
Constrained-Random Stimuli Generation for

Post-Silicon Validation

CONSTRAINED-RANDOM STIMULI GENERATION FOR

POST-SILICON VALIDATION

BY

XIAOBING SHI, B.Eng., M.A.Sc.

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Xiaobing Shi, April 2016

All Rights Reserved

Doctor of Philosophy (2016) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Constrained-Random Stimuli Generation for Post-Silicon

Validation

AUTHOR: Xiaobing Shi

B.A.Sc., (Computer Science and Technology)

Huazhong University of Science and Technology, Wuhan,

China

M.A.Sc., (Computer Science and Engineering)

University of Chinese Academy of Sciences, Beijing,

China

SUPERVISOR: Dr. Nicola Nicolici

NUMBER OF PAGES: xx, 150

ii

To my beloved parents

Abstract

Due to the growing complexity of integrated circuits, significant efforts are under-

taken to ensure the design and implementation meet the specification and quality

requirements both at the pre-silicon verification stage (before tape-out), as well as

at the post-silicon validation stage (on the silicon prototypes). In particular, the

constrained-random methods, which subject the design to a large volume of random,

yet functionally-compliant stimuli, are widely employed during the pre-silicon stage.

Hardware description languages, such as SystemVerilog, have standardized and well-

defined features to formalize the constraints including format, sequence control and

distribution. Nonetheless, it is not obvious how such features can be efficiently lever-

aged at the post-silicon stage.

In this dissertation, a systematic methodology is proposed to support constrained-

random generation and application during post-silicon validation. This includes both

software algorithms and on-chip hardware structures. The proposed software trans-

lates functional constraints from SystemVerilog into a cube-based representation. A

method to design in-field programmable signal generators, which are placed on-chip,

can directly expand compacted cubes to extensive random, yet functionally compli-

ant, sequences for post-silicon validation. This approach is extended to also support

sequential constraints, as well as the control of the stimuli distribution.

iv

Acknowledgements

I would like to appreciate the help of my supervisor, Dr. Nicola Nicolici, who not

only mentors me on the way of researching, but also teaches me the art of leading a

better life in professional circles. I am also appreciative to Dr. Mark Lawford and

Dr. Shahram Shirani who serve in my supervisory committee. Their broad view and

advice on my research topic helped me to better position the work in the dissertation.

I would like to express my thanks to the colleagues, including Adam Kinsman,

Philip Kinsman, Zahra Lak, Henry Ko, Linyan Liu, Pouya Taatizadeh, Jason Tong

and Amin Vali. Without the communication and help of them, I could not have

developed so many insights in the field of post-silicon validation.

I am also thankful to the administrative and technical staff from the Electrical

and Computer Engineering Department at McMaster for their work and assistance

during my studies.

v

List of Abbreviations

ASIC Application Specific Integrated Circuit

ATPG Automated Test Pattern Generation

BIST Built-In Self-Test

BDD Binary Decision Diagram

CAD Computer-Aided Design

CBC Compact Binary Cube

CNF Conjunctive Normal Form

CPU Central Processing Unit

CMOS Complementary Metal-Oxide Semiconductor

CRC Cyclic Redundancy Check

CRSG Constrained-Random Stimuli Generator

DFT Design For Test

DNF Disjunctive Normal Form

DRC Design Rules Checking

vi

DUT Design Under Test

DUV Design Under Validation

EDA Electronic Design Automation

ERC Electrical Rule Checking

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

HDL Hardware Description Language

IC Integrated Circuit

I/O Input/Output

ILP Integer-Linear Programming

IP Intellectual Property

JTAG Joint Test Action Group

K-map Karnaugh Map

LFSR Linear Feedback Shift Register

LVS Layout Versus Schematic

PC Personal Computer

PCB Printed Circuit Board

PCIe Peripheral Component Interconnect Express

vii

PRNG Pseudo-Random Number Generator

RAM Random-Access Memory

RTL Register-Transfer Level

RTP Real-time Transport Protocol

SAT Boolean Satisfiability Problem

SoC System on a Chip

TAP Test Access Port

TLP Transaction Layer Packet

VLSI Very Large Scale Integration

viii

Contents

Abstract iv

Acknowledgements v

List of Abbreviations vi

List of Tables xiv

List of Figures xvi

List of Codes xx

1 Introduction 1

1.1 IC design and verification tasks . 2

1.2 Pre-silicon verification . 3

1.2.1 Simulation-based verification 4

1.2.2 Formal verification . 6

1.2.3 Physical verification . 7

1.3 Manufacturing test . 8

1.4 Post-silicon validation . 9

ix

1.5 The contribution of this dissertation 12

1.6 The structure of the dissertation . 14

2 Background and related work 15

2.1 A brief review of pre-silicon verification methodologies 16

2.1.1 Controlling the state of the circuit 16

2.1.2 Observing the state of the circuit 17

2.2 State-of-the-art for post-silicon stage 18

2.2.1 Stimuli generation . 18

2.2.2 Error detection . 21

2.2.3 Root cause analysis . 22

2.3 Describing constraints with equivalent models 23

2.3.1 Constraint solving for pre-silicon verification 23

2.3.2 Capturing constraints using SystemVerilog 29

2.3.3 Hardware-oriented representation for constraints 32

2.4 Case studies using SystemVerilog constraints 36

2.4.1 Logic constraints in the same clock cycle 37

2.4.2 Sequential constraints over consecutive clock cycles 39

2.5 Summary . 41

3 Representation of constraints as a set of cubes 43

3.1 The concept of a cube . 44

3.2 Formal notations for cubes and their

characteristics . 45

3.2.1 The characteristics of a cube 46

x

3.2.2 The characteristics of a cube pair 46

3.2.3 The characteristics of a set of cubes 47

3.3 Converting constraints to cubes . 48

3.3.1 Converting constraints to cubes using customized algorithms . 49

3.3.2 Converting constraints to cubes using hardware synthesis and

BDDs . 53

3.3.3 Hardware-oriented post-processing of cubes 56

3.4 Summary . 58

4 Stimuli generation for functional constraints using compact binary

cubes 59

4.1 The overview of the on-chip stimuli generator 60

4.2 The solution for logic constraints . 62

4.2.1 Content processing of cubes with compaction 62

4.2.2 On-chip CRSG architecture 66

4.2.3 The distribution of stimuli based on the architecture 71

4.3 The solution for sequential constraints 72

4.3.1 Cubes with timing information 72

4.3.2 Loose-coupling compaction for cubes 73

4.3.3 On-chip CRSG architecture 74

4.4 Experimental results . 79

4.4.1 The hardware evaluation of the generator for logic constraints 80

4.4.2 The hardware evaluation of the generator for sequential con-

straints . 83

4.4.3 The evaluation on the data volume of the cube set 84

xi

4.4.4 The evaluation of stimuli distribution 92

4.5 Summary . 93

5 Controlling the distribution of the constrained-random stimuli 95

5.1 The motivation for controlling the distribution during stimuli generation 96

5.2 Causes of stimuli repetition . 97

5.3 Generate non-overlapped cubes . 98

5.4 The on-chip generator for random-cyclic stimuli generation 104

5.4.1 Decode cubes on-chip . 105

5.4.2 Generate ξ-bit primitive sequences 107

5.4.3 Assemble compliant stimuli 109

5.5 Interleaving cubes during on-chip generation 111

5.5.1 The analysis of the order of cube processing 112

5.5.2 On-chip cube scheduling . 113

5.6 Supporting weighted distributions . 117

5.6.1 Cube preparation for weighted ranges 118

5.6.2 On-chip scheduling of weighted sets of cubes 119

5.7 Experimental results . 122

5.7.1 The evaluation of the algorithm for cube rectification 122

5.7.2 The evaluation of the random-cyclic distribution 123

5.7.3 The evaluation of area cost for random-cyclic stimuli generation 124

5.7.4 The evaluation of the solution for supporting weighted distri-

bution . 128

5.8 Summary . 131

xii

6 Conclusion 132

6.1 Summary of the contributions . 133

6.2 Suggestions for future work . 135

Appendix A The switching functions for the dynamic LFSR 137

Bibliography 139

Index 149

xiii

List of Tables

2.1 Valid assignments according to the constraint x ≥ y, in which x and y

are 2-bit unsigned integers. 24

2.2 Calculated stimuli according to the Boolean unification result for the

constraint x ≥ y. 29

2.3 Part of stimuli cubes according to the constraint x[3:0]>=y[3:0]. . . 36

3.1 The set of cubes for the SystemVerilog constraint from Code 2.3. . . . 52

3.2 The dictionary for mapping cube strings into binary cubes. 56

4.1 An example of CBC based on the logic constraints shown in Code 2.3. 65

4.2 The CBC using loose-coupling compaction. 75

4.3 The trend for the size of the cube set generated by (a) the customized

software and (b) the indirect flow using BDD, when adding constraints

incrementally for the ILP inequalities on 12-bit variables. 86

4.4 The encoding result of the cube set for PCIe and H.264. 90

4.5 Loaded data volume and the total number of implied stimuli, compared

with the reference method(Kinsman et al., 2013). 91

5.1 Switching functions for a 16-bit dynamic LFSR that can be configured

into smaller LFSRs . 109

5.2 The equivalent set of cubes for the constraints in Code 5.2. 113

xiv

5.3 The test cases for assessing the runtime of Code 5.1. 123

6.1 The summary of the proposed solutions for on-chip constrained-random

stimuli generation. 134

A.1 The on-set of switching functions for the 64-bit dynamic LFSR. . . . 137

xv

List of Figures

1.1 Pre-silicon verification, manufacturing test and post-silicon validation:

three steps that ensure the consistency between specification, imple-

mentation and fabricated devices. 4

1.2 The scope of the work from this thesis during the implementation cycle. 13

1.3 The relationship between the chapters from this dissertation. 14

2.1 The sketch from a tree to a BDD for the constraint x ≥ y 27

2.2 The synthesized hardware logic for Boolean expression x[1 : 0] ≥ y[1 : 0]. 33

2.3 Constrained-random stimuli generation by employing reseeding logic

circuitry around the LFSR. 35

3.1 The K-map for Boolean function x ≥ y, where x and y are 2-bit un-

signed integers. 45

3.2 The general flow of cube processing. 49

3.3 Use a 2-1 multiplexer to arbitrate the final bit according to the 2-bit

binary code (i.e., the higher bit X (ai) and the lower bit). 56

3.4 Constrained-random stimuli generation by employing correction logic

around the LFSR. 57

4.1 The general top-level architecture for the on-chip CRSG. 61

xvi

4.2 The format for the run-length segment and the mixed segment for cube

compaction. 65

4.3 The architecture of the on-chip CRSG for logic constraints. 67

4.4 Timeline for CBCs decoding that influences how frequently a CBC can

be switched. 71

4.5 The two types of segments (r = 6) for sequential constraints. 74

4.6 The architecture of the generator for sequential constraints. 76

4.7 The timeline for generating stimuli with partial CBCs. 77

4.8 The hardware cost of proposed cube-based CRSGs and the reference

design according to the length of LFSR k 81

4.9 The hardware cost of the proposed CRSG for logic constraints and the

reference design in (Kinsman et al., 2013) according to the length of

the stimulus n (given p = 8). 82

4.10 The hardware cost of the proposed CRSG for logic constraints accord-

ing to the degree of parallelism in the decoding logic (given T = 1,

k = 168 and n = 168). 83

4.11 The critical path delay of the proposed CRSG for logic constraints

according to the degree of parallelism in the decoding logic. 84

4.12 The hardware cost of the proposed CRSG for sequential constraints,

according to the length of stimulus per cycle. 85

4.13 The critical path delay of the proposed CRSG for sequential constraints

according to the length of stimulus per cycle. 86

4.14 The geometrical illustration for the incrementally imposed constraints

from Table 4.3. 87

xvii

4.15 A typical packet format of H.264 RTP. 89

4.16 A typical packet format of PCIe 3.0 TLP. 89

4.17 The relation between the number of generated stimuli and the number

of unique stimuli based on the constraint x ≥ y. The unsigned variables

x and y are set to 8 bits in (a) and 16 bits in (b) respectively. 92

5.1 Stimuli repetition due to (a) overlapped cubes and (b) LFSR and cor-

rection strategy. 99

5.2 Eliminate repetition by rectifying overlapped cubes. 102

5.3 The structure of on-chip CRSG hardware for uniformly distributed

stimuli generation. 106

5.4 The sketch of 4-bit dynamic LFSR evolving from fixed-length LFSRs,

which makes ci as a switching function based on the on-set. 108

5.5 Exhaustive enumeration by dynamic LFSR and the new correction

strategy, compared with Figure 5.1(b). 110

5.6 The structure of on-chip CRSG hardware to support cube scheduling. 115

5.7 The timeline for scheduling cubes and the snapshots of the cube RAM

with the address pointers wb and end (T = 2). 117

5.8 The timeline for scheduling two sets of cubes according to the weights

of 3 for the set {ai} and 2 for the set {bj}. 120

5.9 The actual distribution converges to the expected distribution. 121

5.10 The number of cubes of each test case in the method (a) presented in

Section 4.2 and the method (b) presented in Section 5.4. 124

5.11 The volume of on-chip data (compacted cubes) for the method (a)

presented in Section 4.2 and the method (b) presented in Section 5.4. 125

xviii

5.12 Assessing the repetition in the generated stimuli for the method (a) in

Section 5.4 and the method (b) in Section 4.3. 126

5.13 The hardware cost (exclusive of RAM) according to the length of sup-

ported stimuli for the method (a) (pipelined and non-pipelined) in

Section 5.4, the method (b) in Section 4.3 and (c) in Section 4.2. . . . 127

5.14 The critical path delay according to the length of supported stimuli for

the method (a) (pipelined and non-pipelined) in Section 5.4 and the

method (b) in Section 4.3. The data is collected from static timing

analysis with a CMOS 90nm standard cell library. 128

5.15 The hardware cost (exclusive of RAMs) of the generator from the

method (a) in Section 5.5 and the generator without decoding logic

from the method (b) in Section 4.3 according to the length of stimulus

per cycle. 129

5.16 The ratio of values according to the constraint in Code 2.2 during

on-chip generation. 130

5.17 The area cost of the generator according to the number of supported

cube sets. (The length of stimuli is m bits.) 130

xix

List of Codes

2.1 A SystemVerilog class with a constraint for two 2-bit variables. 31

2.2 The SystemVerilog constraint for weighted distribution. 31

2.3 A SystemVerilog class with logic constraints for generating ALU in-

structions. 38

2.4 A SystemVerilog class for generating a single precision floating-point

number compliant with IEEE 754 standard. 39

2.5 A SystemVerilog task capturing sequential constraints using a single

constraint class for randomization. 40

2.6 A SystemVerilog task capturing sequential constraints using multiple

constraint classes for randomization. 42

3.1 A typical algorithm to generate the set of cubes for the operator ‘≥’. 50

3.2 Rewrite constraints to synthesizable Boolean functions in SystemVerilog. 55

5.1 The algorithm to rectify overlapped cubes for the given set sin and

produce the equivalent set sout. 101

5.2 The SystemVerilog constraints for generating bus packets. 113

5.3 Rewriting the dist expression in the constraint block from Code 2.2 to

multiple constraint blocks using inside expressions. 118

xx

Chapter 1

Introduction

Integrated circuits (ICs) have been gradually impacting every aspect of human life.

We lead better lives because of electronic gadgets, which are powered by ICs, ranging

from infotainment systems to biomedical devices. Since today’s lifestyle is conditioned

by the assumption that these electronic devices which surround us are trustworthy,

an important question is whether these devices have been developed, implemented

and manufactured as expected, and to what extent do they complete their tasks

correctly? It can be argued that making mistakes is rooted in the human nature,

hence what measures are taken during the design, implementation and manufacturing

of these electronic devices to address any potential failures? Despite their easy-to-

use appearance, most of the electronic systems have thousands to even millions of

basic building blocks and validating that all of them are implemented correctly is a

challenge of practical relevance that must be addressed by systematic approaches.

This chapter provides a high-level overview the implementation cycle of IC designs,

especially the processes which help ensure that the stated and implied goals are met.

It also positions the contributions from this thesis within the IC implementation cycle.

