searches in

the order of increasing adder-operation cost, so the first solution found determines the

maximum number of adder-operations that we will consider. Thus, every solution

found by SBAC will have the same minimum number of adder-operations, so the

single-bit adder cost is actually the first metric that we compute.

5.3.2.2 Less Pruning than the BIGE Algorithm

If the best solution requires n adder-operations, the SBAC algorithm must search the

entire solution space of up to n adder-operations. Unlike the BIGE algorithm from

section 5.2, SBAC cannot stop after the first solution is found because there could

be another solution with same number of adder-operations but with fewer single-bit

adders. A heuristic bound is also useless. Even if a heuristic happened to find a

solution with the minimum number of adder-operations, the SBAC algorithm still has

to search the entire solution space of up to n adders, thus the exhaustive search will

eventually find the minimum number of adder-operations. The BIGE algorithm only

finds one solution with the minimum number of adder-operations and this is often

found by the bounding heuristic (as shown in Table 5.16). In this case, the exhaustive

search was only performed up to n− 1 adder-operations.

Minimizing the adder depth is only considered when the current solution found

has exactly the same number of adder-operations and single-bit adders as the best

138

5.3. Minimization of Single-Bit Adders M.A.Sc. - J. Thong - McMaster

solution found so far (we keep track of the best solution as the search is done). We

illustrate how to compute the adder depth in section 6.2.1. Since the depth is not a

constraint in SBAC, the depth cannot be used prune the search space (this type of

pruning is used in the algorithm in section 6.2).

Clearly, SBAC will require more run time than the BIGE algorithm. However, the

number of single-bit adders is a more accurate estimate of the amount of logic resources

compared to the number of additions and subtractions. If we were to measure the

amount of silicon used in the logic circuit (which is the absolute metric), we would

expect SBAC to produce better results than the BIGE algorithm. Hence, we are

trading run time for better solutions. In order to maintain reasonable run times, this

can only be done for small problem sizes. We will consider up to 24 bit constants in

our benchmark.

5.3.2.3 Following the Solution Towards Construction

Like the BIGE algorithm, in order to establish whether the SCM target needs m

adder-operations, we apply distance k tests to all possible sets of R with m− k + 1

elements. In the SBAC algorithm, up to 6 adders are considered, k is limited to 4

and we will vary k, and the Cn sets are needed for n = 1, 2, 3. Distance 2, 3, and

4 tests are discussed in sections 3.2.6, 6.1.3.1, and 6.1.4, respectively. Some tests

involve division by Cn, but each element in Cn could be constructed in more than

one way. Also, since we use vertex reduction, it may be possible to combine terms

in a different order so that the number of single-bit adders is reduced. Instead of

enumerating every variant of the solution found by a distance k test, we follow the

solution towards construction.

139

5.3. Minimization of Single-Bit Adders M.A.Sc. - J. Thong - McMaster

When we apply all of the distance k tests, we either prove that t cannot be

constructed with k more adders or we find all of the useful successors that lead to the

construction of t in k more adders. For k ≤ 4, each distance k test either performs an

intersection with the successor set S or uses guess and check where we must select

each element in S one at a time (the latter case is for leapfrog graphs). Assume a

solution with k more adders exists. For each useful s (we will do the following one

useful s at a time), we construct the useful s (add it to R) and then apply distance

k − 1 tests to find all of the useful successors at distance k − 1. We are guaranteed

to find a solution at distance k − 1 since we already found one of the solutions at

distance k. This can be applied recursively until we get to distance 1. We call this

process following the solution towards construction. Because the distance k tests find

all of the useful successors, this process can be used to find all of the solutions. To

minimize memory, we compute this process in a depth-first manner (i.e. we traverse

all the way to distance 1 first instead of processing each useful s at distance k first).

5.3.2.4 Reordering Solutions Before Evaluating the Single-Bit Adder Cost

Now that we can generate all of the possible solutions with the minimum number of

adder-operations, we must evaluate the single-bit adder cost of each solution. When

we generate all of the possible sets of R with a certain number of elements, we avoid

redundant R (for example, we will construct one of R = {1, 3, 5} or R = {1, 5, 3}, not

both). A method for generating R without redundancy is shown in detail in section

6.3.3.3. For a given solution, it is therefore possible that by constructing the terms

in the solution in a different order, we may be able to use fewer single-bit adders.

Even if redundant R were allowed, we would still end up processing all of the same

140

5.3. Minimization of Single-Bit Adders M.A.Sc. - J. Thong - McMaster

solutions with the terms in a different order (due to the completeness of the search),

thus we may as well prevent redundant R to reduce the run time.

For each solution P that we find, we try to construct the elements in P in every

possible order. In other words, for each p ∈ P , we check if p can be constructed using

the terms constructed so far (the element 1 is always initially constructed for free).

If p can be constructed, we remove p from P (i.e Pnew = P∖{p}) and then repeat

the process for Pnew. This recursive process is done in a depth-first manner and will

produce all of the valid solutions that can be obtained by permuting the elements in

the original P . For each valid solution, we can evaluate the single-bit adder cost using

the approach illustrated in section 5.3.1. In order to determine if p can be constructed

with the terms constructed so far (let R′ denote the terms constructed so far), we

test if A(p,R′) ∩R′ ∕= ∅. This is a functionally equivalent but more computationally

efficient test to determine if p ∈ A(R′, R′) (this was explained in section 3.2.2).

5.3.3 Experimental Results

We implemented the SBAC algorithm in C. All experiments were run on a 3.06 GHz

Pentium 4 Xeon workstation. Only up to 6 adders were considered, but solutions

were found for all of the tested cases. We only tested up to 24 bits, which is sufficient

to implement multiplication by a single-precision floating point number (the mantissa

is 24 bits, as 23 bits are stored and 1 bit is implied).

We compared the SBAC and BIGE algorithms using the same constants. The

average number of single-bit adders is shown in Figure 5.8 and all of the results are

shown in Table 5.17. Both algorithms enforce −2b+2 ≤ A(x, y) ≤ 2b+2, as discussed

in section 5.2.3 (SBAC needs a lower bound since it accepts negative targets and

141

5.3. Minimization of Single-Bit Adders M.A.Sc. - J. Thong - McMaster

0

20

40

60

80

100

120

140

160

16 18 20 22 24
bit width

BIGE
SBAC

av
er

ag
e

nu
m

be
r o

f s
in

gl
e-

bi
t a

dd
er

s

Figure 5.8: The average number of single-bit adders versus bit width.

may use negative integers as intermediate terms regardless of the sign of the target).

At each bit width, 10000 uniformly distributed random constants were used. Only

unsigned constants were used in the benchmark (as required by the BIGE algorithm).

Although not shown, the SBAC algorithm produces similar average results for both

positive and negative constants of the same signed bit width, i.e. a 16 bit unsigned

constant requires 17 bits in signed binary (2’s complement). The absolute number

of single-bit adders depends on the bit width of the multiplicand (the value of b in

section 5.3.1). We assume the SCM constant and the multiplicand have the same bit

width, thereby providing absolute numbers in Figure 5.8 and Table 5.17. Given that

all solutions have n adder-operations, there will be a common factor of n ⋅ b single-bit

adders, so we really only needed to compare the relative number of single-bit adders.

As expected, both algorithms find solutions with the same number of adder-

operations and SBAC finds better single-bit adder solutions at the expense of more

run time. From Table 5.17, the number of single-bit adders typically decreased by

about 25% whereas the run time increased by 2-3 orders of magnitude. The worst case

run time of SBAC drastically increases at 22 bits since we must now search at cost 6.

142

5.3. Minimization of Single-Bit Adders M.A.Sc. - J. Thong - McMaster

Table 5.17: The experimental results of the SBAC and BIGE algorithms.

16 bits 18 bits 20 bits 22 bits 24 bits
Adder-operations (average) 3.66 3.99 4.33 4.61 4.87
Adder-operations (worst case) 5 5 5 6 6
Single-bit adders SBAC 59.85 74.56 90.28 106.56 124.96
(average) BIGE 76.32 93.14 111.30 130.43 151.52
Single-bit adders SBAC 108 120 136 162 192
(worst case) BIGE 133 156 178 207 254
Adder depth SBAC 3.63 3.95 4.26 4.53 4.77
(average) BIGE 3.64 3.84 3.95 4.04 4.19
Run time (seconds) SBAC 0.08 0.46 1.25 6.75 111.74
(average) BIGE <0.01 <0.01 <0.01 0.01 0.05
Run time (seconds) SBAC 4.24 5.19 6.23 1305.43 2309.29
(worst case) BIGE 0.03 0.09 0.25 0.63 1.10

From Table 5.17, the SBAC algorithm typically produces solutions with a larger

adder depth than the BIGE algorithm. In the SBAC algorithm, the adder depth is

only considered when there are multiple best solutions in terms of adder-operations

and single-bit adders, thus we expect it to have little impact. Our results illustrate the

inherent tradeoff between minimizing the amount of logic resources and optimizing the

logic circuit for speed. These objectives can be estimated by the number of single-bit

adders and the adder depth, respectively. For SCM, the adder depth has little practical

importance (clearly, it can be no larger than the number of adder-operations). For

high-throughput circuits, registers can be placed between each addition or subtraction

(by reducing the register-to-register delay, the circuit can be clocked faster). In this

case, minimizing single-bit adders will also minimize the number of registers. If

the throughput of the constant coefficient multiplier is not on the critical path of a

system-wide task, it makes little difference whether 4 or 5 adders are placed serially.

Conversely, MCM solutions may have a much larger adder depth since we can build

targets off of other targets (we discuss the adder depth for MCM in section 6.2).

143

5.4. Concluding Remarks on SCM M.A.Sc. - J. Thong - McMaster

5.4 Concluding Remarks on SCM

In section 5.1, we analyzed and proposed solutions to simplest cases of the CSE digit

clashing problem. Compared to H(k), the best existing SCM heuristic, our proposed

algorithm H(k)+ODP on average produces better solutions (by considering ODPs) in

significantly less run time (by using smaller k, the search space is much smaller). In

section 5.2, we used an exhaustive search to either find the optimal solution or verify

the optimality of a heuristic solution. We obtain optimal solutions, and sometimes

in less run time than H(k)+ODP (increasing k to get a better solution is futile if

we know the existing solution is optimal). Finally, in section 5.3, we used single-bit

adders to obtain a more accurate minimization of the amount of logic resources, but

at the expense of a significant increase in the run time.

Constants are typically represented with no more than 32 bits in the problems of

the most practical importance in digital signal processing. We can optimally solve the

SCM problem for constants up to 32 bits in less than 10 seconds on average. For all

practical purposes, we have essentially closed the SCM problem. For constants up to

24 bits, we can provide even better solutions by considering the single-bit adder cost

(with an average run time of less than 2 minutes). We have also mentioned the idea

of using a parallel search to improve the run time and/or perform larger searches,

however the details of such are beyond the scope of the thesis and are left as future

work. In other applications that involve multiplication by very large constants (such

as cryptography), exhaustive optimal approaches are infeasible, but it may be possible

to reuse the heuristic strategies developed for H(k)+ODP. Better solutions can be

obtained by partially resolving the CSE digit clashing problem.

144

Chapter 6

New MCM Algorithms

We will propose several new algorithms for solving the multiple constant multiplication

problem in this chapter. When designing a MCM heuristic, one can exploit the

redundancy within each constant as well as the redundancy between constants. In

section 6.1, we will analyze the implications and the tradeoffs due to favoring one

type of redundancy over the other. Within Hcub, one of the best existing MCM

heuristics, we will identify several aspects that can be modified to better exploit the

redundancy within each constant. Also in section 6.1, we propose our heuristics H3

and H4. Compared to Hcub, H3 finds better solutions in less run time and H4 finds

significantly better solutions but at the expense of much more run time (although

the absolute run time is tolerable for moderate problem sizes). In section 6.2, we

introduce a depth-constrained version of H3 and discuss the implications of depth

constraining. In section 6.3, we propose a depth-first optimal MCM algorithm. Unlike

all of the existing exhaustive searches, we are able to use pruning even though there

are multiple constants. Finally, concluding remarks are provided in section 6.4.

145

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

6.1 Heuristic MCM

We will begin this section by analyzing the strengths and weaknesses of the DAG and

CSE frameworks in terms of their ability to find redundancy within each constant and

redundancy between constants. In section 6.1.1, we will examine how the underlying

framework of an algorithm can determine its ability to find certain types of redundancy.

We will use H(k)+ODP, Hcub, and DiffAG as case studies. In section 6.1.2, we will

identify the components within Hcub that can be easily modified to better exploit the

redundancy within each constant. We propose the H3 algorithm in section 6.1.3, along

with a very detailed analysis of the modifications from Hcub. In section 6.1.4, we

propose H4, a variant of H3 that produces better solutions at the expense of more run

time (even so, the absolute run time is still tolerable for the problem sizes in which we

designed H4 to perform well). Experimental results are provided in section 6.1.5. In

order to analyze the results, in section 6.1.6, we will introduce the idea of differential

adder distance and illustrate that DiffAG is a special case of this more generalized

notion. Finally, in section 6.1.7, we propose the H3+DiffAG hybrid algorithm, which

is the best performing generalized MCM heuristic (i.e. it performs well over the entire

spectrum of MCM problem sizes).

6.1.1 An Analysis of Redundancy Within Constants Versus

Redundancy Between Constants

6.1.1.1 An Introduction

Redundancy refers to how much a term can be reused within a solution to the constant

multiplication problem. For example, we can use two instances of 3x by sharing it

146

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

between 11x = (3x) + (x≪3) and 35x = (3x) + (x≪5) (for a MCM problem with

T = {11, 35}) or by sharing it within 45x = ((3x)≪4)− (3x) (for a SCM problem

with T = {45}). As the number of constants increases (assuming the bit width is

fixed), there will generally be more cases in which a target can be built off of other

targets, thus there is more redundancy between constants which can be exploited.

For a fixed number of constants, generally more adders are needed as the bit width

increases, thus there is more redundancy within each constant that we can exploit.

MCM algorithms search for both types of redundancy, however, as verified by our

results in section 6.1.5, better solutions are obtained if the heuristic is fine-tuned to

the characteristics of the given MCM problem instance. For example, given a MCM

problem with many constants represented on a small bit width, we are likely to obtain

a better solution by using a heuristic that favors redundancy between constants more

than it favors redundancy within constants. If the reverse conditions arise, we should

favor the other type of redundancy.

In the following subsections, we will analyze how well the CSE and DAG framework

can search for each type of redundancy in a qualitative manner.

6.1.1.2 Analysis of the CSE Framework

As stated in section 5.1.1.1, CSE provides a simple means to collect common terms

once we have decided which signed powers of two will be used to construct the constant

(the initial SD form). H(k)+ODP is nearly optimal, which suggests that CSE is highly

efficient at finding redundancy within a constant. In order to determine how useful a

new term is (which is represented by a pattern), we simply need to count how many

times the pattern occurs in the CSE form of the constant. A higher count means that

147

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

A0A000A0A 325× A
+ A0 0A00A00A 567× A

AAA000AA00 (223× A)≪2

A0 0A0000A00 (223× A)≪2 recoded to CSD

Figure 6.1: An illustration of CSE-related problems.

the term is highly redundant and therefore is more beneficial in terms of minimizing

adders. However the occurrence count may be hindered (made lower) by the CSE

digit clashing problem or by selecting the wrong initial SD form.

In SCM, the solution typically has only a few adders. With only a few iterations

of substitution, the patterns are composed of only a few original CSE digits. For

example, let A denote an original CSE digit (in the initial SD form), let C = B000B

and B = A0A, then C represents only four digits of A. Due to the limited problem

size in SCM, we generally do not encounter these problems associated with CSE (or

they are easily resolvable with ODPs and/or SD forms with more nonzero digits).

The solution to a MCM problem typically contains many more adders than in SCM,

thus we can encounter CSE-related problems that are much more difficult to resolve

(for example, several digits from two patterns could align). For instance, in a MCM

problem, assume we have already constructed the terms 325×A and 567×A and we

need to construct 223×A. This can be done as 223×A = ((325×A) + (567×A))≫2.

If we use the CSD form to represent the constants as shown in Figure 6.1, notice that

we have digits canceling, digits adding to produce a carry one position to the left, and

a recoding of digits due to digits being place adjacently. Furthermore, there is zero

relative shift between 325× A and 567× A, which cannot be represented by a CSE

substitution since only one digit can occupy each location in the CSE representation

(this was explained in detail in section 3.1.2).

148

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

As mentioned in section 4.6, the CSE-based algorithm in [37] uses addition and

subtraction to partially resolve this problem. The only case considered in [37] was

the construction of a target by adding or subtracting two existing terms. However,

we may also need to create a useful intermediate term this way and this term may

not appear in the CSE form of the constant. From the previous example, 325 × A

was a useful intermediate term for 223× A, but 325× A did not appear in 223× A

and 325× A may need to be constructed by adding two existing terms in a way that

would cause problems in CSE. Applying this argument recursively, the workaround

(using addition and subtraction) essentially uses the DAG framework.

In conclusion, CSE is good for finding redundancy within a constant (as demon-

strated by H(k)+ODP), but relatively poor at finding redundancy between constants

due to clashing and similar problems. In order to facilitate the sharing of terms

between constants, it is more practical to use a representation that inherently does

not have these problems (such as DAGs).

6.1.1.3 Analysis of the DAG Framework

Graphs have the advantage of not having any restrictions, such as allowing a zero

relative shift between terms. Also, no obfuscation of terms arises due to the repre-

sentation. Thus, one can use graphs to perform an exhaustive search, as done in

sections 4.1 and 5.2.2. For small adder distances, computing the exact adder distance

is feasible since we only need to test a few small graph topologies. However, it is

impractical to use exact distance tests for large distances because the number of graph

topologies increases very quickly with respect to the number of adders. Also, each

test would require more computation since we must traverse through more nodes.

149

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

In a MCM problem, the upper bound on the number of adders needed to construct

each target t is its SCM cost. By taking advantage of the redundancy between targets,

we can reuse terms that were needed for other targets anyways, thus it may be possible

to construct t with less adders than its SCM cost. In most cases, targets are typically

much closer than their SCM cost in terms of adder distance. For example, the average

optimal SCM cost at 16 bits is about 3.65 adders (see section 5.2.4) whereas for MCM

problems with 16 constants on 16 bits, Hcub produces solutions with an average of

about 27 adders (see section 6.1.5). The heuristic in Hcub is largely determined by

the closest targets due to the 10−dist(R∪{s}, t) term in the weighted benefit function

(see (4.8) in section 4.3.3). With an average of 1.7 adders per target, it is very feasible

to use graphs to determine how a target can be built off of other targets and/or off of

intermediate terms that are needed by other targets anyways. Conclusively, graphs

are generally good for exploiting the redundancy between targets.

When we search for redundancy within a constant, we are looking for several

instances of the same term. This is done easily in CSE, as we simply count how many

times each pattern occurs. For example, in A0A00A0A0A00A0A, we can substitute

B = A0A three times to get 00B00B0A0000B. The equivalent graph topology is

shown in Figure 6.2 and requires 4 adders. It follows that the test for this topology is

A(t, 1) ∩ C3 ∕= ∅. Let c3 denote the common element between A(t, 1) and C3, then c3

in the DAG framework corresponds to 00B00B000000B in the CSE framework (notice

this is missing the A since we adder-operated t with 1). The term B in the CSE

framework corresponds to the supporting term which enabled c3 to be constructed in

the DAG framework. This supporting term is in C1. We try to remove one nonzero

digit in the CSE form by adder-operating t with 1 in the DAG test. However the

150

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

t1 c3

A B

Figure 6.2: The equivalent graph topology for 00B00B0A0000B. The target t is
composed of 3 instances of B and 1 instance of A. The test is A(t, 1) ∩ C3 ∕= ∅.