1

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

1.1 IC design and verification tasks

Integrated circuits consist of a set of electronic devices, e.g., transistors, that are

integrated onto wafers manufactured from semiconductor material, such as silicon.

The first integrated circuits were manufactured in the middle of the 20th century and

they were comprised of a few transistors (Kilby, 2001), and from then onwards their

complexity has rapidly evolved. The scale of ICs has grown from a few transistors, i.e.,

small-scale integration and medium-scale integration in the early stages, to large-scale

integration and very large-scale integration (VLSI), generally at tens of thousands

transistors and above (Smith, 1997). While today’s circuits are still referred to as

VLSI circuits, it is worth mentioning that state-of-the-art advanced designs, e.g.,

multi-core processors and system-on-a-chip devices, can have in excess of one billion

transistors.

Generally, an IC product goes through several phases by evolving from its concept

form to the design form to the fabricated form. First, the specification of the product

is defined according to market research and technical goals, for example, what per-

formance the product is expected to achieve, to which standard it has to conform to,

or what non-functional requirements (e.g, power consumption) must be met. There-

after, the product is implemented (most commonly) in a register-transfer level (RTL)

model using hardware description languages (HDLs) according to the specification,

and subsequently it is synthesized to a netlist and then into the layout of the IC. Up to

this point, the product still remains in a virtual form which has not been materialized

into a physical device. Therefore it is known as the pre-silicon phase. Subsequently

the IC is fabricated onto the silicon wafer and any tasks performed after this step are

said to operate during the post-silicon phase.

2

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

In order to guarantee the consistency between the different forms of the product, a

series of tasks are employed at both the pre-silicon and post-silicon phases. In general,

the methods for verifying the consistency between the design implementation and its

specification that are carried out during the pre-silicon phase are categorized as pre-

silicon verification. Manufacturing test ensures that each fabricated device matches its

implementation. Post-silicon validation is performed on silicon prototypes that have

passed manufacturing test, however it is necessary to establish with higher confidence

than during pre-silicon verification whether the specification is met. It is a critical step

that needs to detect design errors that must be fixed in the subsequent respins before

committing to high-volume manufacturing. As shown in Figure 1.1, although these

three tasks (pre-silicon verification, manufacturing test and post-silicon validation)

have their unique objectives and methods, they complement and reinforce each other

to guarantee the quality of the fabricated ICs. The following three sections provide

a brief overview of these three tasks and outline some key methods that are used for

each of them.

1.2 Pre-silicon verification

Pre-silicon verification is employed to ensure the consistency between the design and

its specification. Its goal is not only confined to finding errors in the design but

it also uses a systematic way to increase the confidence that the design is able to

accomplish the expected functionality (Spear and Tumbush, 2012). The design flow

can be seen as the forward process from the abstract concept and specification towards

the concrete design structure ready for manufacturing. The verification can be seen

as the checking process between different steps in the design flow.

3

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Specification:
Documentation of system functions,

behavioural reference models . . .

Implementation:
Designs described in HDLs,

synthesized netlists . . .

Physical device:
Fabricated on silicon die,

Packaged ICs . . .

Pre-silicon verifcation:
Simulation,

formal methods . . .

Manufacturing test:
Test using scan chains,

Built-in self-test . . .

Post-silicon validation:
Run software benchmarks,

debug with trace buffers . . .

Figure 1.1: Pre-silicon verification, manufacturing test and post-silicon validation:
three steps that ensure the consistency between specification, implementation and
fabricated devices.

Simulation-based verification and formal verification are used to detect and fix

functional errors, followed by physical verification which checks the electrical charac-

teristics of the layout, including timing and power, before committing to the fabrica-

tion of silicon prototypes.

1.2.1 Simulation-based verification

A software simulator is a tool that imitates the behaviour of the IC. Given a model

of the design (e.g., RTL description or gate-level netlist), the simulator can control

the inputs to inject a series of stimuli, and then it can observe both the output

response and the state transitions. There are two broad approaches to generating

the stimuli: direct and random. Concerning the observation, the responses can be

compared against a golden model (most commonly obtained at a higher level of design

abstraction), and design properties or assertions can be be monitored.

4

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

In direct verification, the expected responses are known by computing them using

the same set of input stimuli on a different model of the design, commonly referred

to as the reference model. Most commonly this reference model is a description at

a higher-level of design abstraction. For example, for an image decoder, a software

model (e.g., C/C++ or Matlab) can be used to compute the values of each pixel.

The hardware model (e.g., RTL description or gate-level netlist) uses the exact same

input stimuli as the software model and therefore the output responses are expected to

match. Alternatively, the reference model can be a previous version of the design that

has been already prototyped or fabricated (e.g., a microprocessor that is compatible

in terms of machine code) and the output responses of the reference model can be

computed rapidly on the physical device.

For random verification, the auxiliary software within the simulator, known as the

pseudo-random number generator (PRNG), undertakes the work of creating stimuli

for the design. The pure random method generates stimuli autonomously, which

are used to check simple properties, such as the connections of data paths. Most

commonly, the specification of a design has defined a series of formats and rules for

the inputs. For an image decoder, for example, the header of the file must have a

set of fields and the values within this fields are constrained and can be related to

each other. Another example are communication protocols where the packets follow

a pre-defined format. The values within some fields can be randomized, however the

value in one field might constrain the values in other fields. Hence the stimuli for

the design should not be completely random, but random to such an extent as to be

constrained within a valid or functionally-compliant subspace of input values. The

generation of such stimuli is referred to as constrained-random stimuli generation. In

5

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

this methodology it is not mandatory to compute golden responses. Rather, because

the constraints on the input space guarantee valid stimuli, the objective is to ensure

that design properties are not violated.

It is worth mentioning that random verification is not a replacement for direct

verification. Rather, it complements it. Both direct and random methods are useful

to detect and fix design errors (or bugs), hence they can help answer the question

“does-it-work?”. If no design errors have been detected after many directed use cases

have been employed, the random method is particularly useful to answer the question

“are-we-done?”. This is because before tape-out what can be measured is limited by

the simulation time and accuracy, and designs are released for manufacturing when

the confidence level is deemed sufficient. This confidence level is quantified using

simulation metrics, such as code or assertion coverage.

1.2.2 Formal verification

Regardless of the metrics that have been employed during simulation-based verifica-

tion, since the confidence level is quantified by coverage metrics, there is no guarantee

that the design is functionally correct for the entire valid input space (unless the entire

space can be enumerated, which is practically infeasible for VLSI designs). Formal

methods, e.g., model checking, can prove the equivalence between the target repre-

sentation (usually the low-level system model or implementation) and the reference

representation (high-level design or specification). The tools for model checking ver-

ify the consistency between the model formalized from the low-level design and the

properties extracted from the specification. If these two representations (or mod-

els) are not equivalent, model checking can produce a counterexample that points

6

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

out to what lead to the inconsistency between the two models (Clarke et al., 1999).

From the practical standpoint, the target HDL implementation can be modelled us-

ing intermediate formats, such as finite state machines, based on which a series of

formulas can be constructed by a proof generator. Then a theorem prover determines

the correctness of the formulas (Smith, 1997). While formal methods have evolved

significantly over the past two decades, due to the state space explosion problem,

they are still limited to small designs, or to small sub-blocks of large designs. Conse-

quently, formal methods on their own are insufficient to prove the correctness of the

entire design and their usage is enhanced by simulation-based methods, in particular

constrained-random verification.

1.2.3 Physical verification

The layout representation of a design contains the information that is mapped from

logical structures (logic gates, flip-flops) to the physical elements (transistors, wires).

Physical verification checks the consistency between the logical design and the physi-

cal schematic. For example, timing analysis is focused on verifying whether the delays

due to signal interactions are within the bounds estimated at the previous design steps

(Sivaraman and Strojwas, 2012). The layout versus schematic (LVS) checking veri-

fies the connection among physical elements according to the logical structure. The

design rules checking (DRC) and electrical rules checking (ERC) verify if geometrical

distances needed for correct fabrication are respected (Weste and Harris, 2011).

7

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

1.3 Manufacturing test

Manufacturing test, which takes place during the the post-silicon phase, checks if each

fabricated device matches the design implementation. It is focused on screening for

defects introduced during the fabrication process, e.g., shorts or open wires.

Over the years many fault models have been proposed to map the defect space,

which is difficult to quantify, to a fault space which, for logic circuits, can be measured

practically. In particular, static fault models, such as the stuck-at fault model, or the

timing fault models, including transition or path delay faults, are widely employed

to assess the effectiveness of manufacturing test. Despite the fact that no single fault

model can reflect all the potential defects in a circuit, it is has been shown over the

years that systematic adaptation of fault models has significantly improved the quality

of manufacturing test (Wang et al., 2006). Due to the fact that fault models correlate

to the defect mechanisms and fault coverage can be used to estimate the quality of

manufacturing test process, the field of manufacturing test has evolved as a scientific

discipline over the past five decades. Systematic methods, such as algorithms for

automatic test pattern generation (ATPG) have been developed, whose effectiveness

is measured based on the fault coverage that can be attained.

Test generation, application and observation are difficult to handle, and they can

be even practically infeasible, when the number of state elements (flip-flops or latches)

becomes excessively high. Since VLSI circuits can have millions of state elements,

design for test (DFT) methods are extensively used in practice, thus controlling and

observing state elements. For example, scan chains configure state elements into

shift register-like structures during test. Also built-in self-test (BIST) places pattern

generators and response analyzers on the same die as the design-under-test (DUT)

8

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

(Stroud, 2002). The BIST method consumes additional logic resources, and hence

on-chip area, however it can be especially effective when the tests need to be carried

out in-field. Another DFT method is boundary scan, which wraps and isolates the

DUT for better controllability and observability of the inputs and outputs (I/Os)

when testing the interconnects on the printed circuit board (PCB). By controlling

the test access ports (TAPs), according to the interfaces defined by JTAG (Joint Test

Action Group) (IEE, 2013b), boundary scan can also be used for test access during

logic test of components.

Both pre-silicon verification and manufacturing test have evolved in the last few

decades into engineering disciplines with strong theoretical foundations. Post-silicon

validation, which is concerned with confirming that no design errors have escaped

the pre-silicon verification step, has been traditionally viewed as a necessary step of

practical relevance. Many case studies have been discussed over the years by practi-

tioners, however only at the turn of this century the need for systematic approaches

was articulated (Vermeulen et al., 2002). Considering that practical needs for post-

silicon validation have existed since the early days of electronics, the relevance of

post-silicon validation is highlighted in the next section.

1.4 Post-silicon validation

Pre-silicon verification is concerned with identifying and fixing design errors and there-

fore the RTL description is iteratively refined. The simulation-based verification finds

design errors based on a large set of use cases. Nonetheless, simulation is known to be

slow; for example, the study on a commercial microprocessor (Bentley, 2001) argues

that it may take weeks of simulation of test cases that will take merely seconds to

9

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

minutes of real-time execution. The inherent limitation of formal verification in mod-

elling the whole design confines its applicability within focused units on small scales.

Furthermore, when accounting for unique electrical states, such as the ones caused by

process variations or effects exercised only under certain process-voltage-temperature

corners, it becomes more difficult to develop both accurate and scalable pre-silicon

verification methods (Mitra et al., 2010).

Once the confidence level of pre-silicon verification is deemed to be sufficient, the

implemented design is sent for fabrication. The main concern is that the confidence

level, which is measured using metrics such code or state coverage, is often traded-off

against verification time. Manufacturing test, on the other hand, is not concerned

with finding and identifying subtle design errors (or bugs) that have escaped to silicon

prototypes. After screening for manufacturing defects, the design is validated on a

system platform. It is in this phase that subtle design errors (which affect every single

fabricated device) are commonly uncovered. In order to compensate for the insuf-

ficiency of pre-silicon verification methods, the role of verification employed during

the pre-silicon phase has to be continued on silicon prototypes. This critical step for

finding design errors before committing to high-volume manufacturing, is commonly

referred to as post-silicon validation (Keshava et al., 2010).

The key benefit of post-silicon validation is that, unlike pre-silicon verification,

which is commonly six to nine order slower than the real-time execution, the design-

under-validation (DUV) can be stressed over extensive periods of time to reveal subtle

errors that have escaped to silicon prototypes. In addition to known application use-

cases, constrained-random sequences can be applied to the design during this phase.

The main advantage of such randomized/functional tests is the huge volume of clock

10

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

cycles, and in a few seconds of real-time execution more stimuli are applied to the

DUV than during the entire pre-silicon phase. Hence a few hours, or possibly days

or weeks (Adir et al., 2011) of running validation suites on silicon prototypes can

uncover (or help increase the confidence of the lack of) design errors.

Post-silicon validation lacks the controllability and the observability, which is

taken for granted during pre-silicon verification. A large volume of proper stimuli

are required for supporting the extensive periods during validation. The simulation

tool in pre-silicon verification utilizes the constrained-random number generator to

produce stimuli that satisfy user-defined constraints, whereas it does not fit the unique

environment of the post-silicon phase. For instance, transmitting the stimuli gener-

ated from the simulation tool to the silicon prototype is impractical due to bandwidth

limitations; meanwhile the volume of generated stimuli is limited by the slow execu-

tion of software tools. Considering validating a design with 128-bit inputs with the

real-time frequency of 1GHz, running a validation session for one day will require at

least 1 petabyte (1015 bytes) of stimuli. Consequently, one has to consider how to

generate a large volume of randomized functional sequences on-the-fly. The attempt

of emulating the behaviour of software algorithms for constrained-random stimuli

generation on hardware is impractical with the exception of microprocessor-based de-

signs where the microprocessor itself is used for stimuli preparation, application and

observation.

The limited observability of the fabricated devices confines the methods of check-

ing responses during post-silicon validation. In order to observe the erroneous re-

sponse for further debug, many structured methods have emerged to improve the

observability during validation, such as the in-system assertion checking, as well as

11

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

the embedded trace buffers for recording the execution history after the erroneous

behaviour occurs.

This dissertation is focused on enhancing the controllablity for post-silicon vali-

dation. A more detailed elaboration of the research background and related methods

will be discussed in Chapter 2.

1.5 The contribution of this dissertation

Motivated by the need to improve the efficiency of compliant stimuli generation for

post-silicon validation, and to reduce the hardware cost and the amount of data that

is stored on-chip, the main contribution of this dissertation is a new programmable

solution for on-chip constrained-random stimuli generation for post-silicon validation.

The scope of the proposed work is highlighted is shown in Figure 1.2. During pre-

silicon verification, a software simulator can wrap the target design using testbench

writing in an HDL to produce stimuli according to user specification. In order to

facilitate controllable experiments during post-silicon validation, the proposed solu-

tion inserts constrained-random stimuli generator (CRSG) blocks during design-time,

and a flow for iterative run-time configuration of these blocks (in Figure 1.2 the cor-

responding boxes are shown in gray and the steps will be detailed in the following

chapters). In order to configure CRSG blocks, the user-defined constraints are con-

verted into an intermediate form as binary cubes. At runtime, the cubes are loaded

on chip to program the on-chip generator which generates random, yet functionally-

compliant stimuli, according to the cubes with high throughput. A key advantage

of configuration through user-programmability at runtime is the ability to control

experiments and bias the constrained-random sequences as the validation progresses.

12

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Figure 1.2: The scope of the work from this thesis during the implementation cycle.

13

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Chapter 1
Introduction

Chapter 2
Research background

and related methods

Chapter 3
The principles of cubes

and the generation method

Chapter 4
Stimuli generator for

functional constraints

Chapter 5
Methods for controlling

the distribution

Chapter 6
Conclusion

Add control
on distribution

Figure 1.3: The relationship between the chapters from this dissertation.

1.6 The structure of the dissertation

The relation among the contents in the chapters is outlined in Figure 1.3. Chapter 1

has provided a general view of the methods for ensuring the quality ICs: pre-silicon

verification, manufacturing test and post-silicon validation. Chapter 2 elaborates in

more detail on the research and technical background, followed by the framework

of the proposed solution that consists of two phases. The phase of cube generation

is elaborated in Chapter 3. Regarding the phase of on-chip generation, Chapter 4

describes the on-chip generator structure for supporting SystemVerilog constraints on

functionality, including logic and sequential constraints. The methods that extend

the work to support the distribution of the generated stimuli are given in Chapter 5,

including a method for uniformly-distributed stimuli generation followed by a method

for customized distributions. The dissertation is concluded in Chapter 6.