DAG test tries every possible placement of the nonzero digit. In CSE, we are able to

see what terms are useful whereas we must guess and check for useful terms in the

DAG framework. In general, in order to find many instances of a term with DAGs, we

would need to search several large graph topologies, which would require a significant

amount of computation. Searching for CSE patterns is much easier.

In conclusion, graphs are good for exploiting the redundancy between constants.

Constants are typically quite close together in terms of adder distance, so an exhaustive

search is feasible (for small adder distances) and has the advantage of not missing

any useful terms. In order to exploit the redundancy within a constant, graphs can

still be used for small adder costs, however it becomes more computationally efficient

to use CSE as the number of adders increases.

6.1.1.4 Analysis of the DiffAG and Hcub Algorithms

We are only concerned with the heuristic part of the algorithms (both DiffAG and

Hcub reuse the optimal part of RAG-n). On each iteration that the heuristic part

of DiffAG is used, one term in one of the difference sets Di,j is selected. If this term

is in S, we construct a new term, otherwise we add a new target to T ′. Once any

term in Di,j is constructed, then constructing any term in node Ni or node Nj will

allow every term in both nodes Ni and Nj to be constructed off of the other terms in

151

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

these nodes as well as off of the existing terms. Clearly, DiffAG favors redundancy

between targets. For targets that are far away in terms of adder distance, DiffAG will

create new targets so that it can exploit the redundancy between all of these targets

(instead of exploiting the redundancy within each of the original targets). In general,

difference-based algorithms, such as [24--27], favor the redundancy between targets.

We only consider DiffAG since it outperforms all of [24--27].

Hcub is relatively balanced in terms of using redundancy within and between

constants. Recall the heuristic part of Hcub selects one successor according to (6.1).

Hcub(R, S, T) = arg max
s∈S

(∑
t∈T ′

B̂(R, s, t)

)
(6.1)

B̂(R, s, t) = 10−dist(R∪{s}, t) (dist(R, t)− dist(R ∪ {s}, t)) (6.2)

The adder distance must be computed in order to evaluate the weighted benefit

function (6.2). Notice that (6.2) is a function of a single target, not T ′. Therefore,

(6.2) measures the redundancy within each constant. By adding the benefit over all

t ∈ T ′, we can quantify how much joint benefit each successor s provides for all of

the targets. Thus, redundancy between constants is strictly handled by (6.1).

DiffAG needs 3 adders for the SCM of 45. Hcub can find the optimal solution,

which requires a multiplicative decomposition: 45x = ((3x) ≪ 4) − (3x) where

3x = (x≪1) + x. In DiffAG, one node corresponds to the existing terms in R, thus if

a term in the difference set between R and t is also in the successor set S, then t is

distance 2. The difference sets enables DiffAG to find t ∈ A(R, S), but DiffAG cannot

find t ∈ C1 ⋅ S. Unlike the additive difference sets, multiplicative decompositions are

unidirectional, which limits the ability to share terms between constants.

152

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

However, sometimes it is better to reduce the adder distance between the targets

first (before reducing the distance from R to the targets). For example, consider a

MCM problem with T = {41, 103}. DiffAG will realize that 103x = ((9x)≪4)− 41x,

thus 9 is in the difference set between 41 and 103. Also, 41x = (x≪ 5) + (9x)

where 9x = (x≪3) + x. DiffAG finds a solution with 3 adders whereas Hcub needs

4. Although Hcub could also find 41x = (x≪ 5) + (9x), there are multiple useful

supporting terms for 41x and Hcub arbitrarily selected the wrong term in this case.

Since Hcub does not consider the difference sets used in DiffAG, it has no reason to

construct 9x in particular. It arbitrarily chooses to construct the supporting term

5x = (x≪ 2) + x so that 41x = ((5x)≪ 3) + x. With R = {1, 5, 41}, 103 is not

constructible with one more adder. In the remaining solution found by Hcub, 9x and

103x are constructed the same way as illustrated above.

6.1.2 Enhancing the Use of Redundancy Within Constants

6.1.2.1 Justification

By designing a heuristic which is better able to exploit the redundancy within constants,

we expect that it will perform better than the existing algorithms on MCM problems

with only a few constants but on large bit widths. However, it may also perform

worse on problems with many constants of small bit width. As shown in section 6.1.5,

better results are obtained when the heuristic is catered towards the characteristics of

the MCM problem instances.

Our proposed algorithms H3 and H4 place more emphasis on redundancy within

constants. However, overly favoring the redundancy within constants can produce

poor solutions. For example, given a few large constants, RAG-n will typically operate

153

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

mostly by using the optimal SCM lookup table, thereby sharing few or no terms

between constants. As shown in [6], Hcub consistently outperforms RAG-n (except

for SCM) which suggests that even for MCM problems with a few large constants,

the redundancy between constants is not trivial.

In section 6.3.4.4, we will show that the size of the solution space in the MCM

problem grows faster with respect to the bit width than with respect to the number

of constants. As the compute power continues to increase in the future, exhaustive

searches will be able to solve larger problem sizes within a reasonable amount of time.

However, the problem sizes will grow by more in the number of constants than in

the bit width. By design, our heuristics H3 and H4 achieve more improvement over

other heuristics as the bit width increases, thus H3 and H4 will likely be the last of

the heuristic algorithms to be replaced by an exhaustive search in the future.

6.1.2.2 Modification of the Components in Hcub

As explained in section 6.1.1.4, redundancy between constants is strictly handled

by summing the benefit B̂ over all t ∈ T ′. Since our focus is on redundancy within

constants, there is little motivation to modify (6.1). We are interested in the weighted

benefit function (6.2), which measures the redundancy within each constant. The

accuracy of this measurement depends on the accuracy of the measurement of the

adder distance. Hcub computes the exact adder distance up to distance 3, but beyond

this an estimate is used since the amount of computation increases very quickly

with respect to increasing the adder distance. In section 6.1.3, we will propose more

computationally efficient exact adder distance tests and we will significantly improve

Hcub’s distance estimators.

154

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

6.1.3 The H3 Algorithm

Our proposed algorithm H3 reuses equations (6.1) and (6.2) from Hcub. Our improve-

ment comes from how the adder distance is computed. As shown in section 6.1.5,

H3 is both faster and produces better solutions than Hcub. In each subproblem, we

adjust the quality of solutions versus the amount of computation so that overall we

gain in both. H3 uses exact distance 2 and 3 tests; we estimate distance 4 and higher.

6.1.3.1 Exact Adder Distance 3 Tests

For the exact distance tests, our objective is to reduce the computation. Hcub already

caches the sets t/C1 and t/C2 for each t, the successor set S is updated incrementally,

and S is kept sorted to facilitate a fast intersection with it. As shown in section 3.2.6,

for distance 2 we need to test t/C1 ∩ S ∕= ∅ and A(t, R) ∩ S ∕= ∅. These tests are

already computationally efficient, so no modification is needed.

The four distance 3 inverse graph traversal tests are shown in Figure 6.3. Note

that the test in Figure 6.3(a) covers two graph topologies. Before we do distance 3

tests, we must use distance 2 tests to confirm that the target is more than a distance

of 2, so A(t, R) from the distance 2 tests can be reused in the test in Figure 6.3(c).

Every time we traverse one adder in the graph, we can divide by C1 or adder-

operate with R. We can traverse 2 adders by dividing by C2 or adder-operating with

S (A(t, s) and constructing a s ∈ S each need one adder). In the distance 3 tests, we

back-project 2 adders and forward-project one adder (by intersecting with S).

As shown in [6], the A(t, S) ∩ S ∕= ∅ test requires much more computation than

all of the other tests. We will provide some insight to complement the mathematical

explanation given in [6]. Note that A(t, S) ∩ S ∕= ∅ and A(A(t, R), R) ∩ S ∕= ∅ are

155

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

and

ri

rj

t

ri

rj

t

s

s

(a) t ∈ A(ri, rj) ⋅ C2 = S ⋅ C2

IGT test: t/C2 ∩ S ∕= ∅

ri

rj

rk

t

s

(b) t ∈ A(ri, rj , rk) ⋅ C1 = A(R,S) ⋅ C1

IGT test: A(t/C1, R) ∩ S ∕= ∅

ri

rj

rk

t

s

(c) t ∈ A(A(ri, rj) ⋅ C1, rk) = A(S ⋅ C1, R)
IGT test: A(t, R)/C1 ∩ S ∕= ∅

ri

rj

t

rk

rl

s

s0

(d) t ∈ A(ri, rj , rk, rl) = A(S, S)
IGT test: A(t, S) ∩ S ∕= ∅

Figure 6.3: A summary of the distance 3 tests. The topology is first described and
then the corresponding inverse graph traversal (IGT) test is provided.

156

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

equivalent due to vertex reduction. All of the other tests involve division, so let

us compare how much computation is needed to construct t/C1 versus A(t, R). C1

contains a few tens of elements and often only a few will divide t with zero remainder

(which means that few or no terms go on the next step of the back-projection).

Conversely, for A(t, R), we must add, subtract, and shift every possible combination

of t and r for each element r ∈ R. R can get quite large, and we will consider problem

sizes with a few hundred adders in the solution (R must get this large when the

algorithm ends). In general, adder-operating is more expensive than dividing.

Most of the computation in the A(t, S) ∩ S ∕= ∅ test comes from constructing

A(t, S) (as each element in A(t, S) is constructed, a binary search is used to check for

membership in S since S is sorted). Unlike Hcub, we will cache solutions as they are

found. Thus, we are only concerned with finding new solutions that did not exist on the

previous iteration. Any newly created solution of the form t ∈ A(S, S) must use a newly

created successor as one or both of the supporting terms for t. Newly created successors

are created during the update of S between the previous and current iteration, let us

denote this with Supdate. As explained in section 4.3.3, Supdate = (C1 ⋅ r′) ∪ A(r′, Rold)

where r′ is the newly created element in R (i.e. Rnew = Rold ∪{r′}). Since Supdate ⊆ S,

then A(Supdate, Supdate) ⊆ A(Supdate, S), thus we need to test for A(t, Supdate) ∩ S ∕= ∅

to find new solutions. Clearly, this requires much less computation, as Supdate contains

a small fraction of the elements in S.

6.1.3.2 Estimating the Adder Distance

Exact distance tests at distance 4 and higher can be used, however this requires a

significant amount of computation, so Hcub uses an estimate for distance 4 and higher.

157

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

In the exact adder distance tests, when we confirm that dist(R, t) = n, we also find

which successors s are useful (i.e. which s have dist(R ∪ {s}, t) = n− 1). This is due

to the intersection with S. Conversely, the distance estimators in Hcub guess and

check how useful each s ∈ S is in order to compute dist(R ∪ {s}, t).

In Hcub, dist(R, t) takes the value of mins∈S dist(R ∪ {s}, t) from the previous

iteration (on the first iteration, dist(R, t) takes an arbitrary value of 1000). However,

in our proposed algorithms H3 and H4, we define dist(R, t) = mins∈S dist(R∪{s}, t)+1

(we do not use values from previous iterations). This enforces that dist(R, t) − dist(R∪

{s}, t) ∈ {0, 1}. At least one successor must be useful towards the construction of

t or else t is impossible to make since S represents the first step along any path of

construction. Hcub does not enforce dist(R, t) − dist(R ∪ {s}, t) ∈ {0, 1}, so the

benefit function (6.2) may assign a successor more benefit than it deserves. We have

observed that this distorted benefit function can misguide the heuristic (6.1), thereby

producing poor solutions, especially when Hcub is used with large bit widths. We

impose dist(R, t) − dist(R ∪ {s}, t) ∈ {0, 1} to reduce this distortion.

Now consider how dist(R ∪ {s}, t) is computed. For each successor s and each

target t, we would like to figure out what terms would enable the construction of t

with one adder (assuming s is also constructed). A term z is useful if t ∈ A(s, z). By

Theorem 1, this is satisfied iff z ∈ A(t, s). It follows that the set of useful terms is

Z = A(t, s). Let csd(Z) denote the minimum CSD cost of any element in Z, then

dist(R ∪ {s}, t) ≤ csd(Z) + 1. At least one element z ∈ Z can be constructed with

csd(Z) adders and then one more adder is needed to adder-operate z and s to make

t. It is possible that t could be constructed with fewer adders since we have not

examined all possible graph topologies, hence the use of the inequality.

158

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

Assuming s is constructed, we could also consider terms that would enable t to be

constructed with two more adders. By enumerating all of the graph topologies in which

two adders can construct t starting from s and z (and R), it follows that z is useful

term if t ∈ A(z, s) ⋅C1, t ∈ A(z, C1 ⋅ s), or t ∈ A(z, s, R). Using a similar argument as

before, the set of useful terms is Z = A(t/C1, s), Z = A(t, C1 ⋅ s), and Z = A(t, s, R),

respectively. In each of these cases, we have dist(R ∪ {s}, t) ≤ csd(Z) + 2. Each test

produces an upper bound on the number of adders needed to construct t. We are

interested in finding the minimum number of adders to construct t, thus we can take

the smallest upper bound. In conclusion, the distance is estimated in Hcub as shown

in (6.3).

dist(R ∪ {s}, t) ≈ min

⎧⎨⎩
csd(A(t, s)) + 1

csd(A(t/C1, s)) + 2

csd(A(t, C1 ⋅ s)) + 2

(6.3)

For each successor-target pair (each s and each t), the distance estimation in (6.3)

is independent of R, so it is computed only once in the entire algorithm, not every

iteration. For this reason, Hcub does not consider the Z = A(t, s, R) case.

In our interpretation, using a partial graph topology forces t to be constructed with

s, thus the distance estimators measure how much redundancy within t is encompassed

by s. The remaining cost csd(Z) represents the remaining redundancy within t that

s could not provide, so a smaller value of csd(Z) means that s is more useful in

constructing t.

While this seems like a reasonable approach, there are two fundamental problems.

Firstly, the partial graph topologies only consider one or two instances of s. In order

to find large amounts of redundancy within a constant, we need to consider many

159

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

instances of s. Secondly, the remaining redundancy within t (leftover from s) is poorly

captured by the CSD cost, as the CSD method does not share intermediate terms,

it only minimizes the number of terms (recall this is often done before CSE even

starts). For example, at 32 bits, we have observed that the first substitution made

by H(k)+ODP typically happens in 4 places in the CSE form of the constant. When

R = {1}, the average distance estimate that Hcub produces is about 9 adders whereas

the optimal SCM cost is less than 6 adders. The initial estimate in Hcub is very

misguided due to the CSD cost and only considering up to 2 instances of s.

In H3 and H4, we divide the distance estimation problem into two classes. In one

case, the target t may not be too far from R but far enough that the exact distance

tests cannot construct t. When only a few adders are needed to construct t, we do

not need to consider numerous instances of s (as this requires several adders). In the

second case, t may be so far away from R that its cost can be approximated with a

SCM solution (or a partially traversed SCM solution once the appropriate supporting

terms for t have been constructed).

6.1.3.3 Special Distance 4 Estimators

As proved in [6], Hcub may not terminate if the optimal SCM cost of Z is used. The

partial graph tests search only part of the solution space, so on the next iteration,

they are not guaranteed to find a successor s with a lower dist(R ∪ {s}, t) than the

existing dist(R, t). Thus there would appear to be no way of taking the first step in

constructing t. This problem does not occur if the CSD cost is used for Z, as proved

in [6]. We evade this problem in H3 and H4 by caching solutions as they are found.

We will reuse C2, which was already computed for the distance 3 test t/C2 ∩ S ∕= ∅.

160

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

We can make computationally efficient partial distance 4 tests with only a slight

modification to Hcub’s estimators. If dist(R, t) = 4, then dist(R ∪ {s}, t) = 3 for a

useful s ∈ S. From (6.3), this happens when csd(A(t, s)) = 2, csd(A(t/C1, s)) = 1, or

csd(A(t, C1 ⋅ s)) = 1. Since we need to construct these 3 sets in order to evaluate the

CSD cost, we may as well also check if any element in A(t, s) is also in S2 and if any

element in A(t/C1, s) or A(t, C1 ⋅ s) is also in S. S2 denotes the 2nd order successor

set, S2 = (C1 ⋅ S) ∪ A(R, S). However, it is computationally expensive to construct

S2 or to perform distance 2 tests for each element in A(t, s) (since A(t, s) is typically

a large set). Instead, we use C2 in place of S2. In addition to what Hcub’s partial

graph estimators can already detect, by intersecting with S or C2, we can detect

some targets at distance 4 with very little extra computation (both S and C2 are

sorted). Furthermore, once we confirm that a target is distance 4, we no longer need

to evaluate the CSD cost (only quick lookups with binary search are done).

Distance 3 tests are done before estimation to first confirm that t is more than

3 adders away from R. Since A(t, s) was already computed by the distance 3 test

in Figure 6.3(d), we reuse it in the A(t, s) ∩ C2 ∕= ∅ test. This idea of reusing sets

already computed for the exact distance tests will be revisited in section 6.1.4.

6.1.3.4 The H(k)+ODP Estimator

We have efficient distance 4 estimators, but the average SCM cost is about 6 adders at

32 bits, for example. We still need a good large distance estimator. One key observation

is that typically once the first three terms of a 32 bit target t are constructed, the

exact distance tests will find all of the possible ways to finish constructing t from here

(as t would then be 3 adders away from construction). Since adder distance tests close

161

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

to t are exact, the challenge is to find useful intermediate terms that are far away

from t. Another key observation is that the first term for constructing t must be in

C1 and thus does need to be built off of other terms. Generally, terms far away from

t are of low adder cost (elements of Cn with small n) and thus their construction is

unlikely to be assisted by other high cost intermediate terms. Based on our earlier

analysis of redundancy, a CSE based algorithm such as H(k)+ODP is well suited to

find these low cost useful intermediate terms which are far away from t.

Recall that H(k)+ODP searches and substitutes patterns in each SD form of

the constant individually and then selects the best answer at the end. Modifying

H(k)+ODP to return all of the equally good SCM solutions requires very little extra

computation (we just need to count and store the solutions). Although H(k)+ODP is

a heuristic whereas the BIGE algorithm is optimal, modifying the BIGE algorithm

to return all of the possible solutions would require us to exhaustively search at n

adders. Recall from section 5.2.4 that the bounding heuristic is often optimal, so the

exhaustive search only needs to be done up to n− 1 adders. Exhaustively searching

one more adder results in an increase in run time by a couple orders of magnitude.

In the H3 algorithm, we will use H(1)+ODP. Although H(2)+ODP would likely

provide better and/or more SCM solutions with the minimum cost, this typically

requires one order of magnitude more run time. In both the H3 and H4 algorithms, the

best SCM solutions are found and stored only on the first iteration. For each target,

the SCM solutions are updated as they are traversed. If a term gets constructed and

is also in a SCM solution of t, the remaining SCM cost of t is decremented by 1 and

the remaining SCM solutions of t are updated (we only store the parts of the SCM

solutions that have not been traversed yet). Since we track the remaining SCM cost

162

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

for each t, if any s ∈ S is also in a SCM solution of t, then dist(R ∪ {s}, t) is the

remaining SCM cost minus 1. Otherwise, given that s is not in a SCM solution of t,

then dist(R ∪ {s}, t) is simply the remaining SCM cost (as this s does not allow us to

traverse any remaining SCM solution of t).