14

Chapter 2

Background and related work

The practical approaches to both pre-silicon verification and manufacturing test have

matured over the years and there are known good practices based on tool flows and

algorithmic methods. Post-silicon validation has traditionally relied on ad-hoc meth-

ods, and automation has been used only within specific application domains, such

as validation of microprocessor-based designs. There is little information in the pub-

lic domain on systematic approaches used to validate generic logic blocks. The few

methods that have been discussed in the public domain have been focused more on

the observability aspects.

This chapter reviews the relevant approaches used at both the pre-silicon and the

post-silicon stages for improving the controllability and observability during valida-

tion. Since the main objective of the proposed work is to enable the constrained-

random methodology at the post-silicon stage, this chapter also examines the funda-

mentals of this methodology. The reader is provided with case studies that illustrate

the basic usage of constraints during pre-silicon, and these examples serve as the

motivation for the contributions presented in the latter chapters.

15

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

2.1 A brief review of pre-silicon verification method-

ologies

The concept of controllability and observability is conceptually derived from the the-

ory of control systems (Gopal, 1993), and it has been widely used in the field of circuit

verification. Essentially, controllability is concerned with driving the system into a

specific state space by controlling the inputs. The observability is concerned with

measuring the in-system states (and the transitions between them) at the observ-

able outputs. This section provides an overview of the methods used for improving

controllability and observability during simulation.

2.1.1 Controlling the state of the circuit

As the prevalent method during the pre-silicon stage, simulation-based verification

applies a large set of use cases, in order to check the consistency between the speci-

fication and the design. A use case employs a series of stimuli that is applied to the

targeted design to drive the design into specific functional states (e.g., set the overflow

flag of an arithmetic unit). The stimuli can be in the form of executable programs

for microprocessors, valid data packets for interface units, or a series of samples for a

digital signal processing block. The stimuli must be valid inputs for the design, which

need to satisfy of the design’s interface protocols, and possibly ranges for values for

different fields according to a specific verification scenario.

The stimuli can be manually written as direct verification use cases, which are

useful for checking the known hard-to-reach states. Random verification, can auto-

matically generate stimuli for the target design and help uncover unforeseen problems

16

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

(Yuan et al., 2010). Some specialized randomization tools have been developed for

microprocessors, e.g., Genesys-Pro for Power PC-based devices (Adir et al., 2004).

The randomization methods for generic circuits offer special features in hardware

description languages (HDLs) to specify the constraints. During simulation, the

constrained-random number generator embedded in the simulator generates stim-

uli that satisfy these user-defined constraints (Wiemann, 2007; Spear and Tumbush,

2012). Many widely used simulation tools, e.g., VCS (Synopsys, 2015) and ModelSim

(Mentor Graphics, 2015), have integrated constrained-random generation algorithms

for automatically generating stimuli according to user-specified requirements. The

details of how the requirements are specified will be elaborated in Section 2.3.

2.1.2 Observing the state of the circuit

In addition to stressing the targeted design, it is critical to check whether the responses

are consistent with what is expected according to the specification. Traditionally, the

response from the behavioural reference model is used as the golden response, which

is compared against the output from the simulated design. However, this approach is

limited by the lack of sufficient details in the reference model. For example, although

the reference model and the design that is verified are expected to have the same

outputs, the internal details, such as intermediate states, might be inconsistent. If

the software model is refined to compute more of this type of intermediate information,

it will gradually become slower, thus becoming less practically feasible to compute

golden responses. The same concern of lack of internal details applies if the reference

model is a physical device. What are also difficult to verify using reference models

are the features used to trade-off performance versus power.

17

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Over the past decade or so, verification methods using assertion checking have

become prevalent (Cerny et al., 2014). Assertions do not necessarily relate to a

specific implementation, since they are properties based on the specification that must

hold regardless of the implementation. During simulation, assertion conditions are

checked whether they are satisfied (true) or violated (false). They are particularly

useful when using constrained-random inputs when the golden response is unavailable

(Foster et al., 2012). If no properties are violated for extensively long randomized

functionally-compliant stimuli, the confidence level can be increased before sending

the design for manufacturing.

2.2 State-of-the-art for post-silicon stage

Considering its unique environment, and the limited controllability and observabil-

ity at the post-silicon stage, many approaches have been proposed to bridge the

gap between pre-silicon to post-silicon validation (Nahir et al., 2010). This section

will provide an overview of the methods for stimuli generation (controllability), error

detection (observability), as well as root causing (post-processing the failing informa-

tion).

2.2.1 Stimuli generation

Similar to the methods at the pre-silicon stage, the direct generation involves manual

development to exercise specific functions. The generation is closely coupled with

the target design and leads to poor reusability. Random generation, on the contrary,

compensates for this inflexibility and has been widely adapted in practice. A large

18

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

volume of random, yet functionally-compliant, sequences are needed for exposing the

design errors, which have escaped to the silicon prototypes (Nahir et al., 2010; Mitra

et al., 2010; Sadasivam et al., 2012; Adir et al., 2011; Nicolici, 2012).

Considering that transmitting the constrained-random stimuli from simulation

environments to the silicon prototype is obviously impractical due to bandwidth lim-

itations, one has to consider how to generate a large volume of randomized functional

sequences in real-time. For microprocessor designs, instruction-level templates (Sada-

sivam et al., 2012; Adir et al., 2011) are used to guide the on-chip random stimuli

generation. The predefined templates fix the format and the instruction sequence,

leaving the free fields open to randomization. The on-chip generation process can

produce instruction sequences similar to the ones during simulation. The method in

(Mitra et al., 2010) proposed to generate executable machine code for generating the

stimuli that stress the blocks under validation. These methods have been proven to

be successful for the sub-modules within a microprocessor, as well as for the mod-

ules that are on the path between the microprocessor and the memory where the

machine code is stored (e.g., cache controllers). However, it is not clear how they

can be adaptable to hardware modules that are not directly accessible by the micro-

processors. This is because many hardware accelerators (e.g., for video/networking)

are often only configured by microprocessors, and the data they consume/produce is

passed directly from/to the inputs/outputs (I/Os). In such cases, high-throughput

signal generators are placed on-chip for the validation phase, however they are of-

ten customized to the specific needs of the design at hand, e.g., (Wu et al., 2011).

Therefore, for logic blocks and data channels not easily accessible or not controlled by

19

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

programmable embedded microprocessors, high-throughput constrained-random sig-

nal generators placed on-chip near the target modules are expected to be employed

to generate at-speed functionally-compliant stimuli on the silicon prototypes, which

should be parameterized at design time and programmed in-system during validation

time. This type of stimuli should be easily subjected to constraints, consistent with

the specification and format of data packets fed to the design-under-validation in an

application environment. A systematic way of designing such general constrained-

random signal generators (CRSGs) is an active area of research (Nicolici, 2012), as

elaborated below.

Some well-understood logic blocks can be employed at the core of CRSGs. The

k-bit maximum-length Linear Feedback Shift Register (LFSR) generates 2k − 1 pat-

terns if the characteristic polynomial is primitive and irredundant (Bardell et al.,

1987). The use of LFSR for compressed deterministic test has been introduced in

(Köenemann, 1991) and this concept of reseeding LFSR has been refined and widely

adopted in practice during the subsequent decade (Barnhart et al., 2001; Rajski et al.,

2002; Wohl et al., 2003). Also, many variants of the LFSR, e.g., de Bruijn counter,

weighted pattern generator, and cellular automata (Wang et al., 2006), have been pro-

posed to control the pseudo-random stimuli sequences. Furthermore, there are known

methods to alter pseudo-random sequences for manufacturing test, e.g., (Gherman

et al., 2004; Touba and McCluskey, 2001). Nevertheless, none the above-mentioned

methods have been tuned to force all the pseudo-random stimuli to the unique func-

tional constraints as defined in pre-silicon verification environments.

20

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

The methods in (Kinsman et al., 2012, 2013) proposed to generate functionally-

constrained pseudo-random sequences by removing the non-compliant stimuli by re-

seeding LFSRs. The details of such methods will be elaborated in Section 2.3. The

reseeding-based method is one way of satisfying constraints at the post-silicon stage

by transforming the autonomous sequence from the LFSR. Section 2.3 will also exam-

ine the constrained-random methodology at the pre-silicon stage and its adaptation

to the post-silicon stage.

2.2.2 Error detection

Considering the limited observability in silicon prototypes, a series of approaches have

been developed to improve the efficiency of error detection. An early error detection

would benefit the work of isolating the errors, as well as finding out the root cause.

Early methods propose to reuse design-for-test (DFT) structures, e.g., scan chains,

to dump the inner states that are hard to be observed for off-chip analysis. The

method in (Vermeulen et al., 2002) takes advantage of test access port of JTAG (IEE,

2013b) to control the scan chains for offloading the inner states. Wrapper registers

have also been explored (Abramovici, 2008). Nonetheless, these methods start to

dump the data when a wrong behaviour due to errors results in an observable failure,

e.g., the halt of the system. Therefore, the latency from the time the error has been

sensitized to the time the state is dumped, makes them unsuitable for design errors

that manifest themselves after a long period of operation (Tang and Xu, 2008). This

is because the scan dumps do not provide a history of events of interest that lead

to the corrupted state. Beside, the scale of validating VLSI circuits necessitates a

much higher controllability and observability beyond what manufacturing test needs

21

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

(Hopkins and McDonald-Maier, 2006).

Thus, some validation-specific structures for in-system monitoring have been in-

vestigated over the past decade. A group of pre-selected logic elements are observed

in real-time according to a set of properties derived from the functional specification.

On-chip trigger units (Ko and Nicolici, 2009) or hardware assertion checkers (Boule

et al., 2007) are employed to reduce the latency from error excitation to its detection.

They are commonly used together with trace memories (Anis and Nicolici, 2007; Ko

et al., 2008) or footprint recorders (Park et al., 2009), which can track a subset of

relevant signals over a window that lead to the failure detection. It is important

to emphasize that this type of methods for improving observability are critical for a

constrained-random methodology where no golden responses are available. In prac-

tice, all the new methods discussed in the following chapters from this thesis, which

are focused on improving the controllability during post-silicon validation, must be

complemented by the methods used for providing real-time observability, such as the

methods mentioned above.

2.2.3 Root cause analysis

At both pre-silicon and post-silicon stages, identifying an erroneous behaviour is

followed by finding its root cause and fixing it (Wagner and Bertacco, 2010). When

the errors are detected by response comparison or in-system monitoring logic, the

stimuli that lead to the erroneous behaviour as well as the context from the trace

logic are collected to diagnose the errors. By the iterative process of reproducing and

analyzing the suspicious behaviour and conditions, the errors are gradually localized

and isolated. In the meantime, the pre-silicon verification techniques could be used

22

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

to facilitate error diagnosis. For instance, pre-silicon simulation can be used to replay

the trace related to the erroneous behaviour (Chang et al., 2007). Formal methods

could also help identify the error condition (Gharehbaghi and Fujita, 2011). While

root cause analysis is an important step, it is beyond the scope of the work from

this thesis and the interested reader can refer to (Chang et al., 2007; Wagner and

Bertacco, 2010; Gharehbaghi and Fujita, 2011) for further details.

2.3 Describing constraints with equivalent models

So far the previous sections have summarized the relevant methods for improving

controllability and observability during both pre-silicon verification and post-silicon

validation. Since the scope of the proposed work is to facilitate the reuse of con-

straints from the pre-silicon to the post-silicon environment, this section provides

the technical background for describing constraints and how they are modelled by

different algorithmic approaches. It explains how constraints can be formalized in

a verification language, such as SystemVerilog, and it also provides an overview of

hardware-oriented processing of constraints.

2.3.1 Constraint solving for pre-silicon verification

Given a set of user-defined constraints for verification, the constraint solving engines

in a simulator would find a group of value assignments to the variables that satisfy all

the constraints; otherwise it is expected to report non-existence of such assignments

and the reason for it (Yuan et al., 2010). For instance, Table 2.1 enumerates all

valid assignments according to the constraint x ≥ y, in which x and y are 2-bit

23

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Table 2.1: Valid assignments according to the constraint x ≥ y, in which x and y are
2-bit unsigned integers.

x y
Digital pair

x1 x0 y1 y0

0 0 0 0 〈0, 0〉
0 1 0 0 〈1, 0〉
0 1 0 1 〈1, 1〉
1 0 0 0 〈2, 0〉
1 0 0 1 〈2, 1〉
1 0 1 0 〈2, 2〉
1 1 0 0 〈3, 0〉
1 1 0 1 〈3, 1〉
1 1 1 0 〈3, 2〉
1 1 1 1 〈3, 3〉

unsigned integers. As shown in the table, multi-bit, or word-level, variables are

treated as a set of bitwise variables. The user-defined constraints are rewritten based

on the bitwise variables, followed by analyzing and modelling them by using different

methods described in this section. Some methods based on word-level constraints

solving for high-level modelling have been proposed (Jaffar and Maher, 1994), however

bit-level manipulation is eventually required whenever logic conditions arise. In the

following, the typical models for constraint solving are examined.

SAT-based modelling

The Boolean satisfiability (SAT)-based approach offers a search-based way of con-

straint solving via modelling Boolean expressions. Given a Boolean expression in the

conjunctive normal form (CNF), a SAT solver finds the assignment to the Boolean

24

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

variables such that the Boolean expression evaluates to true. A CNF expression is

a conjunction (joined by Boolean AND) of clauses, where each clause is a disjunction

(joined by Boolean OR) of literals (a Boolean variable or its negation). Taking a CNF

expression (a + b + c)(b + d)(a + d̄) as an example, the three clauses are a + b + c,

b+ d and a+ d̄.

The fundamental idea of SAT-based constraint solving is to convert the user-

defined constraints into a CNF formula, based on which the valid assignments are

searched by a SAT solver. For instance, the previous constraint x ≥ y can be ex-

pressed as (x1 + ȳ1)(x0 + ȳ1 + ȳ0)(x1 + x0 + ȳ0). It can be verified that only the

assignments in Table 2.1 can make the expression true. Solving a SAT problem is

known to be NP-complete (Cook, 1971), nevertheless, many SAT algorithms have

been developed that have been proven to be efficient in practical applications. The

early DPLL algorithm (Davis et al., 1962) iteratively assigns variables and analyzes

conflicts in clauses until the valid assignments are found (or a proof of unsatisfiability

is given by identifying the conflicting clauses). Modern SAT solvers adapt a series

of refined algorithms to enhance the efficiency in the search process, e.g., conflict-

based learning (Marques Silva and Sakallah, 1996), or watched literals and decision

heuristics (Moskewicz et al., 2001). The processes of constraint solving using CNF

and similar Boolean forms have been proposed for functional stimuli generation for

pre-silicon verification (Fallah et al., 2001; Kitchen and Kuehlmann, 2007).

BDD-based modelling

Graph-based approaches using binary decision diagrams (BDDs) have also been pro-

posed to transform the constraints for finding valid stimuli. BDDs were introduced in

25

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

(Lee, 1959; Akers, 1978) and regularized in canonical form in (Bryant, 1986). BDDs

are directed acyclic graphs to represent the truth table for a given Boolean formula.

The inner nodes represent variables in the formula. A BDD includes two types of

edges, indicating if the variable of the node is assigned to 1/true or 0/false respec-

tively. The only two terminal nodes of 0 and 1 indicate whether the assignments on

a path ending with this terminal make the formula false or true. BDDs have been

widely adopted in many design and verification steps, such as model checking (Burch

et al., 1990), circuit test and optimization (Cho et al., 1993), and constraint solving

for simulation (Yuan et al., 2004).