In the H3 and H4 algorithms, we use both the modified partial graph topology

estimators and the H(k)+ODP estimator. For each s, dist(R ∪ {s}, t) is taken as the

minimum from either estimator. H(k)+ODP searches for good solutions and then

tries to match these to the successor set. The partial graph tests do the opposite,

they estimate how much redundancy a successor has within a target. While the latter

approach may seem more viable, it is the accuracy of the estimator that is paramount.

6.1.3.5 The Vertex Reordering Problem and the Caching of Solutions

In the H3 algorithm, we enforce A(x, y) ≤ 2b, where b is the bit width of the largest

target. Conversely, Hcub enforces A(x, y) ≤ 2b+1. In both H3 and Hcub, the exact

adder distance tests are not truly exact (as explained in detail in section 5.2.3), however

our results suggest that they remain sufficiently accurate.

By imposing tighter restrictions on the adder-operation, we obtain smaller sets at

each node when doing the graph tests, thus the run time is reduced. One important

observation is that A(x, y) has a better coverage of small numbers than large numbers.

As the shifts in the adder-operation increase, the numbers that A(x, y) produce

become sparser. For example, C1 = {3, 5, 7, 9, 15, 17, 31, 33, 63, 65, 127, . . .} exhibits

this behavior. In the graph tests, we compute a back-projected set f(⋅) using adder-

operations and then intersect it with S. By construction, f(⋅), R, S, and Cn have

a higher density of small numbers, and thus so does f(⋅) ∩ S, for example. Even

163

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

65x = (x≪6) + x
16449x = (x≪14) + (65x)

8129x = (16449x)− ((65x)≪7
1065500737x = ((8129x)≪17) + (16449x)

(a) SCM solution found by H(k)+ODP.

ri

rj

rk

ts

65

1

1

16449

8129

1065500737

(b) After 65 is constructed (R = {1, 65}), the remaining topology is t ∈ A(A(s,R), s).

65x = (x≪6) + x
16449x = (x≪14) + (65x)

2156019777x = ((16449x)≪17) + (16449x)
1065500737x = (2156019777x)− ((65x)≪24)

(c) Remapped version of the SCM solution found by H(k)+ODP.

ri

rj

rk

t

s

16449

65

1

1

2156019777

1065500737

(d) After 65 is constructed, the remapped remaining topology is t ∈ A(A(s, s), R).

Figure 6.4: An illustration of the vertex reordering problem caused by the A(x, y) ≤ 2b

constraint. Nodes are labeled with values, edges are not labeled. By using vertex
reduction, 1065500737x = (16449x) + ((16449x)≪17)− ((65x)≪24).

164

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

for large targets, the back-projection f(⋅) inherently favors smaller numbers. We

have observed that this is reflected in the solutions of most MCM problems, as the

intermediate terms are typically smaller than the targets.

We discard SCM solutions that have terms larger than 2b. Since exhaustive

distance 3 tests subject to A(x, y) ≤ 2b are used, it is expected that we can transition

from traversing a SCM solution at distance 4 to using an exact test at distance

3. However, a problem arises due to vertex reduction. Consider a MCM problem

with T = {65, 1065500737}. The only cost 4 solution that H(k)+ODP finds which

uses 65 is shown in Figure 6.4(a). Once 65 is constructed, the remaining topology

is t ∈ A(s, s, R), where s = 16449. In order to satisfy the A(x, y) ≤ 2b constraint,

we must use a topology of t ∈ A(A(s, R), s), as shown in Figure 6.4(b). However,

the distance 3 test uses a topology of t ∈ A(A(s, s), R) in order to minimize the

computation required. The solution can be remapped to this topology, as shown in

Figures 6.4(c) and 6.4(d), however the remapped solution does not satisfy A(x, y) ≤ 2b.

Because of vertex reduction, terms can be combined in the wrong order, thereby

preventing the algorithm from following a solution that satisfies the A(x, y) ≤ 2b

constraint. To avoid this problem, any cached solution can be traversed until the

distance 2 tests can be used (the distance 1 and 2 tests cover all of the non-vertex

reduced graph topologies). Cached solutions include: SCM solutions, solutions found

by partial graphs, and solutions found by the exact distance 4 tests in the H4 algorithm.

6.1.3.6 Post-removal of Unnecessary Intermediate Terms

The idea of removing unnecessary intermediate terms after the solution is found was

first proposed in [36]. As illustrated in section 4.6, for each intermediate term r ∈ R

165

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

where r ∕∈ T , we check whether R∖{r} is still a valid solution (i.e. it still satisfies the

rk ∈ A(ri, rj) constraint for each k ≥ 1 where 0 ≤ i, j < k from Definition 3). This

may involve reordering the elements in R. Essentially, we solve a MCM problem for

T = R∖{r}. If this can be solved using only the optimal part of RAG-n, then R∖{r}

is valid solution and we permanently remove r from R, otherwise we cannot remove r

from R. This process is done for each r ∈ R.

Although we only consider the optimal part of RAG-n, we never construct the

successor set. Instead, we check if A(t, R) ∩R ∕= ∅, as the symmetry in this can be

exploited. This tests the equivalent of t ∈ A(R,R) = {z ∣ z = ∣2mri ± 2nrj∣, ri ∈

R, rj ∈ R}, but since ri and rj go through all possible values of R and we use the

shifts m > 0 and n = 0, we do not need to consider m = 0 and n > 0. The R is

never shifted when computing A(t, R). We absorb this shift with the R we intersect

with. When A(t, R) produces an even integer, this is divided by 2 until odd before we

intersect with R (this division is equivalent to left shifting the R we intersect with).

Only one pass is done through R. While this may lead to local minima, the run

time to use an exhaustive branching approach is not practical.

6.1.3.7 A Summary of the H3 Algorithm

H3 uses more efficient exhaustive distance 3 tests than Hcub. With the modified

partial graph estimators, we can detect some targets at distance 4 that Hcub cannot

by using only a little extra computation. H(1)+ODP is used to provide much better

large distance estimates. We use a tighter bound on the adder-operation to improve

the run time. Finally, the post-removal of unnecessary intermediate terms further

increases the amount of redundancy exploited both within and between constants.

166

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

6.1.4 The H4 Algorithm

Our proposed algorithm H4 is essentially a stronger version of H3 and it reuses (6.1)

and (6.2) from Hcub. With H3, we showed that better solutions can be obtained in

less run time than Hcub. However, for problems with only a few large constants, the

absolute run time is small. With H4, we will show that significantly better solutions

can be obtained, but at the expense of run time. Even so, the absolute run time is

still tolerable in many cases (results are presented in section 6.1.5).

We enforce A(x, y) ≤ 2b+2 in the H4 algorithm. This requires more computation

compared to Hcub and H3, but more solutions will be found by any graph-based

test, so there will be a higher chance of sharing useful successors between targets. H4

performs a post-removal of unnecessary intermediate terms (using the same method

as H3). The vertex reordering problem can still occur, so all cached solutions must be

stored up to distance 2 (so that they can be traversed this far). In addition to the SCM

and partial graph estimators, we must cache solutions found at distance 4 otherwise

we may not find a solution with the distance 3 tests subject to A(x, y) ≤ 2b+2.

The H4 algorithm uses exhaustive graph tests up to distance 4. Distance 2 and

distance 3 tests were discussed in sections 3.2.6 and 6.1.3.1, respectively. Several

examples were illustrated in section 5.2.2 in which we demonstrated how to apply

the inverse graph traversal method for designing an adder distance test for a given

graph topology. By applying the same technique to every possible graph topology

with 4 adders, we obtain all of the distance 4 tests, which are summarized in Table

6.1. The distance 2 and 3 tests must be done before the distance 4 tests in order to

confirm that a target has a distance of more than 3. Therefore, we can reuse A(t, R),

A(t/C1, R), A(t, R)/C1, and A(t, Supdate), as these sets were created and cached in

167

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

Table 6.1: A summary of the distance 4 tests.

Case Test Graphs covered in [2]

1
t

C3

∩ S ∕= ∅ 5*, 6, 7*, 8, 9*

2 A
(
t

C2

, R

)
∩ S ∕= ∅ 9, 10

3

A
(
t

C1

, R

)
C1

∩ S ∕= ∅ 7

4
A(t, R)

C2

∩ S ∕= ∅ 3*, 4

5 A
(
A(t, R)

C1

, R

)
∩ S ∕= ∅ 3

6 A
(
t

C1

, S

)
∩ S ∕= ∅ 5

7
A(t, S)

C1

∩ S ∕= ∅ 2

8 for each s ∈ S : A
(
A(t, s)

C1

, s

)
∩R ∕= ∅ 11

9 A(t, R, S) ∩ S ∕= ∅ 1

the distance 2 and 3 tests. Unlike the distance 5 tests in section 5.2.2, we cannot stop

after the first solution is found by a distance test. In order to compute dist(R∪ {s}, t)

for every successor s, all of the tests must be done to completion.

Distance estimation is needed for distance 5 and higher in the H4 algorithm. Many

of the ideas presented in H3 are reused. For example, the large distance estimator is

based on traversing SCM solutions found by H(2)+ODP. Compared to H(1)+ODP

(used in the H3 algorithm), typically H(2)+ODP produces solutions with fewer adders

and/or more equally good solutions (simply because it searches more SD forms). With

more solutions, there is a better chance that a term in a SCM solution of a target

168

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

Table 6.2: A summary of the distance 5 and 6 partial graph estimators.

Case Corresponding Distance 5 Distance 6
Distance 4 Case Estimator Estimator

1 6 A
(
t

C1

, S

)
∩ C2 ∕= ∅ A

(
t

C1

, S

)
∩ C3 ∕= ∅

2 7
A(t, S)

C1

∩ C2 ∕= ∅
A(t, S)

C1

∩ C3 ∕= ∅

3 8
for each s ∈ S: for each s ∈ S:

A
(
A(t, s)

C1

, s

)
∩ S ∕= ∅ A

(
A(t, s)

C1

, s

)
∩ C2 ∕= ∅

4 9 A(t, R, S) ∩ C2 ∕= ∅ A(t, R, S) ∩ C3 ∕= ∅

may also be in the SCM solution of another target, thereby facilitating more sharing

of terms between targets. H3 does not use H(2)+ODP since H(2)+ODP is slower

than Hcub. Given the simplicity of traversing a SCM solution, since the run time of

H(2)+ODP is much faster than H4, the H(k)+ODP estimator contributes little to

the total run time of H4 (thus the graph tests require most of the computation).

For targets that are not too far in terms of adder distance but still out of the

reach of the exact tests, the partial graph estimator is used. We can reuse sets that

are computed by the exhaustive distance 4 tests, thereby performing estimation with

little extra computation. From Table 6.1, all of the distance 4 tests except case 8

have the form

f(⋅) ∩ S ∕= ∅

where f(⋅) is the back-projected set. It follows that the corresponding distance 5

estimation test is

f(⋅) ∩ C2 ∕= ∅

In general, if f(⋅) ∩ S ∕= ∅ is an exact distance k test, then f(⋅) ∩ C2 ∕= ∅ is a distance

169

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

k + 1 estimator. It also follows that f(⋅) ∩ Cn ∕= ∅ is a distance k + n− 1 estimator.

Since the estimator does not intersect with S, in order to know which successors were

useful towards constructing t (to estimate dist(R ∪ {s}, t)), the back-projected set

f(⋅) must be a function of S. From Table 6.1, cases 6-9 have a f(⋅) which uses S.

Cases 6, 7 and 9 have the form f(⋅) ∩ S ∕= ∅, so the corresponding distance 5 and 6

estimators are f(⋅) ∩ C2 ∕= ∅ and f(⋅) ∩ C3 ∕= ∅, respectively. By a similar argument,

since case 8 from Table 6.1 has the form f(⋅) ∩R ∕= ∅, the corresponding distance 5

and 6 estimators are f(⋅) ∩ S ∕= ∅ and f(⋅) ∩ C2 ∕= ∅, respectively. A summary of the

distance 5 and 6 estimators is provided in Table 6.2.

The successor set S is typically a large set, so it is not practical to store all of the

f(⋅) sets needed for distance estimation for every s ∈ S. Thus, distance estimation

is done at the same time as the distance 4 tests. The f(⋅) sets are computed depth

first to minimize the amount of memory needed. Every time an element in f(⋅) is

generated, we check whether it is also in S, C2, and C3 for cases 6, 7, and 9, whereas

for case 8, we check if it is in R, S, and C2. If a target has already been confirmed

as distance 5, we do not test for membership in the last set (C3 in cases 6, 7, and

9, C2 in case 8). Likewise, if a target has already been confirmed as distance 4, no

distance estimation is done. Both the SCM and partial graph estimators are used

up to distance 6. Unlike H3, the partial graph estimators do not consider the CSD

cost. When t is more than 6 adders from R, only the SCM estimator is used and we

approximate dist(R, t) with the SCM cost of t (or the remaining SCM cost if we have

partially traversed a SCM solution). In general, as the adder distance from t to R

increases, the solutions with the least number of adders to construct t become less

dependent on the existing terms in R.

170

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

Table 6.3: The average number of adders in MCM problems with only a few large
constants. Note the percent improvement over Hcub is shown in italics.

2 constants 4 constants 8 constants 16 constants
20 bits Hcub 7.191 11.862 19.680 33.593

H3 7.061 1.8% 11.674 1.6% 19.474 1.0% 33.310 0.8%
H4 7.006 2.6% 11.666 1.7% 19.479 1.0% 33.313 0.8%

24 bits Hcub 8.601 14.114 23.764 39.886
H3 8.305 3.4% 13.816 2.1% 23.304 1.9% 39.432 1.1%
H4 8.171 5.0% 13.575 3.8% 23.157 2.6% 39.322 1.4%

28 bits Hcub 10.070 16.710 28.010 47.870
H3 9.523 5.4% 16.121 3.5% 27.036 3.5% 46.570 2.7%
H4 9.194 8.7% 15.464 7.5% 26.333 6.0% 46.290 3.3%

32 bits Hcub 11.681 19.593 33.211 56.330
H3 10.939 6.4% 18.576 5.2% 31.851 4.1% 53.090 5.8%
H4 10.260 12.2% 17.493 10.7% 29.804 10.3% 51.810 8.0%

6.1.5 Experimental Results

The same uniformly distributed random constants were used by all algorithms at

each bit width and number of constants. All experiments were benchmarked using

identical 3.06 GHz Pentium 4 Xeon workstations running Linux. We implemented H3,

H4 and DiffAG in C. We used the authors’ C++ implementation of Hcub from [46].

Our implementation of DiffAG is more efficient than the author’s version since we

incrementally update the difference sets Di,j and the successor set (by considering

only new pairings, as shown in section 4.3.3). In [28], incremental updating was

not discussed and run times were not reported. All shared components, such as

adder-operations, are computed in the same manner as H3 and H4.

6.1.5.1 A Few Large Constants

We expect the improvement of H3 and H4 (over Hcub) to increase as the amount of

redundancy within each constant increases, which happens as the bit width increases

171

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

5

6

7

8

9

10

11

12

13

14

16 20 24 28 32

av
er

ag
e

nu
m

be
r o

f a
dd

er
s

bit width

2 constants only

DiffAG
Hcub
H3
H4

(a) A fixed number of constants

5

10

15

20

25

30

35

40

45

50

55

60

65

2 4 6 8 10 12 14 16

av
er

ag
e

nu
m

be
r o

f a
dd

er
s

number of constants

32-bit constants only

DiffAG
Hcub
H3
H4

(b) A fixed bit width

Figure 6.5: The average number of adders in MCM with a few large constants.

and as the number of constants decreases. We used 1000 random instances at each

bit width and each number of constants, except for 28-32 bits and 12-16 constants

where 100 MCM instances were used.

In Figure 6.5(a), we show the average number of adders for MCM problems with 2

constants (with varying bit widths). In Figure 6.5(b), the average number of adders is

shown for MCM problems with 32 bit constants. DiffAG is included in the comparison

to illustrate the penalty incurred by using a heuristic which favors the wrong type

of redundancy compared to the given MCM problem instances. More results on the

172

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

Table 6.4: The average run time (seconds) for MCM with a few large constants.

2 constants 4 constants 8 constants 16 constants
24 bits Hcub 0.14 0.44 1.49 6.23

H3 0.08 0.23 0.57 1.49
H4 1.47 6.19 18.63 52.61

32 bits Hcub 0.70 2.64 11.14 55.25
H3 0.57 2.04 6.78 19.79
H4 20.01 170.30 1235.35 7537.37

average number of adders are presented in Table 6.3. Run times are shown in Table

6.4. The results confirm that more improvement is obtained where it was expected.

At 32 bits and 2 constants, H3 and H4 achieve an average improvement of 6.4% and

12.2% over Hcub, respectively. On average, H3 is faster and produces better solutions

than Hcub. H4 produces better solutions at the expense of more run time. Even so,

the absolute run time is tolerable in many cases. For example, given a MCM problem

with 4 constants at 32 bits, one may be willing to wait 3 minutes for a 10% reduction

in the number of adders (compared to Hcub). Unless the constants in the hardware

design are changed, the H4 algorithm only needs to be run once.

6.1.5.2 A General MCM Benchmark

We will compare the performance of H3, Hcub, and DiffAG over the entire spectrum of

MCM problem sizes. We will consider 2-100 constants and 12-32 bits. The comparison

for SCM was already considered in section 5.1.6 (although results for DiffAG were

not shown, they are on average worse than Hcub for SCM). Bit widths less than 12

are not considered since optimal MCM algorithms can solve problems with constants

up to 12 bits within reasonable amounts of time, as shown in section 6.3.4.2. At each

bit width and each number of constants, 100 random MCM instances were tested.

173

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

The average number of adders for Hcub.

 12 bits 16 bits 20 bits 24 bits 28 bits 32 bits
2 constants 4.57 5.83 7.29 8.45 10.04 11.67
4 constants 7.38 9.76 11.87 14.12 16.76 19.54
8 constants 12.04 16.38 19.84 23.65 28.12 33.34
16 constants 19.63 26.90 33.56 39.89 48.39 55.66

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

12 16 20 24 28 32

av
er

ag
e

nu
m

be
r o

f a
dd

er
s R

E
L

A
T

IV
E

to
 H

cu
b

bit width

DiffAG
(2 constants)

H3
(2 constants)

DiffAG
(4 constants)

H3
(4 constants)

DiffAG
(8 constants)

H3
(8 constants)

DiffAG
(16 constants)

H3
(16 constants)

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

12 16 20 24 28 32

av
er

ag
e

nu
m

be
r o

f a
dd

er
s R

E
L

A
T

IV
E

to
 H

cu
b

bit width

Figure 6.6: The average number of adders for H3, DiffAG, and Hcub in the general
MCM benchmark, part 1 of 2.

174

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

The average number of adders for Hcub.

 12 bits 16 bits 20 bits 24 bits 28 bits 32 bits
32 constants 33.33 45.05 60.01 68.63 81.41 98.38
50 constants 49.68 63.13 82.33 101.85 116.51 137.09
70 constants 68.41 81.56 106.58 138.36 151.70 179.39
100 constants 96.55 108.11 140.25 184.58 206.22 239.37

-5

-2.5

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

12 16 20 24 28 32

av
er

ag
e

nu
m

be
r o

f a
dd

er
s R

E
L

A
T

IV
E

to
 H

cu
b

bit width

DiffAG
(32 constants)

H3
(32 constants)

DiffAG
(50 constants)

H3
(50 constants)

DiffAG
(70 constants)

H3
(70 constants)

DiffAG
(100 constants)

H3
(100 constants)

-8

-4

0

4

8

12

16

20

24

28

32

36

12 16 20 24 28 32

av
er

ag
e

nu
m

be
r o

f a
dd

er
s R

E
L

A
T

IV
E

to
 H

cu
b

bit width

Figure 6.7: The average number of adders for H3, DiffAG, and Hcub in the general
MCM benchmark, part 2 of 2.

175

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

Due to the massive amount of experimental results, we present them in a non-

standard way. In Figures 6.6 and 6.7, the average number of adders for Hcub is

presented in a table format. We are interested in a comparison between H3, Hcub,

and DiffAG, so the average number of adders for H3 and DiffAG are given relative

to Hcub in the diagrams. For example, from the table in Figure 6.6, Hcub produces

solutions with an average of 19.54 adders for MCM problems with 4 constants at 32

bits. As shown in the top-left diagram in Figure 6.6, when the H3 algorithm is used

with 4 constants at 32 bits, H3 produces solutions with an average of -1 adders with

respect to Hcub. This means that H3’s absolute average is 18.54 adders. If the values

are positive with respect to Hcub, then more adders than Hcub are needed. Given the

absolute values for Hcub and the relative values for H3 and DiffAG, one can compute

the absolute values for H3 and DiffAG if desired.

From Figure 6.7, Hcub requires an average 96.55 adders for 100 constants on 12

bits. The optimal part of RAG-n indicates that we cannot use less than one adder

per unique target, so this implies that no more than an average of 96.55 unique odd

integers were used. We sampled uniformly distributed random constants, so after the

constants are preprocessed (made into odd integers by division by 2 until odd), some

constants could be the same or could be cost zero (some integer power of 2).

The average run times are provided in Table 6.5. Both H3 and DiffAG are faster

than Hcub. H3 is faster is primarily due to the more efficient distance 3 test. From

section 6.1.3.1, Supdate only consists of new pairings of R, so it is much smaller than

S. Thus for the distance 3 test A(t, S) ∩ S ∕= ∅, constructing A(t, Supdate) instead of

A(t, S) requires significantly less computation. DiffAG is faster than H3 due to our

efficient implementation, which facilitates a fair comparison between the algorithms.

176

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

Table 6.5: The average run time (seconds) for DiffAG, H3, and Hcub in the general
MCM benchmark.

16 bits 24 bits 32 bits
4 constants DiffAG 0.001 0.003 0.015

H3 0.015 0.111 2.017
Hcub 0.025 0.233 2.604

16 constants DiffAG 0.006 0.042 0.323
H3 0.073 0.749 19.414
Hcub 0.149 2.988 55.375

50 constants DiffAG 0.054 0.492 4.863
H3 0.293 3.888 87.663
Hcub 0.805 18.147 1075.174

100 constants DiffAG 0.178 2.009 22.121
H3 0.642 13.903 348.323
Hcub 1.428 72.309 9384.150

From Figures 6.6 and 6.7, for each bit width and for each number of constants,

H3 on average produces solutions with less or an equal number of adders compared to

Hcub. Thus, H3 can effectively replace Hcub, as H3 is also faster than Hcub. However,

DiffAG is sometimes able to outperform H3. Since DiffAG favors redundancy between

constants, DiffAG outperforms H3 when there are numerous constants on a small

bit width. As shown in Figures 6.6 and 6.7, for a fixed number of constants, as the

bit width increases, DiffAG typically performs progressively worse relative to Hcub

(because more redundancy within each constant can be exploited as the bit width

increases). Note that the maximum improvement over Hcub does not happen at the

smallest bit width. The results of [15] indicate that Hcub is close to optimal on small

bit widths, so there is a strict limitation on the amount of achievable improvement.

As the bit width increases and Hcub becomes farther from optimal, DiffAG is able to

produce better solutions. As the bit width further increases (for a fixed number of

constants), eventually H3 performs better. Note that in some cases (such as MCM

177

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

0

20

40

60

80

100

12 16 20 24 28

nu
m

be
r o

f c
on

st
an

ts

bit width

Figure 6.8: The approximate boundary where H3 and DiffAG produce solutions with
a similar number of adders on average.

problems with 2 constants in Figure 6.6), we have not examined small enough bit

widths to obtain any benefit from DiffAG. However, these problem sizes are small

enough to be solved optimally in practice, as shown in section 6.3.4.

There are two regions within the entire spectrum of MCM problem sizes in which

H3 and DiffAG produce solutions with a similar number of adders. Since both H3 and

DiffAG use the optimal part of RAG-n, one of the regions is obviously the area in

which few or no intermediate terms are needed. If there is enough redundancy between

constants, we can build a target off of other targets without the need for intermediate

terms, thus these MCM problems arise when there are numerous constants on small bit

widths. The other region of similar performance between H3 and DiffAG is when the

average number of adders per target is roughly 2. We discovered this via experimental

evaluation by iteratively zooming in on the region of interest. The approximate

boundary is shown in Figure 6.8. We will provide an explanation for this observation

in section 6.1.6.

178

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

6.1.6 Differential Adder Distance

In this section, we propose the idea of differential adder distance. Two targets ti and tj

are a differential adder distance of n from each other iff tj ∈ A(ti, r1, r2, . . . , rn), where

each ri ∈ R. We do not define differential adder distance as dist(R ∪ {ti}, tj) = n

because this does not imply dist(R ∪ {tj}, ti) = n. The anti-symmetry arises due to

multiplicative decompositions. For example, if tj ∈ C1 ⋅ ti, then dist(R ∪ {ti}, tj) = 1,

but is possible that dist(R ∪ {tj}, ti) ∕= 1. Conversely, additive decompositions are

symmetric, hence the use of vertex reduction in the differential adder distance.

There was no notion of differential adder distance in [28] (where DiffAG was

proposed). We will introduce it in order to explain the location of the boundary

where H3 and DiffAG produce solutions with a similar number of adders. In each

node in DiffAG, every element is a differential adder distance of 1 from at least one

of the other elements in the same node (in node Ni, for each t ∈ Ni, we must have

A(t, t′)∩R ∕= ∅ where t′ ∈ Ni). This results in the property that once any element in a

node is constructed, all of the other elements in the same node can then be constructed

with only one adder each. Therefore the cost to construct all of the terms in node Ni

is mint∈Ni
cost(t) + ∣Ni∣ − 1. We are only concerned with finding the cheapest element

in Ni, and recall that ∣Ni∣ denotes the cardinality of Ni. These nodes can be regarded

as how DiffAG pre-computes when the optimal part of RAG-n may be used later.

However, DiffAG will not detect ti ∈ C1 ⋅ tj.

Now consider the heuristic part of DiffAG. Let D denote the union of all the

difference sets Di,j = A(Ni, Nj). One element in D will be selected on the current

iteration. If D ∩ S ∕= ∅, we will construct a useful successor, otherwise a new target

t ∈ D is added to the set of remaining targets T ′. If D ∩ S ∕= ∅, then there exists a

179

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

pair of nodes Ni and Nj that are a differential distance of 2. More precisely, there

exists a ti ∈ Ni, tj ∈ Nj and s ∈ S such that ti ∈ A(tj, s), or equivalently tj ∈ A(ti, s).

Once s is constructed, on the next iteration, nodes Ni and Nj will be merged. Recall

that ∣Ni∣ − 1 of the elements in node Ni will be constructed optimally. Instead of

constructing only ∣Ni∣ − 1 + ∣Nj∣ − 1 terms optimally, by merging nodes Ni and Nj,

∣Ni∣+ ∣Nj∣ − 1 will be constructed optimally. It follows that if p pairs of nodes are

merged, DiffAG has pre-computed that p more terms can be later constructed by the

optimal part of RAG-n, hence we pick the s that occurs in the most Di,j sets.

In H3, if a target t is an adder distance of 2 on the current iteration, there exists a

s ∈ S such that dist(R ∪ {s}, t) = 1. Once this s is constructed, on the next iteration,

t will be distance 1, so the optimal part of RAG-n is used to construct t. Likewise in

DiffAG, given that s ∈ S and that s ∈ Di,j , constructing s will later lead to using the

optimal part of RAG-n.

As mentioned in section 4.2, if an algorithm can detect distance 2 targets as well

as find the useful intermediate terms, it makes little difference whether a top-down or

a bottom-up approach is used. If a target t is distance 2, there must be at least one

intermediate term that is distance 1 from R and is also distance 1 from t. In this case,

we would like to pick an intermediate term which can jointly benefit as many of the

targets as possible.

H3 maximizes the joint benefit based on adder distance whereas DiffAG maximizes

the joint benefit based on differential adder distance. Since R is one of the nodes in

DiffAG, intersecting Di,j with S can partially test for distance 2 (DiffAG can find

t ∈ A(R, S) but not t ∈ C1 ⋅ S). On the current iteration, for some s ∈ S, assume

there are k targets in which dist(R ∪ {s}, t) = 1 and assume that s occurs in m of the

180

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

Di,j sets. If we construct s, H3 will construct k targets optimally immediately (over

the next k iterations) whereas DiffAG will later be able to construct m more targets

optimally. If m is typically larger than k, DiffAG will produce better solutions.

DiffAG on average outperforms H3 when the average number of adders per target

is less than 2 in the final solution. Thus, in these MCM problems, we can deduce that

m is typically larger than k. Given less than 2 adders per target, there will be more

targets than intermediate terms, so some targets must be built off of other targets

and without intermediate terms. In other words, there is more redundancy between

constants than within each constant, so it is better to join targets first (by merging

nodes in DiffAG) rather than first building up to each target. In H3, we are not able

to detect if a target can be build off of another target.

Naturally, one could consider a differential distance of 3 in DiffAG. For example,

if D ∩ S = ∅, we then check if D ∩ A(R, S) ∕= ∅. If this is satisfied, a new target t

is added to T ′, where t is the element in A(R, S) that occurs in the most Di,j sets.

Otherwise (if D ∩ A(R, S) = ∅), we use the CSD cost like in the original DiffAG

algorithm. We have experimented with this, however the results are negligibly better

than DiffAG. The results are not shown in the thesis since they are typically less

than 0.5% better. More importantly, the boundary between H3 and DiffAG with

differential distance 3 is still around 2 adders per target. The fundamental reason is

because constructing a differential distance 2 term provides optimality later whereas

this is not the case for differential distance 3. For example, even if ti ∈ A(tj, tk, tl),

one intermediate term is still required, unlike ti ∈ A(tj, tk). In a solution with 3

adders per target, there are twice as many intermediate terms than targets, which

suggests that redundancy within each constant is more important.

181

6.1. Heuristic MCM M.A.Sc. - J. Thong - McMaster

6.1.7 The Hybrid H3+DiffAG Algorithm

The BBB algorithm (better of Bernstein or BHM) was described in section 4.4.1.

Given a SCM problem, the Bernstein and BHM algorithms independently solve the

same SCM problem and then BBB simply selects the better result. Better solutions are

obtained because some SCM instances require a mostly multiplicative decomposition

whereas others require a mostly additive decomposition. For the MCM problem, our

results in section 6.1.5.2 clearly indicate the importance of using a heuristic that favors

the most abundant type of redundancy in the given MCM problem. H3 and DiffAG

each produce the best solutions only within their respective domains.

We define the H3+DiffAG algorithm in a similar manner to BBB. H3 and DiffAG

independently solve the same given MCM problem and the better solution is selected.

Over the entire spectrum of MCM problem sizes, H3+DiffAG outperforms every

existing MCM algorithm. The only algorithms that have outperformed Hcub can

only do so for problem sizes that are small enough to solve optimally in practice, but

the H4 algorithm and optimal MCM algorithms are too slow to solve large problem

sizes in practice. In the DiffAG component of H3+DiffAG, we now also perform a

post-removal of unnecessary intermediate terms. The average results of H3+DiffAG

are nearly identical to taking to best of the average results from H3 and DiffAG (a very

small improvement occurs near the boundary since both H3 and DiffAG contribute

to the final solution over several MCM instances). DiffAG is used first because it is

faster. If DiffAG produces an optimal solution (by using the optimal part of RAG-n

on every iteration), a second algorithm is not needed. If we know a priori that many

more than 2 adders per target will be needed (for example, this is typical of MCM

problems with 2 constants on 32 bits), we could use only the H3 or H4 algorithm.

182

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

6.2 Depth Constrained MCM

In this section, we will modify the H3 from section 6.1.3 to satisfy a user-specified

constraint on the adder depth. The new algorithm is denoted as H3d. We introduced

the adder depth problem in section 4.7.1. As illustrated in section 6.2.1, the depth

constraint can be used to prune the search space. The SCM distance estimator is

used in H3d, so a depth constrained version of H(k)+ODP is needed. This will be

discussed in section 6.2.2. In section 6.2.3, we will illustrate the depth reordering

problem, which is similar to the vertex reordering problem that we encountered in H3

by enforcing A(x, y) ≤ 2b. We will also show how we resolve this problem. Finally,

experimental results are presented in section 6.2.4.

6.2.1 Using the Depth Constraint to Prune the Search Space

Let us first illustrate how we keep track of the adder depth. Let dn denote the depth

of node rn. The source node (the r0 = 1 node) corresponds to where the input is

applied in the adder tree that implements the constant coefficient multiplier. This

node has depth of d0 = 0. On each iteration of H3d, one adder is used to construct

a new term (one node is added to the DAG). The DAG indicates how the input is

added, subtracted and shifted with itself. Let us construct rk as rk ∈ A(ri, rj), where

ri and rj are existing terms in R. The number of serial additions from the input to

the rk node must be one more than to get to either of ri or rj , thus the depth at node

rk is dk = max(di, dj) + 1. An analogous technique can also be used for CSE.

In our implementation, we actually keep track of the remaining depth. If d̂ is the

depth constraint, then d̂ − dn is the remaining depth of node rn. If a term can be

constructed in more than one way, we only consider the maximum remaining depth.

183

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

ri

rj

rk

t

s
r.d. ≥ 0

r.d. ≥ 1r.d. ≥ 2

r.d. ≥ 2

r.d. ≥ 1

Figure 6.9: The depth constraint is used to prune graph tests. The target satisfies the
depth constraint if r.d. ≥ 0 (r.d. is short for remaining depth). To satisfy this, only s
and rk which have r.d. ≥ 1 can be used. In the general case, assertions can be applied
further backwards as needed.

When we construct S = A(R,R)∖R, we can only use operands in R which have

a remaining adder depth of at least 1. An element in r′ ∈ R may have a remaining

depth of 0 (which often occurs if r′ is a target), but if we construct anything off of

r′, the resulting terms will violate the depth constraint. If we construct a term with

0 remaining depth on the current iteration of H3d, we do not need to update the

successor set S for the next iteration because all of the new pairings of R violate the

depth constraint. This is a form of pruning.

From in section 3.2.6, the distance 2 tests are t/C1 ∩ S ∕= ∅ and A(t, R) ∩ S ∕= ∅,

which test for the topologies t ∈ A(s, s) and t ∈ A(r, s), respectively, where r ∈ R

and s ∈ S. Given that t must have a remaining depth of at least 0, then both r and

s must have a remaining depth of at least 1. This is illustrated in Figure 6.9. Let

R′ and S ′ denote the set of elements in R and S, respectively, that have a remaining

depth of at least 1. It follows that the depth constrained version of the distance 2

tests are t/C1 ∩ S ′ ∕= ∅ and A(t, R′)∩ S ′ ∕= ∅, respectively. Finding R′ and S ′ requires

a negligible amount of computation, as we cache the depth of every element in R

and S. Since R′ ⊆ R and S ′ ⊆ S, the depth constrained distance 2 tests require less

computation than the original distance 2 tests.

184

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

We use the depth constraint to prune the search space, so less computation is

needed compared to the same distance test with no depth constraint. However, due

to the depth constraint, the final solution may need more adders, so the total amount

of computation to find the final solution is not necessarily less.

A similar pruning technique can be used for the exact distance 3 tests and the

partial graph distance estimators. For example, consider the Z = A(t, s) estimator.

The target is constructed as t ∈ A(z, s) where z ∈ Z. This is the same topology

as shown in Figure 6.9, where z takes the place of rk. Thus, we only consider s

which have a remaining depth of at least 1. For distance 4, we check for a common

element between Z and C2. Since every element in C2 has a depth of 2, we can

construct t ∈ A(s, c2) where c2 ∈ C2 and c2 ∈ Z if the depth constraint d̂ is at least 3.

For distances larger than 4, we evaluate the CSD cost of each element in Z. Since

t ∈ A(z, s), we only consider z which have a remaining depth of 1. In other words,

z must be constructible with a depth no larger than d̂ − 1. Based on the bounds

presented in section 4.8.1, it follows that z cannot have more than 2d̂−1 CSD digits,

so the maximum CSD cost that z can have is 2d̂−1 − 1.

6.2.2 A Depth Constrained Version of H(k)+ODP

Assume we are given a depth constraint of d̂. If the CSD form of a constant has m

nonzero digits, then there exists a SCM solution with a depth no larger than ⌈log2m⌉,

as shown in section 4.8.1. We can solve the MCM problem by solving a SCM problem

for each target and then combining all of the terms in every SCM solution into one

set R. Thus, if every target in a MCM problem has no more than 2d̂ CSD digits (or a

CSD cost of no more than 2d̂ − 1), we are guaranteed that a solution exists. We can

185

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

halve the number of CSD digits in a constant every time the adder depth increases by

one, however the partial graph estimators in H3d have no mechanism to do this. In

order to guarantee that H3d will find a solution if it exists, we will rely on the large

distance estimator (traversing the SCM solutions found by H(k)+ODP).

Without considering the depth constraint, H(k)+ODP may find solutions that

happen to satisfy the depth constraint. Clearly, if we impose a depth constraint, we

can only lose some (or all) of the best solutions found by H(k)+ODP (in terms of

minimizing adders). Only if none of the solutions found satisfy the depth constraint,

then we consider an alternative.

We have observed that H(k)+ODP can typically find solutions with a depth of

only one more than the absolute minimum. Thus H(k)+ODP typically violates the

depth constraint only if depth constraint is the minimum in which a solution exists.

Recall from section 4.8.1 that if the CSD form of the constant has m nonzero digits,

the minimum depth is ⌈log2m⌉. Assuming a solution exists, one simple method which

guarantees that we will produce a solution with the minimum adder depth is to apply

a breadth-first collection of terms in the CSD form of the constant. For example,

if the CSD form is A0A00A0A00A0A0A, we substitute all of B = A0A, C = A00A

and D = A00A to get A0000D0000C000B. Now that all of the lowest depth terms

have been collected, we continue by substituting E = C000B and F = A0000D to

get 00000F00000000E, and so on.

In the above example, we have substituted patterns that only occured once, thus

not reducing the CSD cost. However, we can still make one maximally occurring

substitution per depth and still be able to collect terms in a minimal depth manner. For

example, in A0A00A0A00A0A0A, we can substitute B = A0A and C = A000000A to

186

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

get 00B00A000000B0C. Since we have an odd number of nonzero digits, we will have

one leftover lowest depth term (every possible collection of the lowest depth terms has

been made). Now we substitute D = B0C and E = B00A to get 00000E00000000D.

We have still collected the digits in a minimal depth manner, but by changing the

order in which digits are collected, we obtain a solution with fewer adders.