Figure 2.1(a) illustrates the primitive binary decision tree for the previous con-

straint x ≥ y. Each path from the root node to a leaf node is mapped to one

assignment in the truth table. If the leaf is 1, it indicates the assignment satisfies

the constraint. It can be verified that all the paths ending with leaf 1 cover the valid

assignments as shown in Table 2.1. A tree-based structure expands exponentially

to the number of variables in the formula, (e.g., Figure 2.1(a) contains 24 − 1 inner

nodes) which becomes practically infeasible for complex cases. The essence of a BDD

is to reduce the number of inner nodes by merging nodes and reordering variables, as

exemplified in Figure 2.1(b) and (c) respectively. Although a reduced ordered BDD

can reduce the number of nodes significantly when compared to a binary decision

tree, it is sensitive to the variable order and, in the worst case, it still suffers from

exponential memory complexity.

Some efficient BDD packages for BDD construction and manipulation are available

in the public domain (Somenzi, 2012). By using a BDD package, the constraints can

be modelled as BDDs, based on which the constrained stimuli can be generated via

26

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

x1

x0

y1

y0

1 0

y0

0 0

y1

y0

1 1

y0

0 0

x0

y1

y0

1 1

y0

0 0

y1

y0

1 1

y0

1 1

(a) Primitive binary decision tree

x1

x0 x0

y1 y1 y1

y0

10

(b) Reduce nodes

y1

x1 x1

y0

x0

10

(c) Reorder variables

Figure 2.1: The sketch from a tree to BDD for the constraint x ≥ y. The solid edge
indicates its parent node is assigned to 1; otherwise 0 if it is a dashed edge. For
instance, the red path in (a) indicates x1x0y1y0 = 0100, which is then mapped to the
equivalent red paths during the reduction and reordering process shown in (b) and
(c).

27

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

searching for the compliant paths.

Modelling by Boolean unification

The Boolean constraints can be resolved into a vector of Boolean functions (Yuan

et al., 2010), which is based on the classical algorithms of Boolean unification (Büttner,

1988; Martin and Nipkow, 1989) and has been adopted in parametric Boolean equa-

tion solving (Fujita et al., 1991; Aagaard et al., 1999).

This approach considers the constraints as the compulsory relations among the

variables, which makes the variables dependent on each other. The essence is to

express each bitwise dependent variable in the constraint by a Boolean function of

some independent variables, denoted as parametric variables. Finally, the parametric

variables are assigned with arbitrary values, based on which the compliant stimuli

can be calculated. For instance, the constraint x ≥ y is a Boolean function of four

bitwise variables x1, x0, y1, y0 as illustrated in Table 2.1. According to the constraint,

the four variables are expressed by corresponding four Boolean functions of four free

parametric variables a, b, c, d as shown in Equation (2.1). Table 2.2 enumerates all

the possible assignments for parametric variables and the corresponding stimuli. The

stimuli are the same as the ones from Table 2.1.

x1 = a

x0 = b

y1 = ac

y0 = ac̄d+ bd

(2.1)

28

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Table 2.2: Calculated stimuli according to the Boolean unification result for the
constraint x ≥ y.

Parametric

variables
x y

a b c d x1 x0 y1 y0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 0 1 0 0

0 1 0 1 0 1 0 1

0 1 1 0 0 1 0 0

0 1 1 1 0 1 0 1

1 0 0 0 1 0 0 0

1 0 0 1 1 0 0 1

1 0 1 0 1 0 1 0

1 0 1 1 1 0 1 0

1 1 0 0 1 1 0 0

1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1

2.3.2 Capturing constraints using SystemVerilog

SystemVerilog is a widely adopted hardware description language (HDL), which can

be used for hardware description at the register-transfer level (RTL) and the gate

level, as well as hardware verification. In a sense, SystemVerilog serves as an unified

combination of Verilog (IEE, 2006), a prevalent hardware description language, and

29

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

the verification methodology (Bergeron et al., 2006). The typical features for veri-

fication include the constraints description, the support for coverage and abstracted

data structures and control of the simulation events (Spear and Tumbush, 2012). In

particular, it standardizes the constraint formats and their behaviour using a vari-

ety of programming features and libraries. In the following, the features related to

constrained-random value generation in the up-to-date SystemVerilog standard (IEE,

2013a) are examined. Although the features in the standard are aimed at pre-silicon

verification, they could be used as the objectives for the solutions developed for post-

silicon validation.

The random variables can be declared using rand and randc type-modifier key-

words. The difference is that, the rand variables are standard random variables

which are uniformly distributed over the valid range; meanwhile the randc variables

are random-cyclic variables which randomly iterate over all the values in the valid

range without repetition within an iteration. The support of random-cyclic distri-

bution may consume more computing resources (i.e., CPU time and memory) for

avoiding repetition. Considering the cost for supporting randc, the standard toler-

ates the limit of the length for a randc variable to be imposed by simulators (so long

as it is not less 8 bits).

Constraints can be expressed using constraint blocks. The block supports most

functional operators, as used in hardware design, including arithmetic operators (+,

-), shift operators (arithmetic/logic shift left/right), logic operators (&, |, !, ^),

relation operators (>, >=, <, <=, ==). The implication constraint can be defined

using the if -else statement. Code 2.1 shows an example of a constraint, which is

encapsulated in a class block.

30

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Code 2.1 A SystemVerilog class with a constraint for two 2-bit variables.

class GreaterEqual ;
rand bit [1 : 0] x , y ;
constraint good { x>=y ; }

endclass

Code 2.2 The SystemVerilog constraint for weighted distribution.

class Dis tConst ra int ;
rand bit [1 5 : 0] x ;

constraint x d i s t {
x d i s t { [1 0 : 9 9 9] : / 3 , [1 0 0 0 : 2 0 0 0] : / 2 } ;

}
endclass

Apart from the functional constraints represented by a set of logic expressions,

referred to as logic constraints , SystemVerilog offers the randsequence structure

for defining a sequence of constraints, referred to as sequential constraints. Detailed

examples for logic and sequential constraints are given in Section 2.4.

Regarding the issue on the control of distribution, the modifier rand and randc

have defined uniformly-distributed sampling. Nonetheless, the user-defined constraints

may impose bias on the distribution of valid stimuli. SystemVerilog offers the distri-

bution operator dist to specify weighted distributions, which imposes sampling with

more or less likelihood in the specific sub-range. For instance, Code 2.2 illustrates

the constraint on the distribution of 8-bit unsigned variable x. It means x could be

sampled in the ranges of [10, 999] and [1000, 2000] with the weighted ratio of 3:2.

One can use solve and before to control the priority for variable evaluation (randc

is not allowed with these expressions). Note, however, improper constraints on the

solve order can result in failure to generate compliant stimuli.

31

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

The SystemVerilog language also offers dynamic constraint modification in the

testbench during simulation, e.g., to enable/disable parts of constraints. This is

useful for switching between different verification sessions. In addition, the standard

also clarifies the peripheral issues related to object-oriented scheme (e.g., the scope

rules, pre/post steps) and the stability of software generator (e.g., initialization, multi-

threading).

In summary, the key points for constrained-random stimuli generation include

the support for logic and sequential constraints, the control on distribution and dy-

namic programmability. Commercial simulators, such as VCS (Synopsys, 2015) and

ModelSim (Mentor Graphics, 2015), are compliant to the standard and widely used

in pre-silicon verification. A few case studies using SystemVerilog will be given in

Section 2.4 in order to illustrate the types of features that can be supported by the

methods described in the subsequent chapters.

2.3.3 Hardware-oriented representation for constraints

For pre-silicon verification, the simulation tools can take advantage of powerful com-

puting resources on which they run and convert the user-defined constraints into the

equivalent representations that were elaborated in the previous subsections. The post-

silicon validation environment lacks such computing resources and therefore potential

formats of on-chip representation for user-constraints are discussed next.

Hardware synthesis

According to SystemVerilog, the functional expressions used for constraints have simi-

lar formats as expressions for hardware design. Hence there is opportunity of adapting

32

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

x1

x0

y0

y1

f

Figure 2.2: The synthesized hardware logic for Boolean expression x[1 : 0] ≥ y[1 : 0].

the technique of hardware synthesis to on-chip representation of constraints.

An intuitive way is to synthesize the constraints as a Boolean expression into

hardware logic. It can be used to determine whether a given stimulus satisfies the

constraints. For instance, Figure 2.2 illustrates the synthesized hardware logic for

the constraint x ≥ y. Given a primitive stimuli 〈x, y〉, the logic evaluates f to be

true if and only if the constraint holds, so that it determines whether it should be

a valid output or rejected. A trial and error approach is impractical if the potential

compliant stimuli are sparse, in which case most stimuli would be rejected. Hence

concurrent enumeration and refined sampling methods, such as Markov chain Monte

Carlo (MCMC), have been adopted for hardware acceleration of constraint solving

(Welp et al., 2012). However, the hardware cost of such methods is prohibitively high

in order to be place on-chip together with the design that is validated.

Alternatively, some intermediate representations used for constraint solving can

be used to synthesize the constraint logic. For instance, Equation (2.1) from Boolean

unification can be synthesized into hardware logic, which can directly compute the

compliant stimuli without rejection, although many stimuli may be repeated as illus-

trated in the example from Table 2.2. Also the method from (Kukula and Shiple,

2000) can be used to implement hardware with multiplexors and OR gates based on a

33

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

BDD representation.

The key limitation of synthesizing constraints to hardware is the lack of in-system

programmability. Once the hardware logic is fixed, according to the pre-defined

constraints, it cannot be changed after fabrication. Since validation engineers do

not know all the constraints that need to be used before tapeout, it is critical to

have the in-system programmability feature for post-silicon validation. Therefore the

approaches based on hardware synthesis are limited to applications based on field-

programmable gate arrays (Wolf, 2004).

Programming LFSRs using seeds

As introduced in Section 2.2, LFSRs are traditionally used as on-chip random stimuli

generators. However, they are no obvious ways how they can be controlled to generate

outputs according to user-specified constraints. The methods from (Kinsman et al.,

2012, 2013) were the first to describe how to generate functionally-constrained pseudo-

random sequences. These methods are based on reseeding LFSRs.

Consider the case of generating stimuli containing two 4-bit signals x and y, the

valid stimuli are constrained as follows: x ≥ y. As shown in Figure 2.3(a), the bare

LFSR generates a sequence of random stimuli, among which only some stimuli are

valid. Hence the reseeding logic is added to control the state of LFSR as shown

in Figure 2.3(b). Before the LFSR generates an invalid stimulus, the pre-computed

seed would be loaded into the LFSR, hence skipping the invalid subsequence. The

preparation for the seeds requires solving systems of equations. The solvability and

the frequency of reseeding depend on the LFSR configuration and constraints.

34

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

(a) (b)

Figure 2.3: Constrained-random stimuli generation by employing reseeding logic cir-
cuitry around the LFSR. In order to force the output from the LFSR shown in (a) to
satisfy the constraint x ≥ y, the logic shown in (b) changes the state of LFSR with
the new seed whenever a non-compliant output would be generated.

The LFSR reseeding method eliminates the necessity of creating hardwired cir-

cuitry, as the hardware synthesis-based methods require. Instead, it utilizes reseeding

logic attached to the LFSR. In order to map the functionally-compliant sequences onto

LFSR, the first step is to transform the compliant stimuli generated by the testbench

during simulation into stimuli cubes. Considering the constraint x ≥ y (x and y are

two 4-bit inputs) all the valid stimuli can be merged into cubes shown in Table 2.3.

This can be achieved, for example, using an off-the-shelf logic minimization tool such

as Espresso (McGeer et al., 1993). Since the cube-based representation is also central

to the work from this thesis, more details will be provided in Chapter 3.

The results from (Kinsman et al., 2012, 2013) showed that it could generate a high

volume of compliant stimuli using the seed data of a few kilobytes to megabytes. The

generation of seeds requires computational resources and it might even happen that

no solutions are found due to the structure of the LFSR and the linear dependencies

35

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Table 2.3: Part of stimuli cubes according to the constraint x[3:0]>=y[3:0].

x[3:0] y[3:0]

1XXX 0XXX

11XX X0XX

X1XX 00XX

11XX XX00

XX1X 00X0

1X1X X0X0

X11X 0XX0

111X XXX0

XXX1 000X

1XX1 X00X

.

introduced by its feedback logic (especially if the number of specified bits in the cube

is high).

Inspired by the cube-based method from (Kinsman et al., 2012, 2013), the solu-

tions from this dissertation explore an alternative approach, by directly using stimuli

cubes to alter the sequences generated by LFSRs. In particular, the work from this

thesis can be used to support both logic and sequential constraints, and, more im-

portantly, it can be adapted to control the distribution of stimuli.

2.4 Case studies using SystemVerilog constraints

The key objective of the work from this dissertation is to provide an automated method-

ology to reuse constraints from pre-silicon verification in a post-silicon validation en-

vironment. In this section, a few case studies are provided that illustrate the basic

36

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

features for constraint description that exist in SystemVerilog.

During the pre-silicon verification phase, the constraints are described in Sys-

temVerilog (IEE, 2013a), based on the application-specific functionality and verifica-

tion requirements. The syntax supports the functional constraints on variable values

(e.g., Boolean expressions, or if-else and implication relations), constraints on distri-

butions of patterns, and constraints on the solving order during simulation.

Functional constraints are divided into two broad categories: logic constraints and

sequential constraints. Logic constraints capture the static features and the format

of a pattern, while the sequential constraints capture the dynamic behavior during

generation. For example, constantly generating positive 8-bit signed integers is con-

sidered as a logic constraint, e.g. x ≥ 0, since it does not change from one clock

cycle to another. Conversely, generating a positive integer and a negative integer in

two adjacent clock cycles (i.e., the period T = 2) can be considered as a sequential

constraint, because two logic constraints, i.e., x ≥ 0 and x ≤ 0, are needed in alter-

nate clock cycles. One can consider logic constraints as a special case of sequential

constraints (when T = 1).

Both logic constraints and sequential constraints play an important role in gener-

ating stimuli for validating digital hardware. In the following, typical use cases are

presented and their characteristics are examined.

2.4.1 Logic constraints in the same clock cycle

Consider the functional verification of a simple microprocessor using randomly gen-

erated instructions. Code 2.3 shows an example using a SystemVerilog class, where

different instructions have distinct constraints on the operand fields. Specifically, the

37

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Code 2.3 A SystemVerilog class with logic constraints for generating ALU instruc-
tions.

typedef enum {ADD, SUB, SHIFT L , SHIFT AR , SHIFT LR} op type ;
class StimuliForALU ;

rand op type opcode ;
rand bit [7 : 0] opr1 , opr2 ;
constraint opr range {

i f (opcode==SHIFT L | | opcode==SHIFT AR | |
opcode==SHIFT LR) {

opr2 inside { [0 : 7] } ;
}

}
endclass

second operand for shift left (SHIFT L), shift arithmetic right (SHIFT AR) and

shift logic right (SHIFT LR) instructions is constrained to be less than 8. The con-

straint captures the relationships between fields within the same clock cycle. Note

that during stimuli generation there are no constraints in between two consecutive

instructions.

Another practical example is the verification of the floating-point unit (FPU) in a

microprocessor, which takes real numbers as inputs. On the one hand, each operand

must be constrained based on the specified standard. Code 2.4 gives an example for

generating an IEEE 754 standard compliant floating-point number (IEE, 2008). On

the other hand, the FPU contains several logic parts for different arithmetic opera-

tions. In order to, for example, identify a potentially erroneous division calculation

when the divisor and the dividend fall in a specific range, whenever the opcode is

decoded as floating-point division, the constraints on the operand fields can be user-

programmed such that the divisor and the dividend are within the ranges that stress

the arithmetic blocks which were not sufficiently exercised before. The constraints on

38

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Code 2.4 A SystemVerilog class for generating a single precision floating-point num-
ber compliant with IEEE 754 standard.

class FPNumber ;
rand bit s i gn ;
rand bit [7 : 0] exponent ;
rand bit [2 2 : 0] f r a c t i o n ;
constraint number range {

exponent = 127 ;
f r a c t i o n [2 2 : 2 1] inside { [0 : 2] } ;

}
endclass

the operands can be flexibly updated during the verification process, so as to focus

on the suspicious value ranges where the division calculation might be incorrectly

implemented.

2.4.2 Sequential constraints over consecutive clock cycles

The randomization of instruction operands above was only concerned with the re-

lationship between instruction fields, rather than constraints between consecutive

instructions. Some designs and applications might require a series of constrained

stimuli where the randomized pattern in each clock cycle follows a prescribed order

and/or format based on specific protocols or standards.