Using a minimal depth collection of digits, we have observed that most of the

minimum adder solutions can be obtained by substituting a maximally occurring

pattern on only the first substitution in the CSD form of the constant. Since these

SCM solutions are used for distance estimation in H3d, in order to reduce the amount

of computation, we do not consider other initial SD forms other than CSD and

maximally occurring patterns are only considered for the first substitution. However,

on the first substitution, we still substutite every maximally occurring pattern one

at a time in order to produce a variety of solutions, which facilitates the sharing of

intermediate terms between constants in H3d.

6.2.3 The Depth Reordering Problem

6.2.3.1 An Introduction and an Example

The SCM solutions are computed at the beginning of the H3d algorithm and we only

cache the ones that satisfy the depth constraint. Thus, H3d does not need to check

the depth of the useful successors that enable us to traverse a SCM solution.

It is possible to construct a term in a SCM solution with less remaining depth than

the amount of remaining depth it would have had if we traversed the SCM solution

from the beginning. For example, a useful term v found by a distance 2 test for one

target t1 may also be in a SCM solution of another target t2. After constructing v, if

187

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

c

d

a

b e
1

t2

t3

t1

Figure 6.10: An example which illustrates the depth reordering problem.

we continue to traverse the SCM solution all the way up to the construction of t2, we

may not be able to satisfy the depth constraint. The partial graph estimators are not

guaranteed to find a solution that satisfies the depth constraint, so this SCM solution

could be the only known valid path for constructing t2. Unless we fix the remaining

depth of v, H3d will not be able to find a solution to this MCM problem.

The depth reordering problem arises from partially traversing a pre-computed

solution, such as a SCM solution. To the best of our knowledge, no existing MCM

algorithm allows the partial traversal of a pre-computed solution. Although a partial

traversal uses less adders than a full traversal, it can create complications.

Let us illustrate the depth reordering problem in more detail with an example.

Without a depth constraint, one solution to the MCM problem for T = {t1, t2, t3}

is shown by the black part of Figure 6.10. Notice that t3 has a depth of 5. Now

suppose we enforce a depth constraint of 4. Assume there is only one way in which

t3 can be constructed with a depth of 4, which is the SCM solution consisting of

the terms c, d, b and e in Figure 6.10. Both H3 and H3d reuse the weight benefit

function (4.8) from section 4.3.3, and due to the 10−dist(R∪{s}, t) exponent in (4.8),

the successor selected by the heuristic is mostly based on the closest targets. Thus,

188

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

since t1 is cost 2 in Figure 6.10, we will first construct the terms a and t1 (over two

iterations of H3d). From here, t2 is now distance 2 and b is a useful successor, thus b

and t2 will be constructed. Without the depth constraint, given that b is constructed,

t3 would be distance 2. However, b has a remaining depth of 1 (the depth is 3 and the

depth constraint is 4). This means that the successor e has a remaining depth of 0,

so the depth constrained distance 2 tests will indicate that t3 cannot be constructed

with 2 more adders. Recall from section 6.1.3.5 that pre-computed solutions are only

traversed up to distance 2 because the vertex reordering problem does not occur at

distance 2. The only way to resolve the depth reordering problem is to create the

terms c and d (which are shown in gray in Figure 6.10) so that the remaining depth

of b can be updated to 2. Now that e has a remaining depth of 1, the distance 2 tests

will determine that e is a useful successor. By first constructing c and d, we can then

construct e and t3 without violating the depth constraint.

6.2.3.2 Dynamically Updating the Depth

Two important observations can be made from the above example. Firstly, by having

a smaller depth constraint, the final solution may have more adders. In addition to

losing some ways of constructing a target, in order to reduce the depth of a term

so that the depth constraint will later be satisfied, supporting terms must be added

(these would not be needed if there was no depth constraint). Secondly, the depth of

a term can change as new terms are later constructed.

In H3d, we need to dynamically update the depth of all of the terms in R and S

after each iteration. The process of updating the depth proceeds as follows. Let r′

denote the term that was constructed at the end of the current iteration. As before,

189

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

Rnew = r′ ∪ Rold, Supdate = (C1 ⋅ r′) ∪ A(r′, Rold), and Snew = (Sold ∪ Supdate)∖Rnew.

For each w ∈ Supdate, if w is also in Sold or in Rold, it is possible that the remaining

depth of w has increased. In this case, we update the depth (for each term in R and

S, we store the maximum remaining depth).

If a term in Rold has its depth updated, any term built off of it may also need

its depth updated, hence this may cause a chain reaction. Before the chain reaction

begins, only terms in Supdate can have their depth updated, thus the chain reaction

can only be started by an element in both Rold and Supdate. We resolve this chain

reaction recursively by treating every element that is in both Rold and Supdate as if it

were the newly constructed r′ (a corresponding Supdate for this element is constructed

and we check for depth updates and new elements that can be treated like r′, and

so on). On each level of recursion, the remaining depth of an element treated like r′

decreases by one (the remaining depth of any term in Supdate is one smaller than the

remaining depth of r′, and only a term in both Rold and Supdate can become the new

r′ on the next level of recursion). Therefore the number of recursions is bounded by

the depth constraint d̂ (all terms must have a remaining depth between 0 and d̂).

6.2.4 Experimental Results

Much of the C code from H3 (section 6.1.3) was reused for H3d, which was compiled

with gcc 3.2.3. The benchmarks were performed on a 3.06 GHz Pentium 4 Xeon

workstation running Linux. We used 1000 random MCM instances (with uniformly

distributed random constants) with 8 and 48 constants and at bit widths of 15 and

24 bits. At each bit width and number of constants, we varied the depth constraint.

Given a 15 bit constant, the bit width of the CSD form is at most 16 bits. This

190

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

can contain up to 8 nonzero digits, as there are no consecutive nonzero digits in the

CSD form. It follows from section 4.8.1 that a solution with an adder depth of 3 is

guaranteed to exist. Likewise, an adder depth of 4 can always be satisfied at 24 bits.

A comparison with the H3 algorithm is also performed. The results are presented

in Figure 6.11. The horizontal lines are the results of H3. Since we keep track of the

depth of every successor in H3d, the minimum depth is used to break a tie when there

are several equally most beneficial successors on any iteration in H3d. Thus, even if

the depth constraint is large enough that it has little or no influence on the solution,

H3d will produce different solutions than H3. This is the primary reason why the

average depth of the solutions found by H3d are notably lower than that of H3, even

when the depth constraint is large.

Clearly, there is a stronger tradeoff between minimizing the adder depth versus

minimizing the number of adders when the depth constraint is small. Sharing terms

between targets can reduce the number of adders but not the depth. As the depth

constraint decreases, we become forced to construct targets in ways that generally

require more adders. For example, even if ti ∈ A(tj, tk), unless both tj and tk have a

remaining depth of at least 1, ti will have to be constructed some other way, such as

by traversing a SCM solution. If the depth constraint is too small, no solution may

exist. No solutions were found when we tested H3d with a depth constraint of 2 at

15 bits. With a depth constraint of 3 at 24 bits, only 4 in 1000 solutions were found

with 8 constants, and none were found with 48 constants.

Generally, as the depth constraint increases, the average number of adders in the

solution of H3d decreases and eventually approaches that of H3. Interestingly, in

the case of 8 constants on 24 bits, the average number of adders appears to remain

191

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

1

2

3

4

5

6

7

15

16

17

18

3 4 5 6 7 8 9 10

av
er

ag
e

de
pt

h
of

 so
lu

tio
n

av
er

ag
e

nu
m

be
r o

f a
dd

er
s

depth constraint

8 constants, 15 bits

average number
of adders
average depth
of solution

0

4

8

12

16

55

60

65

70

75

3 5 7 9 11 13 15 17

av
er

ag
e

de
pt

h
of

 so
lu

tio
n

av
er

ag
e

nu
m

be
r o

f a
dd

er
s

depth constraint

48 constants, 15 bits

0

2

4

6

8

10

23

24

25

26

27

28

4 5 6 7 8 9 10 11 12

av
er

ag
e

de
pt

h
of

 so
lu

tio
n

av
er

ag
e

nu
m

be
r o

f a
dd

er
s

depth constraint

8 constants, 24 bits

0

3

6

9

12

15

18

95

100

105

110

115

120

125

4 6 8 10 12 14 16 18

av
er

ag
e

de
pt

h
of

 so
lu

tio
n

av
er

ag
e

nu
m

be
r o

f a
dd

er
s

depth constraint

48 constants, 24 bits

Figure 6.11: Experimental results of H3d as the depth constraint is varied for a fixed
number of constants and bit width. The results of H3 are shown as horizontal lines,
as H3 does not consider the adder depth.

192

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

higher than H3 even as the depth constraint gets large. When the depth constraint

is large, the only difference between H3d and H3 is that the minimum depth is used

to break the tie among equally beneficial successors on each iteration of H3d. The

choice made now may affect which useful terms are found later. Also, the traversal

of the cached solutions found by the partial graph estimators is typically different.

When we find the CSD cost of each element in Z = A(t, s), for example, we store

the CSD solution of z ∈ Z in a minimal depth manner (by collecting the terms in a

breadth-first manner, as illustrated in section 6.2.2). Since the depth is used to break

ties in H3d, the solutions found by the partial graphs tend to be traversed through

z first (instead of through s first) whereas there is no bias in H3. By traversing the

cached solution through s first, we may be able to find a cheaper way to construct z

compared to the CSD method, but then z would likely have less remaining depth.

Among all of the cases tested, 8 constants on 24 bits requires the most number of

adders per target. In the other cases (with roughly 2 adders per target or less), distance

estimation is infrequently used and thus there is little difference in the number of

adders used by H3d and H3 when the depth constraint is large.

In Table 6.6, the average run times of H3d with and without the post removal of

unnecessary intermediate terms is shown. The average run time of H3 is also shown.

In H3, the post removal process typically requires 1 to 5% of the run time. Given that

R is a valid solution, for each r such that r ∈ R and r ∕∈ T , we check whether R∖{r}

can be constructed without intermediate terms. We construct each term in R∖{r}

one term per iteration, but not necessarily in the original order. On each iteration in

H3, we only need to find one way to construct one of the remaining terms, but in

H3d, we must evaluate all of the possible ways that any of the remaining terms can

193

6.2. Depth Constrained MCM M.A.Sc. - J. Thong - McMaster

Table 6.6: The average run time (seconds) of H3d and H3. H3 has no depth constraint.
The values shown in brackets indicate the run time without performing the post
removal of unnecessary intermediate terms. Beyond the highest depth shown, the run
time changes insignificantly.

depth 8 constants 48 constants
constraint 15 bits 24 bits 15 bits 24 bits
3 0.030 (0.023) --- 1.22 (0.20) ---
4 0.026 (0.023) 0.57 (0.51) 0.57 (0.14) 27.23 (6.67)
5 0.58 (0.55) 0.42 (0.14) 17.80 (6.28)
6 0.60 (0.58) 0.35 (0.15) 14.89 (6.33)
7 13.59 (6.33)
8 13.08 (6.31)
9 12.84 (6.30)
none (H3) 0.021 0.56 0.16 6.98

be constructed so that the term with the minimum depth can be selected. Clearly,

this requires more computation. However, we try to maximize the chance that R∖{r}

will satisfy the depth constraint by taking a steepest descent approach (with respect

to minimizing the depth) when constructing R∖{r}.

As shown in Table 6.6, the depth constrained post removal of unnecessary inter-

mediate terms can require more run time than all of the other parts of H3d. If we

disregard the post removal process, H3d and H3 have similar run times. In both H3d

and H3, the post removal process typically reduces the number of adders by 0.1 to

0.5%. The absolute run time of H3d with the post removal process is tolerable for

small problem sizes, however the extra computation may not be worthwhile for large

problem sizes. Note that the post removal process was used to generate the results

shown in Figure 6.11. Although not shown, by using the post removal of terms, the

adder depth typically increases by about 1% (in the cases where the depth constraint

will still be satisfied).

194

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

6.3 Optimal MCM

In this section, we will propose an optimal branch and bound MCM algorithm. To

the best of our knowledge, we are the first to introduce graph-based pruning and a

bounding heuristic. Prior work is discussed in section 6.3.1. The bounding heuristics

are discussed in section 6.3.2. In section 6.3.3, we will discuss the implications of

performing an exhaustive search breadth-first versus depth-first and we will introduce

our proposed graph-based pruning method for multiple constants. Finally, in section

6.3.4, we will present the experimental results as well as examine how the size of the

MCM problem changes with respect to the bit width and the number of constants.

6.3.1 Prior Work

As discussed in section 4.1.3, [16--21] each propose an exact CSE-based algorithm

that maximizes the sharing of intermediate terms using integer linear programming.

CSE-based methods are inherently limited by the representation of the constant

whereas graphs do not impose any restrictions. To the best of our knowledge, the only

existing graph-based optimal MCM algorithm is BFSmcm in [15] (short for breadth-first

search MCM). Interestingly, the results of [15] show that Hcub, which is a heuristic

graph-based algorithm, is closer to optimal than all of [16--21].

BFSmcm does not use pruning but instead takes advantage of pre-computed sets.

However, the number of pre-computed sets grows extremely quickly with respect to the

MCM problem size. For example, at 13 bits, for 1, 2, 3, and 4 non-target terms, there

are 25, 1188, 80907, and 458873308 pre-computed sets, respectively [15]. At 13 bits,

some of the optimal solutions have 7 non-target terms, but the pre-computed sets for

this would likely not fit in a hard drive with terabytes of storage (we suspect that [15]

195

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

happened to randomly select easy cases, as difficult cases are not reported in their

benchmark). By non-target terms, we are referring to the supporting intermediate

terms. Assume R is a valid MCM solution for the target set T , then r ∈ R is a

non-target term if r ∕∈ T .

In our proposed optimal MCM algorithm BDFS (short for bounded depth-first

search), we use pruning. We do not use precomputed sets since these are impractical

to store, even for problem sizes that can be solved within a few minutes.

6.3.2 The Bounding Heuristic

Like the BIGE algorithm (optimal SCM, section 5.2), we also use a bounding heuristic

in BDFS. Given a heuristic solution with n adders, the exhaustive search only needs

to consider up to n − 1 adders. Because of this (as well as the pruning discussed

throughout section 6.3.3), BDFS is more compute-efficient than BFSmcm from [15].

In order for this approach to be viable, a nearly optimal bounding heuristic is

needed. If the heuristic never produces a solution as good as the optimal, we may

as well use only the exhaustive search to find the optimal solution. However, the

heuristic requires little computation, so even if the heuristic only sometimes produces

an optimal solution, the average run time of BDFS will decrease significantly. The

exhaustive search requires exponential run time, thus not needing to search the last

adder considerably reduces the computational effort.

As shown in [15], Hcub is close to optimal. In order to optimally solve a MCM

problem in a reasonable amount of time, either the number of constants must be small

or the bit width must be small. In MCM problems with a small bit width (and an

arbitrary number of constants), both H3 and DiffAG generally outperform Hcub, thus

196

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

Table 6.7: A summary of the bounding heuristics used by BDFS.

Types of MCM First Second When to use
problem heuristic heuristic second heuristic
Small bit width DiffAG H3 DiffAG requires
(any number of constants) ≥ 4 non-target terms
Few constants H3 H4 H3 requires
(small/moderate bit width) ≥ 5 non-target terms

we use the H3+DiffAG hybrid as the bounding heuristic for these MCM problems.

When the number of constants is small, both H3 and H4 are used as the bounding

heuristics (both typically outperform Hcub).

Recall from section 5.2.1.2 that one of reasons for creating the BIGE algorithm

was to reduce the run time of H(k)+ODP. If we can confirm that H(1)+ODP has

produced an optimal solution, H(2)+ODP is not needed. However, once we have

confirmed that the solution requires more than 5 adders, we first tighten the heuristic

bound (by using H(2)+ODP) before exhaustively searching at 6 adders. The heuristic

bound requires little computation, and since it may eliminate the need to exhaustively

search 6 adders, the average run time is reduced.

Since DiffAG, H3, and H4 do not have an adjustable parameter like H(k)+ODP,

we emulate the above approach by using two bounding heuristics in BDFS. In MCM

problems with a small bit width, DiffAG is used to find the initial upper bound since

it is typically faster than H3. H3 is used to tighten the upper bound when we estimate

that more computation would be needed to perform the exhaustive search. Thus, the

optimal BDFS algorithm is sometimes faster than the heuristic H3+DiffAG algorithm.

In MCM problems with only a few constants, H3 is used first and H4 may later be

used to tighten the bound (again, BDFS is sometimes faster than H4). A summary of

the heuristics used in BDFS is provided in Table 6.7.

197

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

Unlike H(k)+ODP, both H3 and DiffAG reuse the optimal part of RAG-n, so H3

and DiffAG may produce a solution that is guaranteed to be optimal. Obviously no

further computation is done in BDFS when this happens. As stated in [15], in a MCM

problem with ∣T ∣ targets, if a solution with ∣T ∣ or ∣T ∣+ 1 adders is produced by an

algorithm that uses the optimal part of RAG-n, the solution is optimal. If a solution

does not require intermediate terms, it will have ∣T ∣ adders. Using the optimal part

of RAG-n, we will either find this solution or verify that it does not exist (in which

case a solution with ∣T ∣+ 1 adders would be optimal).

6.3.3 An Exhaustive Search for Multiple Constants

6.3.3.1 Formulation of the Exhaustive Search

An exhaustive search can be done as follows. Starting with R = {1}, the optimal part

of RAG-n is used repeatedly until none of the remaining targets are distance 1. At

this point an intermediate term is needed. In order to cover every possible solution,

for each successor s ∈ S, we construct s one at a time and then continue forward

(repeatedly use the optimal part of RAG-n or construct every successor one at a time).

This branching search continues until every target has been constructed. We could

first process every s (breadth-first search) or first follow the solution until every target

has been constructed (depth-first search). In both cases, the current depth of the

search corresponds to how many adders have been used to construct the solution so

far. Thus, we are interested in finding the solution with the minimum depth.

The solution space is exponential in size with respect to the depth. The base of

the exponent corresponds to the typical branching factor (how many successors we

need to consider when an intermediate term is needed). Recall that S = A(R,R)∖R,

198

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

and there are many ways to shift and add any two elements in R. The base is usually

a few times larger than the bit width, even after eliminating redundant searching (for

example, we should create one of R = {1, 3, 5} or R = {1, 5, 3} but not both).

6.3.3.2 Breadth-First Versus Depth-First Exhaustive Searching

Due to the exponential size of the solution space, an impractical amount of memory

is needed to cache solutions in a breadth-first search, even for problems that can be

solved within a few hours. In addition to caching the terms constructed so far, we

must also cache other sets to eliminate redundant searching.

A breadth-first search without caching can be emulated by performing an iterative

depth-first search. For example, we would do a depth-first search up to depth 1, then

up to depth 2, then depth 3, and so on. This requires a minimal amount of memory.

Although we must recreate the solutions up to depth n− 1, this requires much less

computation than searching at depth n since the solution space is exponential in size.

Alternatively, we could use a purely depth-first search. Given a heuristic solution

with ℎ adders, the depth-first search only needs to be done to depth ℎ − 1. Every

time a solution is found (assume it has m adders), the search is continued but only

up to depth m− 1. This bound can be repeatedly tightened. Unlike the breadth-first

in which the first solution found is the optimal, the depth-first search must go to

completion. Even so, the remaining search (up to depth m− 1) will be much faster

due to the exponential size of the solution space.

Although the purely depth-first search does not need to recreate solutions, it has a

potential weakness. If the bounding heuristic is far from optimal, we may exhaustively

search parts of the solution space with more adders than the optimal. This can be

199

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

very wasteful due to the exponential size of the solution space, however we have also

used tighter bounding heuristics than Hcub.