An example of requiring sequential constraints can be found, for example, in

network-on-a-chip communication scenarios. During a complete data transfer ses-

sion, the sender module may issue a series of specific packets including data packets,

as well as handshaking with the receiver module. Hence the field for identifying the

type in each packet may vary from a session request packet, to a data packet, to a

39

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Code 2.5 A SystemVerilog task capturing sequential constraints using a single con-
straint class for randomization.

logic [6 3 : 0] s t imulus ;
task InjectRandomSession ;

begin
class GenerateSess ion s e s s i o n=new ;
s e s s i o n . randomize () ;
s t imulus ={32 ’d0 , s e s s i o n . SyncPacket } ;
@(posedge c l k) ;
s t imulus=s e s s i o n . DataPacket ;
@(posedge c l k) ;
s t imulus ={48 ’d0 , s e s s i o n . Fin ishPacket } ;

end
endtask

session end packet. In this case, the field for the packet type is constrained to enu-

merate the three values in three adjacent cycles. Code 2.5 illustrates the constraints

using a SystemVerilog task block that resembles a protocol-based transmission ses-

sion with 3 steps: a synchronization request, data transmission and the finish re-

quest. The class GenerateSession is assumed to contain 3 randomization members

(SyncPacket[31:0], DataPacket[63:0] and FinishPacket[15:0]), which denote the

3 types of packets. Each of these 3 different types of packets can have their own

relationships between fields and randomization needs, which can be captured as logic

constraints. Note, the 3 packets may have different lengths, in which case the output

stimulus must be sufficiently large to hold the longest packet.

While the random number generators embedded in pre-silicon environments are

designed to generate stimuli consistent with the task block given in Code 2.5, it is

not obvious how to port such features to hardware. Even if a mechanism is provided

to alter the pseudorandom values produced by the LFSR in order to meet logic

40

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

constraints, as it is the case for the previous methods (Kinsman et al., 2012, 2013),

it is also necessary that the sequential constraints can be applied at a rate (samples

per clock cycle) as fast as during pre-silicon verification. When using sequential

constraints is of key importance for post-silicon validation environments, it is critical

that the hardware generator can handle constraint switching on a clock cycle basis. If

the task block requires a constraint change in every clock cycle, the method presented

later in Section 4.3 is capable of handling this feature.

As another example, consider a large frame that can be partitioned into smaller

slices, which are then transmitted sequentially. Each of these slices has their own logic

constraints that guide randomization. The task example in Code 2.6 uses randse-

quence block to generate one frame in multiple cycles, where 3 randomization classes

are employed. The task block captures the sequential constraints to generate a com-

plete packet where each of the slices (head, tail and multiple body slices) can have

their own relationships between fields that guide randomization. As it was the case

for the example from Code 2.5, the hardware generator is expected to apply different

constraints to each slice. Even if these constraints need to be switched every clock

cycle, the CRSG for sequential constraints presented in Section 4.3 can meet this

objective.

2.5 Summary

This chapter has provided an overview of the relevant methods for improving the

controllability and observability during both pre-silicon verification and post-silicon

validation. It has also illustrated the technical background on how constraints are

handled during pre-silicon verification and it has motivated the use of a cube-based

41

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Code 2.6 A SystemVerilog task capturing sequential constraints using multiple con-
straint classes for randomization.

logic [1 5 : 0] s t imulus ;
task GenerateRandomFrame ;

parameter body s i z e =16;
begin

FrameHead head=new ; // The c l a s s f o r the head
FrameBody body=new ; // The c l a s s f o r the b o d i e s
FrameTail t a i l=new ; // The c l a s s f o r the t a i l
randsequence (frame)

frame : fhead repeat (body s i z e) fbody f t a i l ;
fhead : { head . randomize () ;

s t imulus=head . content ;
@(posedge c l k) ; } ;

fbody : { body . randomize () ;
s t imulus=body . content ;
@(posedge c l k) ; } ;

f t a i l : { t a i l . randomize () ;
s t imulus=t a i l . content ;
@(posedge c l k) ; } ;

endsequence
end

endtask

representation for the proposed work. The key feature of the cube-based representa-

tion is that it can enable the in-system programmability of constraints. This chapter

also provided a few case studies to illustrate some of the challenges faced when porting

constraints from a pre-silicon to a post-silicon environment.

In the following chapters, Chapter 3 discusses the topic on cube-based represen-

tation of constraints in detail. Then Chapter 4 describes the proposed solutions for

both logic and sequential constraints. The new method proposed for controlling the

distribution of stimuli will be elaborated in Chapter 5.

42

Chapter 3

Representation of constraints as a

set of cubes

As motivated in the previous chapter, due to the limited communication bandwidth

between a post-silicon validation platform and the host where a simulator is running,

it is impractical to reuse the stimuli that are generated by pre-silicon verification tools.

Therefore, the valid space captured by the constraints described in a verification

language, e.g., SystemVerilog, is translated into a set of cubes. This cube-based

representation takes a central role in the methods presented in the following chapters.

It serves as an efficient representation that captures the same information from the

user-specified constraints, which can be transferred to the design-under-validation

(DUV) for on-the-fly stimuli generation.

In this chapter the basic concepts of cubes are presented. Then the flow of gener-

ating cubes from the user-defined constraints is described, followed by the basic idea

of how the cubes can be used for on-chip constrained-random stimuli generation.

43

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

3.1 The concept of a cube

A cube is an m-bit vector comprised of ‘0’s, ‘1’s and ‘X’s (don’t-care bits). Each cube

is equivalent to a set of binary vectors where ‘X’s are replaced with either ‘0’s or ‘1’s.

Given the whole set of m-bit binary vectors Um, a cube is an equivalent symbol for a

unique element in the power set of Um (denoted as 2Um). Note, not every element from

the power set can be expressed as a single cube. Each cube represents a regular super

cubic sub-space in the m-dimensional binary vector space (that is why it is called

a cube). For instance, the 4-bit cube “1X0X” is equivalent to the binary vector set

{1000, 1001, 1100, 1101} as the implied space of this cube, which is also an element in

2U4 . A permutation of values specified by a cube is a sequence that can be expanded

from the respective cube.

Given a group of user-defined constraints, the equivalent set of cubes exactly covers

all the true elements in the Karnaugh map (K-map) of the constraint function f(s),

in which the Boolean function f(s) is evaluated as true if and only if the stimulus s

satisfies all the constraints. For generating constrained-random stimuli, the proposed

method chooses to convert the user-defined constraints into a set of cubes. Then the

cubes are loaded onto on-chip, where the ‘X’s are substituted with random-filled bits,

thus generating compliant stimuli. For example, given the constraint x ≥ y as shown

in Code 2.1, the cube set of 4-bit stimuli (with the format as x1x0y1y0) is {1X0X,

11XX, XX00, X10X, 1XX0}. Each cube in the set denotes a value space, and the

union of the five cubes covers the entire compliant value space for the constraint.

The K-map shown in Figure 3.1 illustrates an intuitive example for the constraint

function.

For the sake of correct generation of stimuli on-chip, the set of cubes converted

44

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Figure 3.1: The K-map for Boolean function x ≥ y, where x and y are 2-bit unsigned
integers.

x1x0

y1y0

1

0

0

0

1

1

0

0

1

1

1

0

1

1

1

1

00

01

11

10

00 01 11 10

from the pre-silicon constraints should satisfy two fundamental properties.

Completeness: Any stimulus compliant to the constraints is able to be generated,

or expanded from at least one cube in the set.

Sufficiency: Any stimulus expanded from a cube in the set must comply to the

user-defined constraints.

The two properties need to be guaranteed by the conversion algorithm which

generates the set of cubes from user-defined constraints. Further details on cube

generation are provided in Section 3.3.

3.2 Formal notations for cubes and their

characteristics

The use of ‘X’s distinguishes cubes from binary vector and makes the cubes efficient

for representing constraints. In this section, the formal notations and characteristics

for a cube, a cube pair and a set of cubes are given. The analysis for the cube pairs

and for the set of cubes is particularly useful for the refinement of the distribution of

45

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

generated stimuli, which will be presented in Chapter 5.

3.2.1 The characteristics of a cube

Given an m-bit cube a (a = # »am−1am−2 · · · a0), the function for checking an ‘X’ bit is

defined as:

X (ai) =

1 if ai = X, (0 ≤ i < m)

0 Otherwise, i.e., ai = 0 or 1

(3.1)

Then the total number of ‘X’s in an m-bit cube a is:

ξa =
m−1∑
i=0

X (ai) (3.2)

3.2.2 The characteristics of a cube pair

Given a pair of m-bit cubes 〈a, b〉, (a = # »am−1am−2 · · · a0 and b =
»

bm−1bm−2 · · · b0),

the first cube a is called the reference cube. Each bit pair 〈ai, bi〉 in the same position

i (0 ≤ i < m) is categorized as one of three cases:

• Mutually exclusive bit pair, if 〈ai, bi〉 ∈ {〈0, 1〉, 〈1, 0〉}.

• Compatible bit pair, if 〈ai, bi〉 ∈ {〈0, 0〉, 〈1, 1〉, 〈X,X〉, 〈X, 0〉, 〈X, 1〉}.

• Overlapped bit pair, if 〈ai, bi〉 ∈ {〈0, X〉, 〈1, X〉}.

According to the types of bit pairs in the cube pair 〈a, b〉, the properties can be

deduced on the lattice (2Um ,∪,∩):

• If there is at least one mutually exclusive bit pair, then a ∩ b = ∅. Also due to

the commutativity of the mutually exclusive bit pair, b ∩ a = ∅. Then 〈a, b〉

46

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

and 〈b,a〉 are both mutually exclusive cube pairs.

• If all the bit pairs are compatible pairs, then b is a sub-cube of a, i.e., b ⊆ a or

b ∩ a = b.

• Otherwise, i.e., there is no mutually exclusive bit pair, however there is at least

one overlapped bit pair in them, then b∩a 6= ∅ and it is defined as an overlapped

cube pair.

For example, 〈00XX, 1XX0〉 is a mutually exclusive cube pair since the most

significant bits in the two cubes (i.e., one is ‘0’ and the other is ‘1’) are mutually

exclusive bit pairs. The cube “10X0” is a sub-cube of “1XX0”. The cube pair

〈XX00, 1XX0〉 is categorized as an overlapped cube pair. Intuitively, some elements

of the cube “1XX0” overlap with some elements of the cube “XX00” in the K-map

shown in Figure 3.1.

3.2.3 The characteristics of a set of cubes

For a set of m-bit cubes s = {a(1),a(2), · · · }, the total number of cubes is |s|. The

X-density of the ith variable (or position) is defined as :

ρi =
N∑
j=1

X (a
(j)
i)/|s| (3.3)

Hence ρi|s| indicates the number of unspecified bits at the ith position for all the

cubes. Then the weight of a cube a is defined as:

wa =
m−1∑
i=0

[
WXX (ai) + ρiX (ai)

]
(3.4)

47

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

The constant WX is a tuning constant which denotes the weight of an ‘X’ bit. The

first component in Equation (3.4) accounts for the size of implied vector spaces, i.e.,

the number of binary vectors which the cube can imply. Note, the actual size of

the space is 2ξa , however the logarithm of the entire space is used in the equation

to match the range of the second component. The second component measures the

correlation with other cubes in the set, according to the number of overlapped ‘X’

bits in the same position. Note, since WX can be tuned by the user, for example by

setting WX to m it is guaranteed that a cube with more ‘X’ bits always has a larger

weight than one with fewer ‘X’ bits.

3.3 Converting constraints to cubes

The user-defined constraints specified in SystemVerilog need to be converted into a

cube-based representation. The general flow in the cube processing phase is shown

in Figure 3.2. The SystemVerilog constraints are converted into an equivalent set of

cubes. Then, as discussed in detail in Chapter 4, the cubes are mapped into binary

cubes and they can be further encoded into compact binary cubes (CBCs) to reduce

the requirements for on-chip storage.

Concerning the conversion of constraints written in SystemVerilog to a set of

cubes, two approaches are discussed in this chapter. The first approach investigates

the specific attributes of operators used in constraints, based on which it can generate

the set of cubes by iterative enumeration and merging. The second approach combines

the traditional techniques of hardware synthesis and BDD-based generation of cubes.

Both approaches will generate a set of cubes that can be further reduced using any

third party two-level logic minimization tool, e.g., Espresso(McGeer et al., 1993).

48

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

SystemVerilog constraints

Equivalent set of cubes

Binary cubes

Compact binary cubes
Ready for loading

onto chip

Converting

Mapping

Optional
compacting

Figure 3.2: The general flow of cube processing.

3.3.1 Converting constraints to cubes using customized al-

gorithms

The essence of conversion from constraints to cubes is the same as Boolean function

minimization. According to the constraint operators, a group of algorithms can be

designed, which iteratively enumerate cubes from constraints. A typical iterative flow

of the algorithm is elaborated in the following.

The K-map shown in Figure 3.1 illustrates an intuitive example for the constraint

x ≥ y in which x and y are unsigned 2-bit variables. It enumerates all the compliant

pairs and fills ‘1’s in the corresponding boxes. The objective of cube generation is

to find the minimum logic expression. In this case, the result is f(x1, x0, y1, y0) =

ȳ1ȳ0 +x1ȳ1 +x1x0 +x1ȳ0 +x0ȳ1. The corresponding set of cubes for the 2-bit variables

(denoted as s2 because the bit length of each operand n equals 2) is {XX00, 1X0X,

11XX, 1XX0, X10X}. For the cases of larger variables (n ≥ 3), Code 3.1 directly

enumerates cubes from sn−1. It will be proven that any stimuli/cube “a b” in sn−1

49

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Code 3.1 A typical algorithm to generate the set of cubes for the operator ‘≥’.

1: function GetSetOfGE(integer n) . Calculate sn
2: if n = 1 then
3: return {1X,X0} . Return s1

4: end if
5: sn−1 ← GetSetOfGE(n− 1)

6: sn ← {1
n−1︷ ︸︸ ︷

X . . .X 0

n−1︷ ︸︸ ︷
X . . .X} . Initialization

7: for each cube “ab” in sn−1 do
8: sn ← sn ∪ {1aXb,Xa0b}
9: end for
10: return sn
11: end function

can be expanded to 2 cubes for sn by prefixing, i.e., “1a Xb” and “Xa 0b”.

The algorithm in Code 3.1 generates the cube set sn for the two n-bit unsigned

numbers p and q, such that p ≥ q. These two numbers can be denoted as p =

〈pn−1

denoted as p′︷ ︸︸ ︷
pn−2 . . . p1p0〉, q = 〈qn−1

denoted as q′︷ ︸︸ ︷
qn−2 . . . q1q0〉 in binary format. The initial set is s1 =

{1X,X0} (Lines 1-3). The iteration formula is (Lines 6-9):

si+1 = {1
i‘X’s︷ ︸︸ ︷

X . . .X 0

i‘X’s︷ ︸︸ ︷
X . . .X} ∪ {1aXb,Xa0b|ab ∈ si} (3.5)

The proofs for completeness and sufficiency are given next.

First the completeness property is proved by induction.

Proposition: If p ≥ q, then the pair 〈pq〉 is implied by a cube from sn.

Base case: For n = 1, all the valid binary pairs (i.e., 11,10 and 00) are implied

by the two cubes in s1 (i.e., 1X implies 11 and 10 respectively, and X0 implies 00).

Inductive hypothesis: Suppose the completeness property holds for up to n =

m.

Inductive step: For n = m+ 1, because p ≥ q, the most significant bits pm and

50

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

qm should be either pm = 1, qm = 0 or pm = qm:

1. If pm = 1 and qm = 0, i.e., 〈pq〉 = 〈1p′0q′〉, then 〈pq〉 could be implied by the

cube 1

m‘X’s︷ ︸︸ ︷
X . . .X 0

m‘X’s︷ ︸︸ ︷
X . . .X ∈ sm+1.

2. If pm = qm, then p′ ≥ q′ because p ≥ q. Hence, according to the assumption that

the completeness property holds for n = m, 〈p′q′〉 is implied by a cube in sm.

Assuming this cube is ab, then 〈pq〉 can be implied by the cube 1aXb ∈ sm+1 if

pm = qm = 1, or by the cube Xa0b ∈ sm+1 if pm = qm = 0.

Thereby, the case for n = m+ 1 holds, which proves the completeness property.

The sufficiency property is also proven by induction.

Proposition: Any pair p, q implied by sn should satisfy p ≥ q,

Base case: For n = 1, s1 = {1X,X0} implies 11, 10 and 00. In each of these

cases p ≥ q holds.

Inductive hypothesis: Suppose the sufficiency property holds for up to n = m.

Inductive step: For n = m+ 1:

1. The cube 1

m‘X’s︷ ︸︸ ︷
X . . .X 0

m‘X’s︷ ︸︸ ︷
X . . .X implies p = 〈1p′〉 and q = 〈0q′〉. For each of these

pairs, p ≥ 2m > q.

2. Any cube in {1aXb|ab ∈ sm} implies p = 〈1p′〉 and q = 〈qmq′〉, where 〈p′q′〉 is

implied by ab ∈ sm. According to the assumption that the sufficiency property

holds for n = m, we have p′ ≥ q′. Hence p = 2m + p′ ≥ qm2m + q′ = q. The

proof for the case of {Xa0b|ab ∈ sm} follows the same line of reasoning.

Thereby, the case for n = m+ 1 holds, which proves the sufficiency property.

51

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Table 3.1: The set of cubes for the SystemVerilog constraint from Code 2.3.

opcode[2:0] opr1[7:0] opr2[7:0]

00X XXXXXXXX XXXXXXXX

01X XXXXXXXX 00000XXX

100 XXXXXXXX 00000XXX

A similar method can be applied for generating the set of cubes for other types

of unary/binary operators. Table 3.1 shows the converted set of cubes from the

constraints defined in Code 2.3 using enum, inside and if -implication expressions,

in which each cube covers a subspace of the compliant stimuli.

Regarding the issue of programmability, SystemVerilog constraint expressions can

be written as class blocks or as in-line constraints and they can be enabled/disabled

seamlessly in a testbench in pre-silicon verification environments; in hardware they

can also be enabled/disabled via in-system/on-line reprogramming of the CRSG,

however it does require user intervention because the new content for the CRSG

needs to be regenerated and downloaded into the on-chip memory. Both the content

and the size of the equivalent cube set are independent of the hardware architecture

and they depend only on the specific user-provided constraint.

The algorithm guarantees the two properties of completeness and sufficiency for

the cubes in Section 3.1, when generating the set of cubes from user-defined con-

straints. Generally, the initial cube set is empty. The algorithm may constantly

enumerate a series of compliant stimuli as the pre-silicon verification tool does and

add them into the set. The stimuli or original cubes in the set are iteratively merged

into new cubes using well-established concepts from two-level logic synthesis, i.e.,

52

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

generation of prime implicants (Coudert, 1994). In this way, the new compliant stim-

ulus could always be added if it is not in or implied by the set. So it guarantees the

property of completeness. Since each new cube is derived only by compliant stimuli

and cubes, the expansion from the cube can be seen as the inverse process. Hence

the property of sufficiency is satisfied. For some cases, where it is impractical to enu-

merate all the compliant stimuli, the algorithm may directly enumerate cubes proven

to be compliant with the type of constraints, as exemplified in Code 3.1.

Because the generated set of cubes from the conversion algorithm may still contain

reducible cubes, a two-level logical minimization tool, e.g., Espresso (McGeer et al.,

1993), is used to further reduce the cardinality of the cube set.

3.3.2 Converting constraints to cubes using hardware syn-

thesis and BDDs

Taking advantage of the widely available techniques and tools for hardware synthesis

and BDD manipulation, as introduced in Section 2.3, the method from this subsection

can deal with a variety of types of constraints without the necessity of developing

custom algorithms for specific operators.

As emphasized in the previous subsection, the generation of the equivalent set

of cubes is similar to the reduction on a K-map of the constraint function. K-maps

commonly operate on Boolean functions in the disjunctive normal form (DNF), which

is the sum of a products between literals. Each product is mapped to one cube in the

equivalent cube set. For instance, the simplified DNF for the K-map in Figure 3.1

is f = x1ȳ1 + x1x0 + ȳ1ȳ0 + x0ȳ1 + x1ȳ0. The compliant vector space indicated by f

is equivalent to the union of the vector set indicated by each cube, i.e., {1X0X} ∪

53

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

{11XX} ∪ {XX00} ∪ {X10X} ∪ {1XX0}.

The binary decision tree is an equivalent representation of the truth table, which

has the same space complexity, i.e., O(2n), with the truth-table and K-map as intro-

duced in Section 2.3. BDDs reduce the average-case complexity of the decision trees

by reordering the variables and merging nodes. A path from the root node to the

terminal node of 1 identifies a cube of the function (Somenzi, 1999). For instance,

the red path in Figure 2.1(b) implies “010X”.

Because the majority of logic constraints in SystemVerilog are functions that can

be synthesized to hardware, an alternative approach to cube generation from con-

straints is to rewrite constraints to a synthesizable Boolean expression. Then, this

Boolean expression can be synthesized using any third-party tool and subsequently

the cubes can be enumerated from the BDD of the synthesized function.

1. All the enabled user-defined constraints for the current sessions are rewritten

into Boolean expressions. Multiple constraints that are simultaneously satisfied

are in conjunction with each other. Code 3.2 shows the rewritten results from

a single constraint and compounded constraints.

2. Taking advantage of a hardware synthesis engine, the rewritten Boolean func-

tion is synthesized into a gate-level netlist. The process includes logic synthesis

and optimization (Schliebusch et al., 2010), during which the techniques for

converting variables from the constraints to their bit-level equivalent represen-

tation is done. For example, Figure 2.2 illustrates the synthesized netlist for

the constraint shown in Code 3.2(a).

3. A custom tool can be subsequently built, which can create the BDD represen-

tation for the Boolean function that has been synthesized. Any third party

54

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Code 3.2 Rewrite constraints to synthesizable Boolean functions in SystemVerilog.

module GreaterEqua l f ;
logic [1 : 0] x , y ;
logic f ;
assign f =((x>=y)

) ;
endmodule

module FPNumber f ;
logic [7 : 0] exponent ;
logic [2 2 : 0] f r a c t i o n ;
logic f ;
assign f =((exponent==8’d127) &&

(f r a c t i o n [22:21]<=2 ’ d2)
) ;

endmodule

(a) Rewritten from Code 2.1 (b) Rewritten from Code 2.4

BDD package can be leveraged during this step. Cubes can be enumerated

by the depth-first-search traversal of the BDD, because a path from the root

node to the terminal node of 1 in the BDD identifies a cube of the function

(Somenzi, 1999). The work in (Minato, 1996) provides further discussions with

more examples on generation of cube sets from BDDs.

In summary, the cube generation method using BDDs eliminates the manual work

for developing custom algorithms for different types of constraints, which can be cum-

bersome especially for compounded constraints. By rewriting constraints into circuit

models that are synthesizable, this method can rely on any tools for hardware syn-

thesis and BDD manipulation. Note, since the variable order in BDDs can influence

the number of cubes that are generated (and the number of ‘X’s in the generated

cubes), a two-level logic minimizer can be used as a post-processing step to reduce

the cardinality of the cube set.

55

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Table 3.2: The dictionary for mapping cube strings into binary cubes.

Character in a cube string 2-bit mapped binary code

‘0’ 00

‘1’ 01

‘X’ 10

0 1

1-bit final value

The lower bit

A bit from LFSR

The higher bit X (ai)

Figure 3.3: Use a 2-1 multiplexer to arbitrate the final bit according to the 2-bit
binary code (i.e., the higher bit X (ai) and the lower bit).

3.3.3 Hardware-oriented post-processing of cubes

Before transferring them on-chip, the cubes converted from SystemVerilog constraints

are mapped into binary cubes based on a simple mapping dictionary shown in Ta-

ble 3.2. The three valid symbols in a cube, i.e. ‘0’, ‘1’ and ‘X’, occupy three 2-bit

binary code points. That is, the higher bit of the code for a given value ai is X (ai),

while the lower bit is ai if X (ai) = 0, or 0 if X (ai) = 1. As shown in Figure 3.3, each

bit in the final stimulus could be obtained by using a 2-1 multiplexer according to

the two bits of the binary code. Hence an m-bit cube is encoded into a 2m-bit binary

word. For instance, the cube “1X0X” is encoded into an 8-bit binary cube 01100010.

A potential shortcoming of using 2m-bit binary words for each cube is the amount

of storage needed for the on-chip memory. Therefore, a compaction process can be

used before storing the binary words on-chip. The decoding logic, as elaborated in

detail in the contribution from Chapter 4, is used to reproduce the 2m-bit binary

56

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Figure 3.4: Constrained-random stimuli generation by employing correction logic
around the LFSR. In order to force the output from the LFSR to satisfy the constraint
x ≥ y, the logic modifies the bits as assigned with non-X value of one cube in
Figure 2.3(a).

words on-the-fly, and use them as masks to correct the non-compliant random values

from an LFSR, as briefly outlined next.

Compared with the reseeding-based solutions discussed in Figure 2.3, the tech-

niques from this thesis (detailed in the next two chapters) attach correction logic

circuitry to the LFSR. Therefore the non-compliant stimuli are not skipped; rather

they are corrected. Figure 3.4 exemplifies the correction of the random values from

the LFSR, as shown in Figure 2.3(a), into compliant stimuli according to the cubes

from Table 2.3 (for the constraint x ≥ y). Taking the cube “1XXX 0XXX” as an

example, it means the output is valid as long as the most significant bits of x and y

are 1 and 0 respectively. For example, the output “0011 0100” from Figure 2.3(a) is

57

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

corrected to “1011 0100” in Figure 3.4 based on cube “1XXX 0XXX”.

The constrained-random stimuli generator (CRSG) elaborated in the following

chapters, conceptually uses cubes to mask the invalid stimuli at the output of the

LFSR, as illustrated in Figure 3.4. This CRSG is in-system programmable, and the

user can apply different constrained-random sequences based on distinct user-defined

constraints, by updating the on-chip memory (that stores the cube information in

compact format) with the content generated from the revised constraints.

3.4 Summary

The fundamental principles of the cube-based representation for constraints have

been discussed in this chapter. Two different approaches for translating constraints

from a pre-silicon verification environment into cubes have been presented. Using

cubes as on-chip masks for the random sequences from an autonomous LFSR, is the

basic concept that enables the constrained-random stimuli generators discussed in

this thesis. Dealing with the ramifications of using this basic concept (i.e., large

amount of on-chip storage or repeating the same stimuli during generation) are the

topics that are investigated in the following two chapters.

58

Chapter 4

Stimuli generation for functional

constraints using compact binary

cubes

SystemVerilog allows users to specify constraints for constraint-driven stimuli genera-

tion. Using these constraints, simulators automatically generate constrained-random

stimuli for functional verification. The previous chapter has introduced the cube-

based representation for constraints, which can be adapted to a hardware implemen-

tation. In this chapter, the technical details of the new constrained-random stimuli

generator (CRSG) are introduced. The constrained-random stimuli are expanded on-

the-fly and the constraints can be revised by reprogramming the CRSG in-system.

To reduced the amount of data to be stored on-chip, a decoder can be integrated into

the CRSG. The proposed solutions support both logic constraints (Section 4.2) and

sequential constraints (Section 4.3), both of which are compliant to the SystemVerilog

standard.

59

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

4.1 The overview of the on-chip stimuli generator

The proposed solution operates at both design time and run time (or validation time),

as illustrated in Figure 1.2. At design time, the configuration of the CRSG hardware

is selected, including, for example, whether it requires support for logic constraints

or mixed-type (both logic and sequential) constraints, the capacity of the on-chip

memory as well as the dimension and characteristic polynomial of the LFSR. This

step is illustrated by the “Insert CRSG” box in Figure 1.2. At validation time, the

user is given the freedom to change the configuration of the CRSG, in order to ap-

ply functionally-compliant sequences with different (user-programmable) constraints.

These constraints for the stimuli are captured in SystemVerilog (i.e., the same lan-

guage used during the pre-silicon verification) and can be updated iteratively based

on the specific debugging needs as the validation process evolves. The constraints

are converted into binary cubes or compact binary cubes (CBCs) as illustrated by

the “Prepare cubes for validation” box in Figure 1.2. Then the cubes are loaded

into the on-chip memory and activated for stimuli correction thus facilitating con-

tinuous functionally-compliant random stimuli generation, which is illustrated in box

“Start/Update stimuli generation” box in Figure 1.2.

The top-level architecture for the on-chip hardware is sketched in Figure 4.1. It

includes four main parts: on-chip cube memory, decoding logic if compact-binary

cubes (CBCs) are used, the pseudo-random generator based on a maximum-length

LFSR, and a correction structure comprising multiplexers. The control logic manages

the addressing strategy for the memory and status of the other logic blocks. The

CBCs are stored into the cube memory preceding on-chip stimuli generation. The

addressing for the cube memory is handled by the control logic. The pseudo-random

60

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Status
control

Cube memory

Decoding logic

Pseodu-random
generator

Correction structure

Design Under Validation

Activated CBC
Primitive
stimulus

Final stimulus

On-chip CRSG

Control
logic

Binary cube

Addressing

Decoding
status

Figure 4.1: The general top-level architecture for the on-chip CRSG.

generator can generate one primitive stimulus per clock cycle. Meanwhile, one CBC

is activated each time, which is first fetched from the cube memory and then decoded

into a binary cube. Based on the activated cube, the correction logic simultaneously

checks the primitive stimulus from the pseudo-random generator and modifies it into

a compliant stimulus. Hence, the CRSG can continuously generate compliant stimuli

to the design-under-validation (DUV) on a cycle-by-cycle basis.

This chapter provides the details and the variations of CRSG hardware accord-

ing to the types of constraints that are supported. The solution in Section 4.2 is

designed specifically for logic constraints, and the one in Section 4.3 supports sequen-

tial constraints. It is worth mentioning that the solution for sequential constraints

also supports logic constraints since they are treated as the sequential constraints

over a single clock cycle.

61

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

4.2 The solution for logic constraints

The logic constraints define invariant formats, values and other features of the stimuli.

This section elaborates the solution for logic constraints, including both generating

compact binary cubes in the content processing phase, as well as the on-chip hardware

circuitry needed to handle these cubes to generate functionally-compliant sequences.

4.2.1 Content processing of cubes with compaction

The user-defined logic constraints in SystemVerilog are converted into binary cubes,

according to the flow explained in Section 3.3. That is, the custom software tools

translate user-defined constraints into the equivalent set of cubes, encode them to

binary cubes, and partition them for compaction. In the following, the compaction

format of CRSG for logic constraints is elaborated, which balances the compaction

efficiency and the hardware cost for the decoding logic.

As an optional process, the binary codes can be compacted into CBCs. The

motivation is that the cube length is shortened and the size of data required for

transmitting the cube data to the DUV is reduced. The opportunity of compaction

is revealed through investigating consecutive sequences in a cube.

Some cubes may include consecutive-‘X’s, consecutive-‘0’s or consecutive-‘1’s se-

quences. The cause can be explained by practical requirements of verification/valida-

tion, e.g., if a variable is not constrained, all the bits for this variable are filled with

consecutive ‘X’s in the cube. Likewise, the consecutive-‘0’ can be used for resetting

a variable under some user-defined conditions. Based on this observation, the gen-

eral compaction algorithm is developed for encoding the binary cubes into CBCs. It

adapts the run-length coding strategy, by accounting also for the following issues:

62

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

• In-system programmability: A key feature of the solution proposed in this chap-

ter is the ability to change the constraints during post-silicon validation and re-

program the CRSG in-system. Hence, the encoding method should not depend

on a particular cube set, rather it should be capable of supporting any set of

cubes that can be derived from any constraints that are specified by the user

after the fabrication of silicon prototypes.

• Low area cost for the on-chip decoding logic: Because CBCs are decoded by

on-chip hardware, the decoding process should be simple so that the hardware

area is not excessive. Using a run-length decoding approach is intuitive and

it does not require extra on-chip random access memory (RAM) for storing

auxiliary information, e.g., dictionaries for decoding.