To determine the better option, we implemented both the emulated breadth-first

search and the purely depth-first search. It turns out that the purely depth-first

search is generally faster in both the average and the worst case run time. Let n

denote the optimal number of adders. In most of the cases we tested, the bounding

heuristic found a solution as good as the optimal. When this happens, the exhaustive

search will search the entire solution space up to n− 1 adders, regardless of whether

it is done depth-first or breadth-first. By using a purely depth-first search, we do

not recreate solutions, thus saving run time. In the worst case (among the cases we

tested), the bounding heuristic provided a solution with no more than n+ 2 adders.

The purely depth-first exhaustive search initially considers solutions with n+ 1 adders,

but the results infer that a solution with n + 1 adders is found quickly so that the

remaining search is done only up to n adders. Since there are many more solutions

with n+ 1 adders than with n adders, it is much easier to find one with n+ 1 adders.

6.3.3.3 Elimination of Redundant Searching

As mentioned earlier, if 3 and 5 are intermediate terms, we should create one of

R = {1, 3, 5} or R = {1, 5, 3}, but not both. We will propose a method to prevent

the creation of redundant R while maintaining an exhaustive search. In addition to

caching the successor set S, we must also keep track of the blocked successor set Ŝ.

Recall that the depth corresponds to how many adders have been used to construct

the solution so far. We will use subscripts to denote the depth associated with a set,

for example, Rd and Sd denote the ready and successor sets at depth d, respectively.

200

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

Suppose we are at depth d in the search and no target is distance 1, thus we must

construct each s ∈ Sd one at a time for depth d+1. It follows that Rd+1 = {s}∪Rd and

Sd+1 = (A(s, Rd+1) ∪ Sd)∖{s}. Aside from removing s from the new Sd+1, everything

that was in Sd will remain Sd+1 (any term that could have been created with 1 adder

will still be creatable after we add something to the set of existing terms R). Thus, if

we have to construct all of the possible intermediate terms at depth d + 1, we will

cover some of the same paths that originate from depth d. However, some elements in

A(s, Rd+1) (which are the new pairings of R in the successor set) will not have been

in Sd, so new paths will also emerge.

Given that s was constructed at depth d, we want to block redundant successors

from being considered at depth d+ 1. At depth d+ 1, we define the blocked successor

set as Ŝd+1 = {z ∣ z ∈ Sd, z ≤ s} ∪ Ŝd. Any successor that is currently blocked will

remained blocked for the entire remaining branch in the search tree. We do not

construct any of the blocked successors, but somewhere further up the branch in

the search tree (at a lower depth) there is an equivalent non-blocked path that will

produce the same set of terms. By blocking only values smaller than s, all redundant

paths are forced to be traversed by constructing the terms in an ascending order.

In Algorithm 3, we describe a purely depth-first exhaustive search in which

redundant R are prevented. Aside from eliminating redundant R, there is no pruning

in Algorithm 3. Note that when the optimal part of RAG-n is used, there is no

branching in the search, thus the blocked successor set is not updated for this.

As a example, when R = {1}, the successor set will contain both 3 and 5. If we

first construct 3, we can then construct 5, thus R = {1, 3, 5} is permitted. Conversely,

if 5 is first constructed, 3 will be added to the blocked successor set thereby preventing

201

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

Input : the MCM targets T , the best existing solution H (initially heuristic)
Output: the optimal MCM solution for T

comment: the base case of the recursive function is called as follows
opt MCM sol = Search({1}, C1, T , 0, get heuristic solution(T), ∅)

Search(R, S, T ′, deptℎ, H, blocked S) {1

[check for optimal part of RAG-n]:2

for each t ∈ T ′ {3

if t ∈ S {4

R← {t} ∪R5

S ← A(t, R) ∪ S6

T ′ ← T ′∖{t} comment: T ′ is the remaining targets7

deptℎ← deptℎ+ 18

goto [check for optimal part of RAG-n]9

}
}
if (T ′ = ∅) {10

if (∣R∣ < ∣H∣) { H ← R } comment: update best solution11

}
else if (deptℎ < ∣H∣ − 1) {12

for each s ∈ S AND s ∕∈ blocked S {13

Rnew ← {s} ∪R14

Snew ← A(s, Rnew) ∪ S15

blocked Snew ← {z ∣ z ∈ S, z ≤ s} ∪ blocked S16

Search(Rnew, Snew, T ′, deptℎ+ 1, H, blocked Snew)17

}
}
return H18

}

Algorithm 3: A depth-first exhaustive MCM search with redundant R eliminated
(but no other pruning). Note that R and S are initialized to {1} and C1, respectively.
H contains the best existing solution found so far and is initialized with one or more
bounding heuristics (according to Table 6.7).

202

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

the creation of R = {1, 5, 3}. It follows that for any element x, R = {1, 5, 3, x} and

R = {1, 5, x, 3} will never be considered (when 5 is first constructed, we always block

3, even in later searches). However, when R = {1}, 27 was not in the successor set

and thus it cannot blocked no matter which term was constructed when R = {1}.

Since 27x = ((3x)≪ 3) + (3x) and 27x = (x≪ 5) − (5x), both R = {1, 3, 27} and

R = {1, 5, 27} are permitted.

6.3.3.4 Reducing the Computation When No Non-Target Terms Remain

Given ∣T ∣ unique targets and ∣H∣ adders in the best existing solution, there are

currently ∣H∣ − ∣T ∣ non-target terms. Since T ⊆ R is a constraint in the MCM

problem, in order to find a better solution, we can only have up to ∣H∣ − ∣T ∣ − 1

non-target terms. If we have used up all of the ∣H∣ − ∣T ∣ − 1 non-target terms, we

try to achieve T ′ = ∅ by using lines 3-9 in Algorithm 3. In other words, we have to

construct all of the remaining targets with one adder each.

This repeated use of the optimal part of RAG-n is identical to the reconstruction

process within the post-removal of unnecessary intermediate terms (in section 6.1.3.6,

given an existing solution R, for each intermediate term r ∈ R where r ∕∈ T , we try to

optimally solve a new MCM problem with targets T = R∖{r}). As shown in section

6.1.3.6, instead of checking if t ∈ S, we use an equivalent but more compute-efficient

test: A(t, R) ∩R ∕= ∅. Due to the symmetry in the adder-operation, the R in A(t, R)

never needs to be shifted, as this shift can be absorbed by the R we intersect with.

We use the A(t, R) ∩R ∕= ∅ test in BDFS only once we have exhausted all of the

∣H∣ − ∣T ∣ − 1 non-target terms. The final sequence of repeatedly using the optimal

part of RAG-n is performed without computing the successor set. The modifications

203

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

to Algorithm 3 should be obvious. Since this process is in the innermost loop of the

exhaustive search (at the leaves in the search tree), a significant improvement in the

run time is obtained.

6.3.3.5 Pruning From One Non-Target Term Away

Assume the best existing solution has n non-target terms. Suppose in Algorithm 3 we

have constructed n− 2 non-target terms and there are no distance 1 targets (which

means an intermediate term is needed). In order to find a better solution than the

best existing solution, we can only construct one more non-target term.

Instead of blindly constructing all of the non-blocked successors, we can use

pruning. A non-blocked successor s ∈ S∖Ŝ is useless if it cannot lead to the immediate

construction of at least one of the remaining targets in T ′. In other words, after

constructing s, another intermediate term would still be needed. Thus, we do not

construct any s ∈ S∖Ŝ in which dist(R ∪ {s}, t) > 2 for all t ∈ T ′. Conclusively, we

will need to perform distance 2 tests but only for non-blocked successors S∖Ŝ (for all

t ∈ T ′, check if (t/C1) ∩ (S∖Ŝ) ∕= ∅ and if A(t, R) ∩ (S∖Ŝ) ∕= ∅).

If we have constructed n − 2 non-target terms so far, the condition of line 13

of Algorithm 3 will now need to include distance 2 tests. We only construct useful

non-blocked successors one at a time (lines 14-17 in Algorithm 3), however we do not

update S or Ŝ because the next thing that will be computed is the final sequence of

repeatedly using the optimal part of RAG-n (using A(t, R) ∩R ∕= ∅).

Both the distance 2 pruning and the final sequence of optimal tests require A(t, R)

to be computed, thus it may be argued that distance 2 pruning is redundant since it

is followed by optimal tests. However, we have observed that typically only a small

204

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

fraction of the non-blocked successors are useful (if any are useful at all). Distance

2 pruning involves computing A(t, R) only once for all t ∈ T ′. Conversely, each

non-blocked successor that is constructed is followed by the optimal tests, so A(t, R)

for all t ∈ T ′ is computed every time a non-blocked successor is constructed. Clearly,

blindly constructing all of the non-blocked successors requires much more computation

if only a small fraction of these are useful.

Distance 2 pruning is used near the innermost loop in BDFS (one level above the

leaves in the exhaustive search tree). It often prevents the unnecessary use of the final

sequence of optimal tests, hence it provides an extensive decrease in the run time.

6.3.3.6 Pruning From Several Non-Target Terms Away

Clearly, pruning is only considered when intermediate terms are needed. If the best

existing solution has n non-target terms and we have constructed k non-target terms

in the solution so far, we can use all of the distance m tests for m ≤ n− k in order to

determine which non-blocked successors are useful.

For example, if we have already constructed n− 3 non-target terms, we can only

construct up to two more non-target terms if we are to find a better solution. Thus,

any non-blocked successor s is useless if it has dist(R ∪ {s}, t) > 3 for all t ∈ T ′

(this implies that both the distance 2 and the distance 3 tests found no solution).

As before, we only construct useful non-blocked successors one at a time. Following

each construction, the optimal part of RAG-n is used until no targets are distance 1.

Assuming a solution is not found (T ′ ∕= ∅), another intermediate term is needed. Now

that n− 2 non-target terms have been constructed so far, we continue with distance 2

pruning as described in the previous section. Notice that this is similar to the following

205

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

the solution towards construction technique in the SBAC algorithm (section 5.3.2.3).

However, since we have multiple constants in BDFS, we must introduce the optimal

part of RAG-n in between the construction of each intermediate term.

Since the search is still exhaustive, we cannot prune more aggressively. For example,

if we can have up to two more non-target terms, dist(R ∪ {s}, t) > 2 for all t ∈ T ′ is

not sufficient to prove that s is useless (this only indicates that after s is constructed,

at least one more intermediate term will be needed).

Distance 2, 3, and 4 tests are summarized in sections 3.2.6, 6.1.3.1, and 6.1.4,

respectively. However, large distance tests provide little or no pruning if a target is

close to R in terms of adder distance. For example, let us prune from distance 4. If

there is a distance 2 target t, at least one successor s satisfies dist(R ∪ {s}, t) = 1.

However, numerous successors s′ in which dist(R ∪ {s′}, t) ∕= 2 will likely satisfy

dist(R∪{s′}, t) = 2 or dist(R∪{s′}, t) = 3 since it is much easier to construct a target

with extra adders. These s cannot be pruned. A path longer than the minimum can

be followed to construct t because this may assist in the construction of other targets.

We are interested in the shortest joint path to construct all of the targets.

Due to the above limitation, we use distance 2 pruning in MCM problems where

the bit width is small (arbitrary number of constants) and distance 3 pruning in MCM

problems with only a few constants. The modifications to Algorithm 3 are obvious.

6.3.3.7 A Summary of BDFS

BDFS uses two bounding heuristics, a purely depth-first search, the elimination of

redundant sets (using the blocked successor set), the A(t, R) ∩R ∕= ∅ test when zero

non-target terms remain, and graph-based pruning using the adder distance tests.

206

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

6.3.4 Experimental Results

Our benchmark was performed on a set of identical 3.06 GHz Pentium 4 Xeon worksta-

tions running Linux. We implemented BDFS in C and we constrained A(x, y) ≤ 2b+2,

where b is the bit width of the largest target. Like the BIGE and SBAC algorithms

(sections 5.2 and 5.3, respectively), this choice is arbitrary and more research is needed

to establish to minimum bound to guarantee optimality.

The solution space (and thus the run time) is exponential and it is related to the

number of non-output terms in the solution and the bit width. For each non-output

term, branching is needed in the search, hence the number of non-output terms is

the power in the exponent. The typical branching factor (how many non-blocked

successors we need to consider) is the base of the exponent. As the bit width increases,

the typical branching factor will also increase.

6.3.4.1 Comparison with BFSmcm

We are able to solve problem sizes within a few minutes in which require an imprac-

tical amount of storage for pre-computed sets. We therefore cannot do a complete

comparison against BFSmcm [15]. Furthermore, we are able to solve problem sizes

within a few hours that require an impractical amount of memory for caching solutions

in a breadth-first search. As explained in section 6.3.3.2, a breadth-first search without

caching can be implemented with a depth-first search by incrementing the depth

limit after each search, however a purely depth-first search is faster (we implemented

and experimentally evaluated both types of searching). In conclusion, for non-trivial

problem sizes, BDFS is by construction more compute-efficient than BFSmcm due to

the tight bounding heuristic and the use of pruning.

207

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

In [15], the run times were only reported for a few examples in which the solutions

had no more than 3 non-output terms. These problems require little computation to

solve. We found the coefficients from [47] for one example in [15]. We were not able

to obtain the same coefficients with the remez algorithm from MATLAB (as specified

in [15,47]), so we can only do a comparison with this example. The coefficients are

T = {35, 266, 327, 398, 499, 505, 582, 662, 699, 710, 1943, 2987, 3395}. Using a 2.4 GHz

Intel Core 2 quad-core processor, BFSmcm requires 210.8 seconds [15] whereas BDFS

requires 0.08 seconds (on a single core 3.06 GHz Pentium 4 Xeon).

6.3.4.2 MCM Problems with Small Bit Width Coefficients

We tested BDFS using 2, 4, 6, 8, 12, 16, 24, 32, 40, 50, 60, 70, 80, 90, and 100

constants on bit widths of 10-13 bits inclusive. Since the bit width is small, distance

2 pruning is used and the heuristic bounding function consists of DiffAG and H3.

At each bit width and number of constants, we tested 100 MCM instances using

uniformly distributed random constants. The average number of adders in the optimal

solution is presented in Table 6.8. In Figures 6.12 and 6.13, we show the average and

worst case bound on the number of non-output terms (found by the heuristic). As

explained above, this provides an estimate of how much computation will be needed

to optimally solve the problem. Also in Figures 6.12 and 6.13, we show how many

more adders the heuristic uses compared to the optimal on average (although not

shown, the worst case over all the cases we tested was 2 adders more than optimal,

which only happened at 13 bits with between 6 and 40 constants inclusive).

The average and worst case run time of BDFS is provided in Table 6.9. When

the absolute run time of BDFS is small, the run time is dominated by the bounding

208

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

Table 6.8: The average number of adders in BDFS.

number of 10 bits 11 bits 12 bits 13 bits
constants
2 3.79 4.04 4.45 4.79
4 6.06 6.40 7.13 7.51
6 7.98 8.58 9.21 9.92
8 9.73 10.64 11.31 12.14
12 13.13 14.17 15.22 16.34
16 16.39 17.64 18.87 ---
24 23.25 24.52 25.84 ---
32 30.34 31.62 33.11 ---
40 37.42 39.05 40.39 42.14
50 46.36 48.18 49.29 51.03
60 54.74 57.20 58.73 60.16
70 63.57 66.54 68.44 69.59
80 71.00 75.21 77.62 79.22
90 78.90 84.05 87.11 88.85
100 86.43 93.17 96.40 98.44

Table 6.9: The average and worst case run time (seconds) of BDFS. The run time at
10 bits is faster than at 11 bits, so it has little significance.

number of 11 bits 12 bits 13 bits
constants avg. worst avg. worst avg. worst
2 <0.01 0.01 <0.01 0.01 0.01 0.04
4 <0.01 0.07 0.04 0.70 0.20 2.12
6 0.01 0.16 0.42 12.86 8.89 445.31
8 0.06 0.57 1.65 40.68 176.33 10372.00
12 0.17 6.65 20.23 727.83 2761.73 81264.00
16 0.05 1.65 8.77 291.10 --- ---
24 <0.01 0.08 5.14 247.98 --- ---
32 <0.01 0.01 0.08 5.78 --- ---
40 <0.01 0.01 0.01 0.02 293.59 18498.00
50 <0.01 0.01 <0.01 0.01 0.71 49.31
60 <0.01 0.01 0.01 0.02 0.02 0.24
70 0.01 0.01 0.01 0.02 0.02 0.06
80 0.01 0.02 0.01 0.02 0.02 0.07
90 0.01 0.02 0.01 0.02 0.02 0.04
100 0.01 0.02 0.01 0.03 0.02 0.05

209

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

0

0.05

0.1

0.15

0.2

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

he
ur

is
tic

, a
ve

ra
ge

 a
dd

er
s

m
or

e
th

an
 o

pt
im

al

bo
un

d
on

 th
e

nu
m

be
r o

f n
on

-ta
rg

et
 te

rm
s

number of constants

10 bit constants

average bound, number of non-target terms
worst case bound, number of non-target terms
bounding heuristic, average number of adders more than optimal

0

0.05

0.1

0.15

0.2

0.25

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

he
ur

is
tic

, a
ve

ra
ge

 a
dd

er
s

m
or

e
th

an
 o

pt
im

al

bo
un

d
on

 th
e

nu
m

be
r o

f n
on

-ta
rg

et
 te

rm
s

number of constants

11 bit constants

Figure 6.12: A comparison between the heuristic bound and the optimal part of BDFS
for constants of small bit width, part 1 of 2.

210

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

he
ur

is
tic

, a
ve

ra
ge

 a
dd

er
s

m
or

e
th

an
 o

pt
im

al

bo
un

d
on

 th
e

nu
m

be
r o

f n
on

-ta
rg

et
 te

rm
s

number of constants

12 bit constants

average bound, number of non-target terms
worst case bound, number of non-target terms
bounding heuristic, average number of adders more than optimal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

he
ur

is
tic

, a
ve

ra
ge

 a
dd

er
s

m
or

e
th

an
 o

pt
im

al

bo
un

d
on

 th
e

nu
m

be
r o

f n
on

-ta
rg

et
 te

rm
s

number of constants

13 bit constants

Figure 6.13: A comparison between the heuristic bound and the optimal part of BDFS
for constants of small bit width, part 2 of 2.

211

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

heuristic (recall from section 6.3.2 that if the heuristic finds a solution with ∣T ∣ or

∣T ∣+ 1, this solution is optimal). For larger problem sizes, the bounding heuristic is

still fast, so the time becomes dominated by the exhaustive search.

We set a time-out of 24 hours. All cases completed within the time limit except

for at 13 bits with 16, 24, and 32 constants, in which only 93%, 92% and 97% of the

cases completed, respectively. As an experiment, we let one case continue (13 bits,

16 constants) which resulted in a run time of 6 days. The heuristic was one off from

the optimal, so the exhaustive search never considered solutions with more adders

than the optimal. The optimal solution for this case had 6 non-output terms, which is

impractical for BFSmcm to solve. In [15], results using uniformly distributed random

constants were reported on 14 bits with 20 constants (which is more difficult to solve

than the cases in which BDFS timed out). We believe that either [15] happened to

randomly select easy cases or some of the run times, especially the worst case, would

have been on the order of weeks (the run times were not reported in [15]). This is a

conservative estimate considering BFSmcm does not use pruning.

The results on 14 bits are not shown in the thesis since many of the cases timed-out.