• Word alignment: Considering that CBCs are loaded to on-chip RAMs, the

fixed-length segments in each CBC that are consistent with the word length of

RAMs could help eliminate the extra hardware for dealing with in-word offset.

That is, each CBC could be fetched from the RAM word by word no matter

what the content of the word is. As shown in the following, run-length codes

used in this chapter could be aligned to 8/16-bit word.

• High-throughput: In order to achieve high throughput of stimuli generation,

the decoding process should be configurable to decode an entire CBC in a short

time, e.g., as fast as one cube per cycle. Thus those compaction methods that

include multiple steps, e.g., sliding windows, are not applicable. Since the words

encoded using the run-length process are independent, they can be decoded in

parallel in a single cycle.

63

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

The algorithm for encoding binary cubes uses a run-length encoding approach,

which is suitable for hardware decoding with low area and high-throughput. It first

partitions a cube into segments, either run-length segments or mixed segments. The

consecutive sequence longer than a threshold is partitioned as a run-length segment,

comprised of a r-bit binary number denoting the segment length and a 2-bit bi-

nary code prefix denoting the consecutive character according to Table 3.2. For

instance, given r = 6, a consecutive sequence “11111” in a cube can be compacted as
prefix︷︸︸︷
01

length︷ ︸︸ ︷
000101, which is shorter than the original encoded binary 0101010101. Other-

wise the sequence between two run-length segments is partitioned as a mixed segment.

The threshold depends on the configuration of the on-chip hardware, so as to make a

consecutive sequence compacted shorter by being partitioned as a run-length segment

than as a mixed segment.

Regarding the value of r, it is mainly configured based on the average length

of consecutive codes (i.e., consecutive-‘X’s, consecutive-‘0’s and consecutive-‘1’s) in

cubes, in addition to the consideration of word alignment for the RAM. For instance,

setting r = 6 is suitable for most cases in which the length of stimuli is approximately

in the range from 20 to 100, because the average length of consecutive codes is most

likely less than 64 bits for these cases according to the constraints. A very large r

may lead to more wasted bits in the run-length segment for most cubes; on the other

hand, if r is too small, it may result in more run-length segments which could have

been compacted in one segment with less data size.

Provided the binary field for the segment length is r bits, a binary cube can be

compacted into a CBC down to the size of 1/2r+1 of the original binary cube. On

the other hand, the worst case is when the binary cube is a single mixed segment.

64

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

...00/01/10

11......11

2-bit prefix

r-bit run_length

Binary codes

2-bit suffixRun-length
segment

Mixed segment

Figure 4.2: The format for the run-length segment and the mixed segment for cube
compaction.

Table 4.1: An example of CBC based on the logic constraints shown in Code 2.3.

Cube Binary cube CBC (r = 6)

00X

XXXXXXXX

XXXXXXXX

000010

1010101010101010

1010101010101010

11000011

10010001

01X

XXXXXXXX

00000XXX

000110

1010101010101010

0000000000101010

11000111

10001001

00000101 10000011

100

XXXXXXXX

00000XXX

000110

1010101010101010

0000000000101010

1101000011

10001000

00000101 10000011

Figure 4.2 shows the compaction format for the two types of segments. The run-length

segment for the consecutive sequence includes a 2-bit prefix denoting the consecutive

character longer than a threshold, and an r-bit binary value denoting the run length

of the sequence. The mixed segment denoting the non-consecutive sequence is filled

with the original binary codes and edged with a 2-bit prefix and a 2-bit suffix equal

to 11. The compaction results for the cubes in Code 2.3 are shown in Table 4.1, in

which case the threshold is 2 and r = 6.

65

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

4.2.2 On-chip CRSG architecture

The proposed CRSG consists of the control unit, the on-chip cube memory, the de-

coding logic, the pseudo-random generator and the correction structure, as shown in

Figure 4.3. It supports the workflow from storing and decoding CBCs, primitive ran-

dom stimuli generation and correction, to producing the final stimuli output. Both

the throughput and memory logic can be flexibly adapted to the validation environ-

ment. The unconstrained stimulus from the pseudo-random generator is biased by

the correction structure that gets the activated binary cube from the cube memory

and the decoding logic.

Cube memory

The on-chip cube memory stores the CBCs. When the control unit activates a CBC,

its initial address is sent to the cube memory. The fetched CBC is loaded into the

reading buffer for decoding. Considering the issue of word alignment for the memory,

each CBC starts with a new address, so that no in-word offset information is needed

for activating a new CBC.

The CRSG only requires a small on-chip cube memory for buffering a few CBCs,

provided the subsequent CBCs can be uploaded via a low-bandwidth interface from a

host. Supposing that the stimuli were transmitted directly from a host or an on-board

memory, i.e., without compaction and on-chip buffering, then each stimulus would

be used once and discarded. Such mechanism would require new stimuli frequently

and its main limitation is the need for very high-bandwidth interfaces. By contrast,

by employing an on-chip embedded memory for buffering CBCs, the proposed CRSG

architecture receives compact cubes, which are then expanded on-the-fly to correct

66

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

...Byte1Byte0

Activated
CBC

01

Pseudo-random generator

Reading buffer

Bitwise
multiplexor

10

2n-bit binary
code buffer

2n-bit shadow register

Decoding
logic

Correction
structure

... ...

k-bit LFSR

k-to-m Phase
shifter

...101110...

Check
prefix

Decode
content

Byte
decoder Byte

decoder Decoded
codes

… ...

CBC (update to use)

Update CBC

CBC (used)

… ...

Activated CBC

CBC (to be used)

… ...

Update
address

Activated
address

New CBC

Dual port RAM

w_addr

w_data

r_addr

Addressing
control

........

Serial to
parallel bufferBit

stream

Cube memoryControl unit

Cube length

r_data

…

Final stimulus

Pre-type

Figure 4.3: The architecture of the on-chip CRSG for logic constraints.

67

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

LFSR patterns during the stimuli application. Each CBC can remain activated for

an arbitrary number of cycles to constrain the pseudo-random generator to generate

a user-controlled amount of valid stimuli. Because both the number and the size of

CBCs are much smaller than the expanded stimuli, it alleviates the need for high-

bandwidth interfaces.

The cube memory can be implemented either as a first-in, first-out (FIFO), i.e.,

addressed by implicit increment, or a dual-port RAM. In the case the volume of

CBCs is very large, the capacity of the embedded memory can be lowered by buffering

only a subset of CBCs, which will be used during a limited time window for stimuli

application; the subsequent subset of CBCs can be uploaded concurrently with the

application of the stimuli expanded from the current subset of CBCs. Finally, it

should be noted that the capacity of the cube memory is not influenced by the circuit

size, since it is determined only by the number and dimension of cubes, which are

influenced by the type of constraints and the size of randomized packets.

Figure 4.3 shows the data flow for activating and updating CBCs based on the

cube memory built with dual-port RAM. One port is used for fetching the activated

CBC via r addr and r data. The other port including w data and w addr is reserved

for updating a new CBC when it is ready from the control unit. The bitstream

transmission via a low-bandwidth interface takes less pin resources, while the control

unit reconstructs the CBC and sends word by word to the cube memory. The recently

sent CBC is updated and after being activated and used, the CBC can be set to be

outdated and can be overwritten by a new CBC. The addressing control unit issues

the CBC address for update and activation independently. The control unit keeps

track of the activated address and the update address where the used CBC can be

68

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

overwritten by a new CBC transmitted from the host.

Decoding logic

The decoding logic consists of multiple byte-wise decoders to support parallel de-

coding and a 2n-bit buffer to store the decoded n-code binary cube, as shown in

Figure 4.3. It supports to decode p binary codes (each binary code has 2 bits) per

clock cycle, where p denotes the degree of decoding parallelism. Each combinational

byte-wise decoder determines the segment type by the 2-bit prefix (if the type is not

inherited from the previous byte). The byte is interpreted into 2 to 4 codes as a mixed

segment or 2 to 2r codes as a run-length segment.

In each clock cycle, the first p codes from parallel decoders are shifted into the

binary codes buffer, leaving the remainders for the following cycles. Thus decoding

a CBC of n codes requires dn/pe cycles. For example, a 168-code binary cube (as

used in the experiments detailed in Section 4.4) is decoded from the CBC format in

21 cycles if p is 8, or 11 cycles if p is 16. The parallelism facilitates rapid continuous

cube switching.

Pseudo-random generator and correction structure

The pseudo-random generator consists of a k-bit maximum-length LFSR and a k-to-

m phase shifter (k ≤ m ≤ n), as shown in Figure 4.3. The phase shifter consists of

combinational logic with XOR gates, which expands each k-bit output from the LFSR

to m-bit primitive stimulus.

The correction structure consists of a 2n-bit shadow register and m bitwise multi-

plexers, as shown in Figure 4.3. Each two bits in the shadow register are paired with

69

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

a bitwise multiplexer. The shadow register pipelines n decoded binary codes from the

decoding logic, which avoids stalling stimulus correction during cube switching. A

virtual 2m-bit window is created and rolled in the 2n-bit shadow register, which in-

dicates the m activated binary codes for the current cycle. Each multiplexer decodes

a 2-bit binary code in the virtual window and arbitrates whether to output the corre-

sponding bit from the pseudo-random generator or to correct it to a constant 0 or 1.

Based on the encoding dictionary, the higher bit in the binary code can directly serve

as the selection signal and the lower bit is the constant output when it is corrected.

Control unit

The control unit keeps track of addresses for the cube memory, as shown in Fig-

ure 4.3. It uses the cube memory as a circular queue. Both the activated address and

the update address move down to the following CBC position until the end of the

memory, or they reset to the initial address. In order to compute the address for the

next activated CBC, the control unit receives the length of the currently activated

CBC from the decoding logic, which is added to the current activated address. The

activated CBC is fetched from the cube memory and decoded into a binary cube by

the byte decoders. Then it is copied to the shadow register in one cycle, based on

which the multiplexers arbitrate each output bit between the pseudo-random bit and

the lower bit in the mask code.

The control unit also synchronizes the functional parts, so that the architecture

supports to generate an n-bit final stimulus (or packet) in a user-specified number

of clock cycles (denoted as T). Therefore the stimulus is split into m-bit slices (m

is equal to dn/T e), except the last slice if the remainder is not zero. As shown in

70

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

TTTTTT
Stimuli

generation

CBC
decoding

 ⌈n/p⌉

Decoding CBC1

t (cycles)

 ⌈n/p⌉

Decoding CBC2

...

Cube0 activated Cube1 activated

Cube1 ready Cube2 ready

Figure 4.4: Timeline for CBCs decoding that influences how frequently a CBC can
be switched.

Figure 4.4, three packets are generated within 3T cycles based on Cube0. Meanwhile

CBC1 is decoded into Cube1 and will be activated after the third packet is completely

generated. Generally, while an n-bit packet is generated in T cycles, the next CBC is

being decoded and will be ready within dn/pe cycles. Then it switches to be active

immediately after the previous complete packet is generated. Figure 4.4 illustrates

the minimum cycle requirement for switching to a new cube, within which dn/pT e

packets must be generated based on the same cube.

4.2.3 The distribution of stimuli based on the architecture

The distribution of the stimuli generated by the CRSG relies in part on the uni-

form distribution associated with LFSR based on primitive characteristic polynomi-

als, however it also strongly dependent on the position of ‘0’s, ‘1’s and ‘X’s in each

cube; in addition, the distribution is also biased by the state of the LFSR when a

particular CBC is activated. Taking a 4-bit LFSR as an example, if the LFSR has

two adjacent states “1100” and “1001”, i.e., the LFSR shifts left by one position and

it feeds ‘1’ at the rightmost position, an unconstrained CRSG (i.e., the activated cube

71

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

is “XXXX”) will output the two binary values as two consecutive stimuli; hence the

distribution of samples at the output of the LFSR will contain each of the samples

“1100” and “1001” exactly once. If the activated cube is “XX10”, the two generated

stimuli are “1110” and “1010”, thus each of them will again count once in the dis-

tribution. However, if the activated cube is “X1X0”, both stimuli from the output

of the LFSR will be corrected to “1100” and hence this particular sample will be

accounted for twice in the distribution. The impact of the correction logic on the

sample distribution is experimentally assessed in Section 4.4.

4.3 The solution for sequential constraints

The solution in the previous section considers only logic constraints. In many ap-

plications, nonetheless, it is important to use sequential constraints to specify the

behaviour in adjacent cycles in the stimuli, as outlined in Chapter 2. The solution

in this section expands the solution for logic constraints to support sequential con-

straints. The distinguishing features including the cubes with timing information and

the new generator are emphasized.

4.3.1 Cubes with timing information

As elaborated in Section 2.4, the sequential constraints can be seen as a series of

partial logic constraints in a specific order, which are activated one by one in adjacent

cycles during stimuli generation. Therefore, the general conversion flow for cubes in

Section 3.3 is reused for each partial logic constraint, and the generated partial cubes

are combined in the order specified in the sequential constraint.

72

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

For logic constraints, each cube in the set has the same length as the final (con-

strained) stimulus. For sequential constraints, an m-bit stimulus (either a packet or

a slice) must satisfy constraints in each clock cycle for T consecutive cycles. Hence,

the accumulated length of the stimuli in a complete test case is m × T . Therefore,

each cube in the equivalent set for such scenarios is n = m× T bits. Using only logic

constraints can be considered as the case with T = 1.

4.3.2 Loose-coupling compaction for cubes

Similar to processing the cubes for logic constraints, each ‘0’, ‘1’ and ‘X’ in a cube

are encoded with three 2-bit binary codes: 00, 01, and 10 respectively. Regarding the

compaction, the algorithm for logic constraints generates CBCs in order to reduce

the required on-chip memory capacity. Nevertheless the side effect of that algorithm

introduced long path delays because the decoding logic for the compacted cubes has to

check the prior byte before decoding the current byte, as shown in Figure 4.3. Hence,

a new loose-coupling compaction algorithm is proposed for sequential constraints,

where all bytes within the cube can be decoded independently. It consists of serial

compaction by customized software and on-chip parallel restoration.

Each cube is partitioned into two types of segments, i.e., the run-length segment

and the mixed segment. Different from the compaction format varied with the run

length r for logic constraints shown in Figure 4.2, the mixed segment is redesigned

to contain a fixed number of characters (except for the last segment in the cube). It

has a 2-bit prefix 11 followed by the binary codes. The value of r in the run-length

segment and the number of characters in the mixed segment are adapted to the word

73

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

00/01/

10

X XX XX X11

2-bit prefix

r-bit run_length

Binary codes

Run-length segment

Mixed segment

X X X X X X

Figure 4.5: The two types of segments (r = 6) for sequential constraints.

alignment strategy of the on-chip memory. Figure 4.5 shows an example for the byte-

wise segment format (i.e., an 8-bit word), where r equals 6 and each mixed segment

contains 3 binary codes.

For the byte-wise segment format, each byte in the CBC format expresses either a

run-length segment or a mixed segment independent of other bytes. Table 4.2 shows

the resulted CBCs from the constraints in Code 2.3, which are different from the

results in Table 4.1. The set of CBCs are loaded in the on-chip memory. Since the set

of cubes is equivalent to the original SystemVerilog constraints, the CRSG is therefore

programmed to continuously generate compliant stimuli. The details of the generator

are described next.

4.3.3 On-chip CRSG architecture

As shown in Figure 4.6, the on-chip generator follows the hardware frame depicted

in Figure 4.1, which contains four parts, i.e., the on-chip memory with addressing

control logic, the decoding logic, the pseudo-random generator and the correction

logic. Since the previous generator for logic constraints shown in Figure 4.3 cannot

support partial cubes, the distinguishing features of this new generator stem from

74

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Table 4.2: The CBC using loose-coupling compaction.

Cubes Binary cubes CBCs

00X

XXXXXXXX

XXXXXXXX

000010

1010101010101010

1010101010101010

11000010

10010000

01X

XXXXXXXX

00000XXX

000110

1010101010101010

0000000000101010

11000110

10001000

00000101 10000011

100

XXXXXXXX

00000XXX

010000

1010101010101010

0000000000101010

11010000

10001000

00000101 10000011

using a single clock cycle for decoding and correction. Because the new architecture

supports decoding of a cube within one cycle, there is no need to use buffers to store

the intermediate parts of a decoded cube; rather, all the parts of a single cube are

assembled together within the same clock cycle using the combiners tree highlighted

in Figure 4.6. In particular, the decoding logic and correction parts are redesigned

as pure combinational logic, which eliminate the cycle delays from fetching a cube to

generating stimuli based on it. In each cycle, a CBC is fetched from the memory and

decoded, which is then used to correct the LFSR values using the correction logic.