At 14 bits, with 12, 16, 24, and 32 constants, the worst case heuristic bound on the

number of non-target terms was 9. We estimate these cases would require a few days

to weeks to compute with BDFS (and likely even longer with BFSmcm).

For a fixed bit width, as we increase the number of constants, there exists a

saturation point at which if the number of constants is further increased, the MCM

problem becomes easier to solve. When there are numerous constants, we are able to

build targets off of each other, thus the number of non-target terms may decrease as

the number of constants increases. At 100 constants, for example, the MCM problem

212

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

is easy to optimally solve (at least for bit widths up to 13) and this is reflected by the

small run time in Table 6.9. From Figures 6.12 and 6.13, for bit widths 10, 11, 12,

and 13, it appears the saturation point is approximately 5, 8, 10, and 16 constants,

respectively. As the bit width increases, the saturation point will increase.

Due to this saturation, it is feasible to optimally solve MCM problems up to 12

bits for any number of constants in practice. As shown in Table 6.9, the average

time is up to 20 seconds and the worst case is about 12 minutes. BDFS was able to

solve some problems with 7 non-output terms within one hour. If there are less than 6

non-output terms, BDFS will finish in at most a few hours (although the average run

time is typically much faster). BDFS is fast when the number of non-target terms is

small. This occurs when there are few or many constants, but not a moderate amount.

Thus, given the appropriate number of constants, BDFS is fast enough to be used in

practice at larger bit widths.

6.3.4.3 MCM Problems with Two Constants Only

On larger bit widths, we are only able to optimally solve MCM problems with very

few constants within a reasonable amount of time. In these MCM problems, there are

typically many adders per target, thus adding one more target causes the number of

non-target terms to significantly increase. In order to maintain reasonable run times,

this must be offset by considerably reducing the bit width.

We benchmarked up to 24 bits with only two constants. At each bit width, we used

100 MCM instances with uniformly distributed random constants. For these MCM

problems, BDFS used distance 3 pruning and the bounding heuristic was composed of

H3 and H4. The results are shown in Figure 6.14 and Table 6.10.

213

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

1

2

3

4

5

6

7

8

12 14 16 18 20 22 24

he
ur

is
tic

, a
ve

ra
ge

 a
dd

er
s

m
or

e
th

an
 o

pt
im

al

bo
un

d
on

 th
e

nu
m

be
r o

f n
on

-ta
rg

et
 te

rm
s

bit width

2 constants only average bound,
number of
non-target
terms

worst case
bound, number
of non-target
terms

H3, average
number of
adders more
than optimal

H4, average
number of
adders more
than optimal

Figure 6.14: A comparison between the heuristic bound and the optimal part of BDFS
for two constant MCM.

Table 6.10: Results for the BDFS benchmark with 2 constants.
optimal % of cases run time (seconds)
average where heuristic optimal H3 H4

bit number ended up average worst average average
width of adders being optimal case
12 4.40 82% 0.002 0.02 0.002 0.008
13 4.64 80% 0.005 0.04 0.002 0.011
14 5.02 72% 0.012 0.1 0.003 0.018
15 5.28 72% 0.024 0.2 0.004 0.024
16 5.54 65% 0.069 0.95 0.006 0.031
17 5.75 76% 0.115 1.13 0.009 0.053
18 6.02 57% 0.342 3.38 0.012 0.088
19 6.26 63% 0.737 10.24 0.015 0.116
20 6.54 51% 2.934 42.42 0.028 0.261
21 6.80 50% 19.190 287.24 0.035 0.375
22 6.98 51% 103.582 1382.74 0.042 0.665
23 7.22 56% 210.508 6912.00 0.055 0.741
24 7.48 45% 1087.236 15672.00 0.076 1.479

214

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

The optimal BDFS algorithm is sometimes faster than heuristic H4. Like the

BIGE algorithm (optimal SCM, section 5.2), this happens because the bounding

heuristic may be used more than once and at different strengths. For example, in

the BIGE algorithm, if we can prove that a solution found by H(1)+ODP is optimal,

we do not need to use H(2)+ODP. From Table 6.10, up to a bit width 15 in BDFS,

it is faster to check whether a solution found by H3 is optimal instead of using H4.

As the bit width further increases, H4 becomes relatively less expensive due to the

exponential size of the exhaustive search.

For two constants, BDFS is fast enough to use in practice for up to about 20

bits. As shown in Table 6.10, the bounding heuristic often finds a solution as good as

optimal thereby facilitating a much smaller exhaustive search. The bounding heuristic

was always within two adders of the optimal in the cases we tested.

We enforce A(x, y) ≤ 2b+2 and vertex reduction is used in the distance 3 tests,

thus like the BIGE algorithm, there is a negligibly small potential to miss some of

the optimal solutions due to the vertex reordering problem (as illustrated in section

6.1.3.5). However, in our experimental evaluation, we did not observe any difference

in the number of adders between using BDFS with distance 3 pruning and BDFS

with distance 2 pruning (the vertex reordering problem cannot occur at distance 2

since the distance 1 and 2 tests cover all of the possible non-vertex reduced graphs).

6.3.4.4 The Size of the Solution Space in MCM

At the beginning of the experimental results we indicated how the size of the exhaustive

solution space is exponential. Branching occurs in BDFS every time a non-target term

is created, so the number of non-target terms is the power in the exponent. The base

215

6.3. Optimal MCM M.A.Sc. - J. Thong - McMaster

of the exponent is the typical branching factor (how many non-blocked successors are

considered when an intermediate term is needed). We will now examine how these

change with respect to the number of constants and the bit width.

Assume the bit width is fixed. If we increase the number of constants, the total

number of adders typically increases. When there are few constants, adding an extra

constant generally increases the total number of adders by more than one, in which

case the number of non-target terms will increase. Conversely, when there are many

constants, increasing the number of adders by less than one results in a decrease in the

number of non-target terms. There exists a maximum when the number of constants

is moderate, which we earlier described as the saturation point. The branching factor

will generally increase as the number of elements in R increases (since this creates

more successors). This increases when there are more constants.

Our experimental run times (Table 6.9) indicate that the MCM problem size is

typically the largest when there are slightly more constants than the saturation point.

Before the saturation point, both the number of non-target terms and the branching

factor are increasing. Just after the saturation point, we can infer that the branching

factor increases the run time more than the number of non-target terms decreases the

run time. If we continue further, eventually the effect of the number of non-target

terms will become stronger, hence we observe a decrease in run time.

Now assume the number of constants is fixed. Clearly, both the number of adders

and the number of non-target terms increase as the bit width increases. Since we

constrain A(x, y) ≤ 2b+2, the branching factor increases faster than the bit width

b. In the worst case, the branching factor increases exponentially with respect to b,

but in practice, this is limited by pruning techniques, such as the blocked successor

216

6.4. Concluding Remarks on MCM M.A.Sc. - J. Thong - McMaster

set. There is no saturation point for the bit width since we are always increasing the

redundancy within constants (the number of non-target terms only decreases as the

redundancy between constants gets large).

We conjecture that the MCM problem size generally increases faster with respect

to the bit width than the number of constants, although there is no analytical proof.

By adding more constants (which adds more elements to R), the branching factor

likely increases no more than quadratically with respect to the number of constants

since the number of successors is related to number of pairings in R (S ⊆ A(R,R)).

However, by increasing the bit width b, many more terms will be considered since

the A(x, y) ≤ 2b+2 constraint has been relaxed. Now let us consider the number of

non-target terms. Assume there are currently n adders per target. If one more target

is added to a MCM problem, the number of non-target terms will on average increase

by n− 1. For MCM problems, usually n is small (3 or less in many cases). However,

if we increment the bit width by 1, several targets will likely need an extra adder,

thereby increasing the number of non-target terms by a larger extent. Also notice that

no new targets are needed, thus the increase is purely in the number of non-target

terms. In conclusion, the bit width generally has a larger impact on both contributing

factors to the size of the exhaustive solution space in the MCM problem.

6.4 Concluding Remarks on MCM

In section 6.1, we have proposed two MCM heuristics H3 and H4 which are able to

exploit the redundancy within constants better than any existing heuristic. MCM

problems with more redundancy between constants are easier to solve optimally. As

the compute power continues to increase in the future, optimal exhaustive searches will

217

6.4. Concluding Remarks on MCM M.A.Sc. - J. Thong - McMaster

be able to solve larger problem sizes within a reasonable amount of time. Algorithms

that favor the redundancy between constants, such as DiffAG, will likely be the first to

be replaced by optimal algorithms in the future. The MCM problem is more difficult

to solve on large bit widths and this is where H3 and H4 obtain the most improvement

over existing methods. Thus, it is expected that H3 and H4 will be the last heuristics

to be replaced by an exhaustive search in the future.

For the MCM problems that are presently too large to solve optimally, our proposed

H3+DiffAG hybrid is the best performing heuristic over the entire spectrum of MCM

problem sizes. On average, H3+DiffAG produces better solutions in less run time

than the best existing heuristic Hcub.

In section 6.2, we presented a depth-constrained version of H3. We illustrated the

tradeoff between the adder depth and the number of adders and we showed how the

depth constraint can be used to prune the search space. By reducing the depth, the

logic circuit can be clocked faster, thus increasing the computational throughput.

Finally, in section 6.3, we proposed a graph-based depth-first exhaustive search to

optimally solve MCM. To the best of our knowledge, we are the first to introduce

a bounding heuristic, perform graph-based pruning with the adder distance tests,

and prevent redundant searching by using the blocked successor set. Within a few

hours, we can solve problems in which an infeasible amount of storage is needed for

pre-computed sets and for caching solutions in a breadth-first search. Our proposed

algorithm BDFS is more compute-efficient than the only existing exhaustive search

BFSmcm. BDFS can optimally solve MCM for two 24-bit constants in an average of

only 18 minutes. Optimally solving this as well as other MCM problems that require

6 non-target terms was previously uncharted territory to the best of our knowledge.

218

Chapter 7

Conclusion

7.1 A Summary of the Contributions

By extending the analysis of prior work and providing new insight, in many cases

our proposed algorithms are able to produce solutions in less run time with no more

adders than the existing algorithms. In our optimal exhaustive algorithms, we have

introduced aggressive pruning methods, namely the use of nearly-optimal bounding

heuristics as well as IGT pruning for the exhaustive search. Due to this, we are able to

solve larger problem sizes within a reasonable amount of time. Heuristics are needed

for problems that are presently too large to exhaustively search in practice. In SCM,

our proposed overlapping digit patterns facilitate a more efficient search, thus often

enabling better solutions to be found with less initial SD forms (thereby decreasing

the run time). In MCM, we proposed new methods for computing the adder distance

in Hcub. Although our proposed heuristic H3 outperforms Hcub, it must be combined

with the existing heuristic DiffAG in order to produce the best solutions on average

over the entire spectrum of MCM problem sizes.

219

7.1. A Summary of the Contributions M.A.Sc. - J. Thong - McMaster

Table 7.1: A summary of the best existing SCM and MCM algorithms as of 2004.
This summary was extracted from Table 2 in [11].

Problem Criteria Type Algorithm Framework
SCM bit width ≤ 19 optimal MAG [1,2] DAG

bit width > 19 heuristic H(k) [33] CSE
MCM few constants heuristic HHS [11] CSE

many constants heuristic RAG-n [14] DAG

Table 7.2: A summary of the current best SCM and MCM algorithms (as of 2009).
Note that DiffAG and H3 partition the space of the MCM problem sizes, however
other algorithms may be used in special cases.

Problem Criteria Type Algorithm Framework
SCM bit width ≤ 32 optimal BIGE (§5.2) DAG and CSE

bit width > 32 heuristic H(k)+ODP enhanced CSE
(§5.1 and [44])

MCM bit width ≤ 12 or optimal BDFS (§6.3) mostly DAG,
2 const. & b.w. ≤ 20 a little CSE
adders per target ≤ 2 heuristic DiffAG [28] DAG
adders per target ≥ 2 heuristic H3 (§6.1.3) DAG and CSE
few const. & large b.w. heuristic H4 (§6.1.4) DAG and CSE

By modifying our proposed algorithms, we have addressed two additional problems.

In section 5.3, we proposed a SCM algorithm which attempts to minimize the number

of single-bit adders. This metric is more accurate than the number of adder-operations,

so less silicon is needed to implement a constant multiplier. In section 6.2, we proposed

a depth-constrained MCM algorithm. By reducing the adder depth, the logic circuit

can be clocked faster, thus increasing the computational throughput.

In 2004, [11] presented a summary of the best existing SCM and MCM algorithms.

In Table 7.1, we have extracted the relevant parts of this summary. In 2004, optimal

SCM was limited to 19 bits and no optimal MCM algorithm had been proposed. In

Table 7.1, the HHS algorithm is essentially H(k) applied to multiple constants (usually

220

7.1. A Summary of the Contributions M.A.Sc. - J. Thong - McMaster

with k = 1). Note that [11] did not provide a quantitative boundary for the MCM

problem sizes in which RAG-n performs better than HHS or vice versa. However,

both RAG-n and HHS are outperformed by newer algorithms, thus the location of

this boundary is of little relevance.

As explained in section 6.1.1, CSE is better at exploiting the redundancy within each

constant whereas DAGs are better at exploiting the redundancy between constants,

hence the use of different heuristic algorithms for different problem sizes. This analysis

was not provided in [11], as the summary in Table 7.1 was based purely on experimental

results.

In Table 7.2, we have updated the summary of the best existing algorithms and we

have refined the criteria for selecting an algorithm based on the problem size. Most of

these algorithms use both the DAG and CSE framework and thus are able to take

advantage of the strengths of both frameworks. The number of adders per target can

be empirically estimated based on both the number of constants and the bit width,

as shown in Figure 6.8 in section 6.1.5.2. DiffAG and H3 partition the space of the

MCM problem sizes, however other algorithms may be used in special cases. BDFS

can be used for larger problem sizes than that stated in Table 7.2 if one is willing to

wait for a longer time. H4 on average outperforms H3 (as shown in section 6.1.5.1)

but the run time of H4 prohibits its use on large problem sizes. Like BDFS, the cutoff

in terms of a practical problem size depends on how long one is willing to wait. As

discussed in section 1.2.2, this is highly application specific.

Table 7.2 mostly consists of our contributions. As explained in section 6.4,

our heuristics are expected to be the last heuristics to be replaced by an optimal

algorithm in the future (as the compute power continues to increase, larger problems

221

7.2. Future Work M.A.Sc. - J. Thong - McMaster

can be solved optimally). Only our H(k)+ODP algorithm has been published, as

all of the other algorithms were developed concurrently. The optimal algorithms

require high performance heuristics. Except for H(k)+ODP, all of the algorithms use

the inverse graph traversal (IGT) method to perform graph-based pruning. Many

computational enhancements have been progressively incorporated into the IGT

method, especially for leapfrog graphs, which was illustrated in detail in section 5.2.2.5.

Once the developments were finalized, this thesis was written first so that the Masters

degree could be completed in a timely manner. In the near future, the contributions

will be summarized and submitted for publication in order to facilitate an efficient

dissemination of knowledge. This thesis will serve as a reference with additional

examples and highly specific details to elaborate the contributions. All of the source

code will be made publicly available.

7.2 Future Work

As future work, one may consider exploring how algorithms can be parallelized to take

advantage of the emerging multi-core paradigm in desktop computers. In particular,

exhaustive searches can easily be split into a set of smaller searches that are mutually

exclusive and collectively exhaustive. By using a parallel search, optimal exhaustive

algorithms can solve larger MCM problems within a reasonable amount of time.

Although the BIGE algorithm (optimal SCM) requires an average of less than 10

seconds at 32 bits, the SBAC algorithm (SCM with single-bit adders) is presently too

slow to use in practice at 32 bits. Thus, parallel searching may also enable one to

use a more accurate metric and/or several metrics to solve a constant multiplication

problem within a reasonable amount of time.

222

7.2. Future Work M.A.Sc. - J. Thong - McMaster

7.2.1 Minimization of Multiple and Less Abstracted Metrics

By using a more accurate metric (less abstraction), we expect to obtain better solutions

in terms of minimizing the absolute metric, which is the amount of silicon required to

realize constant coefficient multiplication in custom hardware. This was demonstrated

in section 5.3.3, where we compared the BIGE algorithm (SCM) with the SBAC

algorithm (single-bit adder SCM). However, extra computation is needed to encompass

a less abstracted metric, hence the observed increase in the run time of SBAC compared

to BIGE. Given the same problem sizes, we will be able to solve these with more

accuracy within a reasonable amount of time as the compute power continues to

increase in the future. As an example, consider minimizing the number of single-bit

adders in a MCM problem subject to a user-defined constraint in terms of the critical

path due to the carry chain (as opposed to the adder depth).

In order to increase the computational throughput of the logic circuit, one may

consider the use of carry-save adders. However, this requires at least 3 operands to be

added together, which may not occur in a multiplicative decomposition, for example.

Clearly, certain DAG representations of SCM or MCM will be more favorable than

others for carry-save adders. The topology of a Wallace or Dadda tree could also be

considered in the SCM or MCM algorithm. In addition, one may consider pipelining

the logic circuit to meet a given clock frequency constraint. This would involve joint

minimization of registers and adders (the user could specify how important each of

these resources are). To minimize the number of registers, the insertion of registers in

the adder tree should occur at narrow locations.

Finally, one may also consider a more accurate model by considering the routing of

logic resources within the SCM or MCM algorithm. This would enable one to account

223

7.2. Future Work M.A.Sc. - J. Thong - McMaster

for wiring delays in addition to the propagation delay caused by gates, for example.

Although shifts incur no cost in custom hardware since they are hardwired, they must

still be routed and therefore they will consume some silicon in the logic circuit. To

account for this, one could introduce an appropriate metric that is a function of the

shifts used in the adder-operation, for instance.

7.2.2 Parallelization of an Exhaustive Search

There are many ways in which an exhaustive search can be partitioned. In SCM, recall

from section 5.2.2.1 that in order to determine if the target can be constructed with m

adders, we construct every possible R with m−k adders, and then for each of these R,

we apply distance k tests. Each distance k test involves computing adder-operations,

dividing by Cn, and performing set intersections where one set is sorted. All of these

tasks are easy to parallelize due to their deterministic nature. Each distance k test is

independent of all of the other distance k tests. The generation of each R set with

n adders is independent from all of the other R sets with n adders (each of these is

constructed from a R set with n − 1 adders and this process is easy to parallelize).

Clearly, there are many levels at which parallelization can be done.

In the MCM problem, the exhaustive search is formulated slightly differently.

The optimal part of RAG-n can be used repeatedly in between the construction of

each non-target term, but ultimately, the computation involved is similar to the

generation of the R sets in SCM. The distance tests are still used for pruning. As

before, the search can be parallelized at the adder-operation level, or we can compute

each distance test in parallel, or we can assign different branches in the search tree to

different processing cores. The higher in the search tree that we decide to split the

224

7.2. Future Work M.A.Sc. - J. Thong - McMaster

search, the less memory needs to be shared between different execution threads, but

we may lose parallelism if we split the search too early. For example, given 100 cores,

if we split the entire search into 100 parts, some execution threads will invariably

finish before others. Due to the pruning methods, the amount of time needed to

compute a branch in the search tree is impossible to know ahead of time. For instance,

some adder distance tests involve division by Cn, and only the elements which divide

Cn with zero remainder will continue in the search.

We have not implemented any parallel exhaustive searching algorithms for this

thesis. Finding the appropriate degree of parallelism and establishing an efficient

scheduling and synchronization of the searches over multiple computing cores is not a

trivial task. More importantly, most desktop computers currently have up to four

computing cores and thus a search only up to four times larger can be completed

within the same amount of time. Due to the exponential size of the solution space,

having only four cores does not help much. However, it is expected that multi-core

computers will have tens to hundreds of computing cores in the future, thus facilitating

the search of a much larger solution space within a reasonable amount of time.

One could also consider the use of a graphic processing unit (GPU). GPUs offer

more parallelism than multi-core computers, but due to bandwidth limitations, highly

localized computation is needed to obtain the maximum benefit from the parallelism.

In conclusion, as the compute power continues to increase in the future, optimal

algorithms will be able to solve larger problem sizes in practice. However, algorithms

will need to be parallelized in order to take advantage of future computing platforms.

Designing algorithms that are well suited for multi-core computers and/or GPUs

remains an open topic for future research.

225

Bibliography

[1] A. Dempster and M. Macleod, ‘‘Constant integer multiplication using minimum

adders,’’ IEE Proceedings on Circuits, Devices and Systems, vol. 141, no. 5, pp.

407--413, Oct 1994.

[2] O. Gustafsson, A. Dempster, and L. Wanhammar, ‘‘Extended results for minimum-

adder constant integer multipliers,’’ in IEEE International Symposium on Circuits

and Systems (ISCAS), 2002, vol. 1, 2002, pp. I--73--I--76 vol.1.

[3] Altera Corporation. ‘‘NIOS II processor: the world’s

most versatile embedded processor.’’ Feb 2009. [Online]

http://www.altera.com/products/ip/processors/nios2/.

[4] H. Wu and M. Hasan, ‘‘Closed-form expression for the average weight of signed-

digit representations,’’ IEEE Transactions on Computers, vol. 48, no. 8, pp.

848--851, Aug 1999.

[5] G. W. Reitwiesner, ‘‘Binary arithmetic,’’ Advances in Computers, vol. 1, pp.

231--308, 1960.

[6] Y. Voronenko and M. Püschel, ‘‘Multiplierless multiple constant multiplication,’’

ACM Transactions Algorithms, vol. 3, no. 2, p. 11, 2007.

227

BIBLIOGRAPHY M.A.Sc. - J. Thong - McMaster

[7] D. Bull and D. Horrocks, ‘‘Primitive operator digital filters,’’ IEE Proceedings

on Circuits, Devices and Systems, vol. 138, no. 3, pp. 401--412, Jun 1991.

[8] P. Cappello and K. Steiglitz, ‘‘Some complexity issues in digital signal processing,’’

IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 32, no. 5,

pp. 1037--1041, Oct 1984.

[9] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the

theory of NP-completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[10] A. Matsuura and A. Nagoya, ‘‘Formulation of the addition-shift-sequence prob-

lem and its complexity,’’ in ISAAC ’97: Proceedings of the 8th International

Symposium on Algorithms and Computation. London, UK: Springer-Verlag,

1997, pp. 42--51.

[11] A. Dempster, M. Macleod, and O. Gustafsson, ‘‘Comparison of graphical and

subexpression methods for design of efficient multipliers,’’ in Conference Record

of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers,

2004, vol. 1, Nov. 2004, pp. 72--76 Vol.1.

[12] O. Gustafsson, A. Dempster, M. Macleod, K. Johansson, and L. Wanhammar,

‘‘Simplified design of constant coefficient multipliers,’’ Circuits, systems, and

signal processing, vol. 25, no. 2, pp. 225--251, 2006.

[13] A. Avizienis, ‘‘Signed-digit number representation for fast parallel arithmetic,’’

IRE Transactions on Electronic Computers, vol. 10, pp. 389--400, Sept 1961.

228

BIBLIOGRAPHY M.A.Sc. - J. Thong - McMaster

[14] A. Dempster and M. Macleod, ‘‘Use of minimum-adder multiplier blocks in

FIR digital filters,’’ IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, vol. 42, no. 9, pp. 569--577, Sep 1995.

[15] L. Aksoy, E. Gunes, and P. Flores, ‘‘An exact breadth-first search algorithm for

the multiple constant multiplications problem,’’ in NORCHIP, 2008, Nov. 2008,

pp. 41--46.

[16] O. Gustafsson and L. Wanhammar, ‘‘ILP modelling of the common subexpression

sharing problem,’’ in 9th International Conference on Electronics, Circuits and

Systems, 2002, vol. 3, 2002, pp. 1171--1174 vol.3.

[17] P. Flores, J. Monteiro, and E. Costa, ‘‘An exact algorithm for the maximal

sharing of partial terms in multiple constant multiplications,’’ in IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2005, Nov. 2005,

pp. 13--16.

[18] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, ‘‘Minimum number of operations

under a general number representation for digital filter synthesis,’’ in 18th Euro-

pean Conference on Circuit Theory and Design (ECCRD), 2007, Aug. 2007, pp.

252--255.

[19] L. Aksoy, E. O. Gunes, E. Costa, P. Flores, and J. Monteiro, ‘‘Effect of number

representation on the achievable minimum number of operations in multiple

constant multiplications,’’ in IEEE Workshop on Signal Processing Systems,

2007, Oct. 2007, pp. 424--429.

229

BIBLIOGRAPHY M.A.Sc. - J. Thong - McMaster

[20] L. Aksoy, E. da Costa, P. Flores, and J. Monteiro, ‘‘Exact and approximate

algorithms for the optimization of area and delay in multiple constant multipli-

cations,’’ IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 27, no. 6, pp. 1013--1026, June 2008.

[21] Y.-H. Ho, C.-U. Lei, H.-K. Kwan, and N. Wong, ‘‘Global optimization of common

subexpressions for multiplierless synthesis of multiple constant multiplications,’’

in Asia and South Pacific Design Automation Conference (ASPDAC), 2008,

March 2008, pp. 119--124.

[22] R. Bernstein, ‘‘Multiplication by integer constants,’’ Software -- Practice &

Experience, vol. 16, no. 7, pp. 641--652, 1986.

[23] A. Dempster and M. Macleod, ‘‘General algorithms for reduced-adder integer

multiplier design,’’ Electronics Letters, vol. 31, no. 21, pp. 1800--1802, Oct 1995.

[24] O. Gustafsson and L. Wanhammar, ‘‘A novel approach to multiple constant mul-

tiplication using minimum spanning trees,’’ in The 2002 45th Midwest Symposium

on Circuits and Systems (MWSCAS), vol. 3, Aug. 2002, pp. III--652--III--655

vol.3.

[25] H. Ohlsson, O. Gustafsson, and L. Wanhammar, ‘‘Implementation of low com-

plexity FIR filters using a minimum spanning tree,’’ in Proceedings of the 12th

IEEE Mediterranean Electrotechnical Conference (MELECON), 2004, vol. 1,

May 2004, pp. 261--264 Vol.1.

[26] O. Gustafsson, H. Ohlsson, and L. Wanhammar, ‘‘Improved multiple constant

multiplication using a minimum spanning tree,’’ in Conference Record of the

230

BIBLIOGRAPHY M.A.Sc. - J. Thong - McMaster

Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004,

vol. 1, Nov. 2004, pp. 63--66 Vol.1.

[27] H. Choo, K. Muhammad, and K. Roy, ‘‘Complexity reduction of digital fil-

ters using shift inclusive differential coefficients,’’ IEEE Transactions on Signal

Processing, vol. 52, no. 6, pp. 1760--1772, June 2004.

[28] O. Gustafsson, ‘‘A difference based adder graph heuristic for multiple constant

multiplication problems,’’ in IEEE International Symposium on Circuits and

Systems (ISCAS), 2007, May 2007, pp. 1097--1100.

[29] R. Hartley, ‘‘Optimization of canonic signed digit multipliers for filter design,’’

in IEEE International Sympoisum on Circuits and Systems, 1991, Jun 1991, pp.

1992--1995 vol.4.

[30] ------, ‘‘Subexpression sharing in filters using canonic signed digit multipliers,’’

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Pro-

cessing, vol. 43, no. 10, pp. 677--688, Oct 1996.

[31] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova, ‘‘A new

algorithm for elimination of common subexpressions,’’ IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 1, pp.

58--68, Jan 1999.

[32] V. Lefèvre, ‘‘Multiplication by an integer constant,’’ in INRIA. RR-4192, May

2001, pp. 1--17.

[33] A. Dempster and M. Macleod, ‘‘Using all signed-digit representations to design

single integer multipliers using subexpression elimination,’’ in Proceedings of the

231

BIBLIOGRAPHY M.A.Sc. - J. Thong - McMaster

2004 International Symposium on Circuits and Systems (ISCAS), 2004, vol. 3,

May 2004, pp. III--165--8 Vol.3.

[34] I.-C. Park and H.-J. Kang, ‘‘Digital filter synthesis based on an algorithm

to generate all minimal signed digit representations,’’ IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 12, pp.

1525--1529, Dec 2002.

[35] A. Dempster and M. Macleod, ‘‘Generation of signed-digit representations for

integer multiplication,’’ IEEE Signal Processing Letters, vol. 11, no. 8, pp. 663--

665, Aug. 2004.

[36] L. Aksoy and E. O. Gunes, ‘‘An approximate algorithm for the multiple constant

multiplications problem,’’ in SBCCI ’08: Proceedings of the 21st Annual Sympo-

sium on Integrated Circuits and System Design. New York, NY, USA: ACM,

2008, pp. 58--63.

[37] C.-Y. Yao, H.-H. Chen, T.-F. Lin, C.-J. Chien, and C.-T. Hsu, ‘‘A novel common-

subexpression-elimination method for synthesizing fixed-point FIR filters,’’ IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 11, pp.

2215--2221, Nov. 2004.

[38] H.-J. Kang and I.-C. Park, ‘‘FIR filter synthesis algorithms for minimizing the

delay and the number of adders,’’ IEEE Transactions on Circuits and Systems

II: Analog and Digital Signal Processing, vol. 48, no. 8, pp. 770--777, Aug 2001.

[39] K. Johansson, O. Gustafsson, and L. Wanhammar, ‘‘A detailed complexity

model for multiple constant multiplication and an algorithm to minimize the

232

BIBLIOGRAPHY M.A.Sc. - J. Thong - McMaster

complexity,’’ in Proceedings of the 2005 European Conference on Circuit Theory

and Design, 2005, vol. 3, Aug.-2 Sept. 2005, pp. III/465--III/468 vol. 3.

[40] ------, ‘‘Bit-level optimization of shift-and-add based FIR filters,’’ in 14th IEEE

International Conference on Electronics, Circuits and Systems (ICECS), 2007,

Dec. 2007, pp. 713--716.

[41] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, ‘‘Optimization of area in digital

FIR filters using gate-level metrics,’’ in DAC ’07. 44th ACM/IEEE Design

Automation Conference, 2007, June 2007, pp. 420--423.

[42] O. Gustafsson, ‘‘Lower bounds for constant multiplication problems,’’ IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 11, pp.

974--978, Nov. 2007.

[43] V. Lefèvre, ‘‘Multiplication by an integer constant: Lower bounds on the code

length,’’ in Proceedings of the 5th Conference on Real Numbers and Computers,

École Normale Suprieure de Lyon, France, Sep. 2003, pp. 131--146.

[44] J. Thong and N. Nicolici, ‘‘Time-efficient single constant multiplication based on

overlapping digit patterns,’’ IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 17, no. 9, pp. 1353--1357, Sept. 2009.

[45] V. Lefèvre. ‘‘Multiplication by integer constants.’’ June 2009. [Online]

http://www.vinc17.org/research/mulbyconst/index.en.html.

[46] Spiral Website. ‘‘Spiral multiplier block generator.’’ Jan. 2009. [Online]

http://spiral.ece.cmu.edu/mcm/gen.html.

233

BIBLIOGRAPHY M.A.Sc. - J. Thong - McMaster

[47] A. Dempster, S. Dimirsoy, and I. Kale, ‘‘Designing multiplier blocks with low logic

depth,’’ in IEEE International Symposium on Circuits and Systems (ISCAS),

2002, vol. 5, 2002, pp. V--773--V--776 vol.5.

234

Index

Abstraction, 9, 81, 135

Adder depth, 81, 183

Adder distance, 36, 39, 43, 47, 54, 58, 61,

63, 66, 73, 112, 118, 123, 128, 149,

152, 154, 155, 158, 161, 167

Adder-operation, 20, 21, 24, 28, 35--37, 54,

56, 61, 66, 71, 82, 127, 129, 137,

163, 203

Additive decomposition, 42, 44, 56, 69, 76,

91, 179

ASIC, 6, 136

BBB algorithm, 53, 69, 182

BDFS algorithm, 196

Bernstein’s algorithm, 68

BFSmcm algorithm, 59, 195

BH algorithm, 61

BHM algorithm, 62, 65, 69

BIGE algorithm, 111, 116, 138, 141, 162,

196

Blocked successor set, 200

Bounding heuristic, 111, 115, 135, 196,

199, 207

Bounds (adder-operation), 56, 128, 130,

163, 167, 207

Bounds (analytical), 56, 83, 85, 127, 185

Branching, 69, 78, 104, 195, 198, 207, 215

CAD, 10

Complexity-n constants, 40, 54, 56

CSD, 16, 18, 31, 76, 83, 89, 148, 158, 185

CSE, 28, 31, 41, 47, 59, 73, 80, 88, 91, 112,

147, 150, 160, 162

Custom hardware, 6, 9, 16, 21

DAG, 28, 38, 42, 44, 48, 54--56, 93, 112,

116, 149, 195

Depth reordering problem, 188

DiffAG algorithm, 70, 151, 171, 173, 179,

182, 196

Difference set, 70, 71, 151, 179

Differential adder distance, 179

235

INDEX M.A.Sc. - J. Thong - McMaster

Digit clashing (CSE), 91, 92, 95, 99, 101,

107, 110, 148

Digital signal processing, 4, 6, 85, 117

Division test, 43, 49, 119, 124

FPGA, 6, 136

Graph enumeration, 48, 112, 116

H(k) algorithm, 76, 89, 90, 102

H(k)+ODP algorithm, 92, 100, 102, 111,

114, 147, 162, 186, 197

H3 algorithm, 146, 153, 155, 179, 182, 196,

215

H3d algorithm, 183

H4 algorithm, 146, 153, 167, 197, 215

Hcub algorithm, 37, 59, 63, 65, 151, 154,

155, 158, 160, 163, 195, 196

Heuristic, 54, 73, 77, 162

IGT, 49, 112, 116, 118, 122, 155, 167

Leapfrog graph, 122, 140

Logic resources, 1, 8, 15, 21, 82, 136, 139

MAG algorithm, 55, 56, 62, 65, 112, 135

MCM problem definition, 24

MSD, 77, 89

Multiplicative decomposition, 41, 56, 69,

75, 91, 179

Negative constants, 137, 141

ODP, 88, 90, 92--94, 97, 103, 148

Partial graph estimation, 159, 160, 169,

186, 188, 193

Pattern (CSE), 31, 41, 47, 73, 74, 88, 92,

101, 103, 104, 115, 147, 186

Pruning, 104, 117, 138, 184, 204, 205, 216

Pseudo-ODP, 98, 100

RAG-n algorithm, 63, 65, 70, 84, 151, 153

Ready set definition, 19

Redundancy between constants, 147, 154

Redundancy within constants, 147, 153,

154, 159

Reflective property of the adder-operation,

36, 39, 46, 71, 119, 123

Remaining targets set definition, 60

Ripple-carry adder, 9, 82, 136

SCM estimation, 160, 162, 168

SCM problem definition, 24

SD representation, 31, 34, 59, 77, 78, 88,

90, 93, 100, 103, 147, 162

236

INDEX M.A.Sc. - J. Thong - McMaster

Search space, 21, 35, 73, 109, 111, 124,

139, 185

Second order successor set, 50, 161

Software constant multiplication, 67

Successor set definition, 37

Target set definition, 20

Vertex reduced adder-operation, 45

Vertex reduction, 44, 56, 76, 93, 118, 127,

139, 157, 165, 179, 215

Vertex reordering problem, 163, 167, 189,

215

237

	Abstract
	Acknowledgements
	Glossary
	Notation
	Introduction
	Applications of Constant Multiplication
	Custom Hardware
	A Comparison of Custom Hardware and Instruction-BasedProcessors
	Logic Resources

	Thesis Contributions and Organization

	Problem Background
	Integer Multiplication
	General Multiplication and Constant Multiplication
	Using Subtraction in Constant Multiplication

	Sharing Intermediate Terms
	Formal Problem Definitions
	An Informal Introduction
	Definition of the Constant Multiplication Problem
	Simplifying Assumptions and the Derivation of theAdder-Operation for Custom Hardware
	Definition of the SCM and MCM Problems
	Related Problems

	Algorithmic Frameworks
	DAG and CSE Framework Notation
	Directed Acyclic Graph Notation
	Common Subexpression Elimination Notation

	Useful Properties
	The Reflective Property of the Adder-Operation
	The Successor Set
	An Introduction to the Adder Distance
	Multiplicative Decompositions and Division Tests
	Additive Decompositions and Vertex Reduction
	Computing the Exact Adder Distance

	Existing Algorithms
	Existing Algorithms
	Exhaustive Search Methods
	The MAG Algorithm (Optimal SCM)
	Extension of the MAG Algorithm
	An Optimal MCM Algorithm

	An Overview of Iterative Heuristics
	Bottom-Up Graph-Based Algorithms
	The BH and BHM Algorithms
	The RAG-n Algorithm
	The Hcub Algorithm

	Top-Down Graph-Based Algorithms
	Bernstein's Software-Oriented SCM Algorithm and the BBB Algorithm
	Difference-Based Heuristics and the DiffAG Algorithm

	CSE-Based Algorithms
	An Introduction to CSE Algorithms
	Top-Down Versus Bottom-Up Heuristics
	The H(k) Algorithm

	Other MCM Algorithms
	Problems Related to SCM and MCM
	Depth Constraining
	Minimization of Single-Bit Adders

	Bounds on the SCM and MCM Problems
	Theoretical Analysis
	Justification for Not Providing the Asymptotic Run Time Analysis of the Algorithms

	New SCM Algorithms
	Heuristic SCM
	Examples of Non-Optimal CSE Solutions
	The H(k)+ODP Algorithm and Overlapping Digit Patterns
	The Remaining Limitations of H(k)+ODP
	Run Time Versus Minimizing Adders
	Implementation Details
	Experimental Results

	Optimal SCM
	Outline of the BIGE Algorithm
	Exhaustive Searching in the BIGE Algorithm
	Details Specific to the Adder-Operation
	Experimental Results

	Minimization of Single-Bit Adders
	Single-Bit Adders
	An Exhaustive Search
	Experimental Results

	Concluding Remarks on SCM

	New MCM Algorithms
	Heuristic MCM
	An Analysis of Redundancy Within Constants Versus Redundancy Between Constants
	Enhancing the Use of Redundancy Within Constants
	The H3 Algorithm
	The H4 Algorithm
	Experimental Results
	Differential Adder Distance
	The Hybrid H3+DiffAG Algorithm

	Depth Constrained MCM
	Using the Depth Constraint to Prune the Search Space
	A Depth Constrained Version of H(k)+ODP
	The Depth Reordering Problem
	Experimental Results

	Optimal MCM
	Prior Work
	The Bounding Heuristic
	An Exhaustive Search for Multiple Constants
	Experimental Results

	Concluding Remarks on MCM

	Conclusion
	A Summary of the Contributions
	Future Work
	Minimization of Multiple and Less Abstracted Metrics
	Parallelization of an Exhaustive Search