Cube memory and addressing control logic

The on-chip memory is used to store CBCs, which is similar to the memory shown in

Figure 4.3. The cubes can be updated in-system, so as to fulfill the programmability

feature of the CRSG. The address control unit issues the address for the current

cube (i.e., the activated cube) and computes the following address based on different

scenarios. In each cycle, only one cube is activated for decoding, and the stimulus

generated in this cycle is based on the activated cube. The CRSG supports switching

75

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

...Byte1Byte0
Activated CBC

01

Pseudo-random
generator

Cube memory

Activated CBC

CBC data

Bitwise
multiplexor

1 bit of the final stimulus

10

2m-bit binary codes

Decoding logic

Correction
logic

...
...

k-bit LFSR

k-to-m Phase
shifter

...101110...

Prefix
check

Content
interpreter

Byte
decoder

Byte
decoder … ...

Address
control logic

Combiners
tree

combiner combiner

combiner

combiner

...

...

Address offset

Figure 4.6: The architecture of the generator for sequential constraints.

the activated cube as fast as in a single clock cycle.

Figure 4.7 illustrates the decoding timeline for the sequential constraints scenario.

It generates a complete n-bit stimulus within T cycles, during which the partial

cubes are switched in order and an m-bit (n = mT) stimulus is generated. After the

generation of a complete n-bit packet, this control unit can issue the address to the

next cube or repeat the previous one.

76

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

m-bitm-bit ...m-bitm-bitm-bit ...m-bit
Stimuli

generation

CBC
decoding

t (cycles)

...

TT cycles for a
complete packet

pTP2...p1pTp2...p1

Partial CBCs pi

Figure 4.7: The timeline for generating stimuli with partial CBCs.

Decoding logic with combiners tree

The decoding logic is used to restore the cubes in the compact format to the binary

cube format. Compared with the decoding logic for logic constraints shown in Fig-

ure 4.3, this decoding logic has been redesigned in order to fulfill the requirements

for sequential constraints, including fast switching between partial cubes used for the

correction of LFSR sequences. The decoding logic consists of a series of byte decoders

and a combiners tree, both of which are combinational. Hence it can decode the CBC

(or a part of it when using sequential constraints) in the same cycle when the cube

is fetched from the memory.

Each byte decoder receives one byte from the activated CBC and decodes it into

binary codes. It first checks the 2-bit prefix for the segment type, which decides the

interpretation of the following bits. The number of decoded binary codes depends on

the length of the word. In the current implementation (the length of the run-length

field r shown in Figure 4.5 equals 6), each byte decoder generates 3 binary codes for

a mixed segment or 4 to 64 binary codes for a run-length segment (note, the last byte

can be decoded into less than 3 valid binary codes). The number of byte decoders

depends on the longest CBC. In theory, any binary cube for m-bit stimuli can be

77

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

compacted into a CBC with the length less or equal to d2m/re words. Each word

contains r+ 2 bits, or d(r+ 2)/8e bytes for the byte alignment. For the case of a byte

decoder in which r = 6, the longest CBC is not longer than dm/3e bytes.

Each byte decoder is specialized according to its position in the decoding logic.

Given that each partial cube contains at mostm binary codes (m ≤ 64), the maximum

number of output binary codes from each byte decoder can be decreased by 3 from

the first to the last one, because each preceding decoder offers at least 3 binary codes.

Although it might also work by using homogeneous byte decoders with the same

number of the output binary codes, the heterogeneous implementation would consume

less on-chip area. Since the area of the byte decoder is proportional to the number of

the output binary codes (suppose the unit area of each byte decoder equals Cm, in

which C is a constant and m is the number of the output binary codes of each byte

decoder), the area cost of all the byte decoders can be decreased from Cm×dm/3e ≈

Cm2/3 to nearly half of it, i.e., Cm+C(m−3)+C(m−6)+. . .+C(m mod 3) ≈ Cm2/6.

The combiners tree shown in Figure 4.6 collects the outputs from all the byte

decoders and combines them into m binary codes. The tree is created as a balanced

binary tree to minimize the path delay. The leaf nodes are the byte decoders, and

the inner nodes are combiners. Each combiner combines the outputs from its two

children into one. In addition, the combiner tree counts the length of the current

CBC, which is sent to the address control unit for computing the next address.

As it was shown in this section, and as it will be demonstrated by the exper-

imental results from Section 4.4, the compaction strategies based on segmentation

influence the area cost for the on-chip decoding hardware and the speed of decoding,

78

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

as it is required by the types of constraints that are supported. That is, the com-

paction strategy of the CRSG for logic constraints presented in Section 4.2 requires

less area for decoding, however it needs multiple cycles to process a CBC. The CRSG

for sequential constraints from this section is based on a loose-coupling compaction

strategy with fewer cycles but more area cost.

Pseudo-random generator and correction logic

The pseudo-random generator comprises a k-bit maximum-length LFSR and an op-

tional k-to-m phase shifter. The correction structure consists of m independent 2-to-1

multiplexers, and each of them is connected to one bit from the m-bit LFSR value

and 2 bits from the m 2-bit binary codes from the decoding logic. Compared with

the correction structure from Figure 4.3, the new structure eliminates the shadow

register.

4.4 Experimental results

In this section, the cost of the proposed CRSGs and their effectiveness are examined in

applying extensively long random, yet functionally-compliant, sequences during post-

silicon validation. The results are compared with the methods published in the public

domain, which work on the same topic of constrained-random stimuli generation

for post-silicon validation using programmable on-chip signal generators that can be

applied to any logic block. The proposed generator for logic constraints in Section 4.2

is compared against the method in (Kinsman et al., 2013), which tackles exactly the

same challenge of designing and applying user-programmable constrained-random

sequences in real-time. The performance of the generator for sequential constraints

79

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

in Section 4.3 is also examined in this section.

4.4.1 The hardware evaluation of the generator for logic con-

straints

The proposed CRSGs for logic constraints and sequential constraints are analyzed by

varying the length of the LFSR (denoted as k-bit) and the length of the final stimulus

(denote as n-bit). Note, the length of the stimuli should support the maximum size of

random packets for the different blocks that are validated using the respective CRSG.

For this experiment, it is assumed that all the stimuli bits for the entire packet are

applied in a single clock cycle. The hardware cost is assessed assuming the CRSG is

deployed adjacent to the design-under-validation (DUV), in which case the area cost

for the interconnection between CRSG and DUV is negligible and thus not taken into

account in the results.

The synthesis results based on the k-bit LFSR are shown in Figure 4.8, in which

the results for both CRSG architectures are illustrated. Compared with the reference

design (Kinsman et al., 2013), whose area is directly influenced by the size of the

LFSR, the area of the proposed CRSG architectures grows insignificantly with the

length of the LFSR. Considering that the period of the LFSR-generated sequence

has an exponential dependence on the dimension of the LFSR (assuming the charac-

teristic polynomial of the LFSR is primitive and irredundant), the proposed CRSG

architecture can employ large LFSRs to avoid the repetition of pseudo-random stim-

uli when very long validation times are needed; for example, even a 50-bit LFSR that

works at 1 GHz can operate autonomously for over ten days.

The synthesis results of the architecture according to different lengths of stimuli

80

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

4 8 16 32 64 128
0

5000

10000

15000

The length of the LFSR k (bits)

N
A

N
D

2
 e

q
u

iv
al

en
t

Reference

Logic CRSG

Sequential CRSG

Figure 4.8: The hardware cost of proposed cube-based CRSGs and the reference
design in (Kinsman et al., 2013) according to the length of LFSR k. The proposed
CRSG for logic constraints is set with T = 1, n = 16 and p = 8, and the one for
sequential constraints is set with T = 1 and m = 16.

are illustrated in Figure 4.9. Due to the 2n-bit binary code buffer and the 2n-bit

shadow register (see Figure 4.3) and unlike (Kinsman et al., 2013), the proposed

CRSG is dependent on the size of the validation stimuli (packets) that are applied

to the design-under-validation. Note, however it is common that large packets are

broken into smaller ones over multiple clock cycles, which is handled by the generator

for sequential constraints (as discussed in sub-section 4.4.2).

As discussed in Section 4.2, an important parameter, which influences how fast

the cubes used for correction of pseudo-random sequences can be switched, is the

degree of decoding parallelism p. The synthesis results by varying p are illustrated

in Figure 4.10 and Figure 4.11. As for the previous experiments, it is assumed that

the stimuli are applied in a single clock cycle. As expected, both the area and the

critical path delay are affected by p, because each byte decoder must decide the

segment type based on the previously decoded byte or the current byte prefix (as

described in Section 4.2). The parameter p is independent of the complexity of

81

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

15 20 25 30 35 40 45 50 55 60
3000

4000

5000

6000

7000

The length of the stimulus n (bits)

N
A

N
D

2
 e

q
u

iv
al

en
t

Logic CRSG (k=32)

Reference (k=32)

Logic CRSG (k=64)

Reference (k=64)

Figure 4.9: The hardware cost of the proposed CRSG for logic constraints and the
reference design in (Kinsman et al., 2013) according to the length of the stimulus n
(given p = 8).

specified constraints, which might influence only the number of mask cubes that

are compacted and stored in the on-chip memory. Nonetheless, the higher the degree

of parallelism, the faster one can switch between these cubes.

Concerning the side-effects of the proposed CRSG architecture on timing, when

one considers the whole view of on-chip functional units and interconnection logic, the

delay paths in the CRSG are unlikely to dominate the circuit’s operating frequency.

What the CRSG architecture impacts is the timing delay from original function signal

to the port of the design, which is now multiplexed between the original signal and the

stimulus from CRSG. In the event that CRSG will impact the operating frequency,

an optional n-bit pipeline register chain can be inserted between the output of the

correction structure and the target design.

82

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

2 4 6 8
7000

7500

8000

8500

9000

9500

Parallelism in decoding p (codes per cycle)

N
A

N
D

2
 e

q
u

iv
al

an
t

Figure 4.10: The hardware cost of the proposed CRSG for logic constraints according
to the degree of parallelism in the decoding logic (given T = 1, k = 168 and n = 168).

4.4.2 The hardware evaluation of the generator for sequential

constraints

For the CRSG for sequential constraints, the number of byte decoders is varied ac-

cording to the maximum length of the CBC. This number is determined by the length

of stimulus per cycle (denoted as m-bit), as well as the compaction efficiency. Fig-

ure 4.12 illustrates the relation between the area and m. Furthermore one can argue

that for most protocol-based interfaces data is transferred over multiple clock cycles;

thus any large packet can be broken into slices with a low value of m (using sequential

constraints over consecutive slices) and therefore can be supported by the proposed

method with relatively low hardware overhead.

Regarding the maximum frequency of the proposed CRSG, the memory access

latency is considered constant and the path from the LFSR to the corrected stimulus

contains the XOR network and one 2-to-1 multiplexer. Hence, the critical path delay

in the proposed CRSG is mainly dependent on the number of byte decoders, which

83

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

2 4 6 8
0

2

4

6

Parallelism in decoding p (codes per cycle)

C
ri

ti
ca

l
p

at
h

 d
el

ay
 (

n
s)

Figure 4.11: The critical path delay of the proposed CRSG for logic constraints
according to the degree of parallelism in the decoding logic, estimated by static timing
analysis with a CMOS 90nm standard cell library (given T = 1, k = 168 and n = 168).

impacts the depth of the combiners tree from Figure 4.6. In Figure 4.13 the relation-

ship between the number of the decoders adapted to m and the critical path delay

is illustrated. When m grows, the number of byte decoders (needed to decode CBCs

within one clock cycle) increases; thus the depth of the combiners tree also grows

causing an increase in the critical path delay.

4.4.3 The evaluation on the data volume of the cube set

Concerning the impact of constraint complexity on the cube memory, a series of

experiments are performed using integer linear programming (ILP)-type constraints

because they can intuitively illustrate the numerical relationships between variables

(and many arithmetic, relational and even some logic constraints can be converted to

ILP forms). Table 4.3 shows the trend for the size of the cube set when incrementally

imposing four linear constraints on two 12-bit variables. The number of cubes gen-

erated by the customized software that targets optimizing the size of the cube set is

generally shown to be slightly smaller than by the flow based on hardware synthesis

84

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

0 10 20 30 40 50
0

5,000

10,000

15,000

20,000

25,000

The length of the stimulus per cycle (m bits)

N
A

N
D

2
 e

q
u

iv
al

en
t

Figure 4.12: The hardware cost of the proposed CRSG for sequential constraints,
according to the length of stimulus per cycle, in which the number of decoders is
adapted to the length of stimulus, i.e., dm/3e, which supports any case no matter the
compaction efficiency.

and BDD-based generation of cubes.

It is important to note that the customized algorithms for method (a) from Ta-

ble 4.3 need to use a two-level logic minimizer as a post-processing step. While this

reduces the cardinality of the cube set, the reliance on a two-decade old public-domain

tool, i.e., Espresso (McGeer et al., 1993), leads to runtimes on the order of hundreds

of seconds for the use cases from Table 4.3. On the other hand, the results for method

(b) from Table 4.3 do not use a two-level logic minimizer for post-processing the cube

set. These results have been obtained using a modern commercial hardware synthesis

tool (Synopsys, 2016), as well as a state-of-the-art BDD package (Somenzi, 2012),

and therefore its runtimes are on the order of a few seconds (up to low tens of sec-

onds). Exploratory experiments that have used a two-level logic minimizer to the

cube sets produced by the BDD-based method, have confirmed that the number of

cubes will become nearly identical to the ones obtained by method (a), nevertheless

85

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

0 10 20 30 40 50
0

1

2

3

4

5

6

The length of the stimulus per cycle (m bits)

C
ri

ti
ca

l
p

at
h

 d
el

ay
 (

n
s)

Figure 4.13: The critical path delay of the proposed CRSG for sequential constraints
according to the length of stimulus per cycle.

the runtimes will increase. In the following, although the method (b) is more scalable

in terms of runtimes, the number of optimized cubes that are generated by method

(a) are reported. Overall, the outcome of this experiment confirms the scalability of

the method according to the number of constraints. That is, it can be observed that

the number of cubes goes down when more constraints are imposed incrementally

because the valid sample space can be reduced (as illustrated in Figure 4.14):

1. If only the first constraint in the table is used, then the total number of valid

Table 4.3: The trend for the size of the cube set generated by (a) the customized
software and (b) the indirect flow using BDD, when adding constraints incrementally
for the ILP inequalities on 12-bit variables.

Constraints Valid pairs Cubes by (a) Cubes by (b)

(1) 1000 ≤ x+ 2y ≤ 8000 11943292 5724 5768

(2) y ≥ 5x− 6000, and (1) 5243774 4482 4528

(3) x ≥ 600, and (1),(2) 3143474 3398 3474

(4) y ≥ 2000, and (1),(2),(3) 1582674 2120 2161

86

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

0 2,000 4,000
0

2,000

4,000

B

D

C A

Figure 4.14: The geometrical illustration for the incrementally imposed constraints
from Table 4.3.

pairs is about 1.2 × 107 and the number of cubes is 5724; from the geometri-

cal standpoint as illustrated in Figure 4.14, this constraint covers all the four

regions, i.e., A ∪B ∪ C ∪D;

2. If the second constraint is used (in addition to the first one), then region A will

be eliminated and the number of cubes becomes 4482;

3. If the third constraint is added, region B is eliminated and the number of cubes

is 3398. The case for the forth constraint is similar.

What can be observed is that while the valid space gets constrained and the valid

stimuli are “close” (“close” in the Boolean domain, i.e., implicants/cubes can be

generated that cover a large number of minterms/valid stimuli) to each other, the

cube count will go down when more constraints are added. It demonstrates for this

87

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

type of problems that the cube count tends to go down when more constraints are

added, mainly because the valid pairs count is reduced.

In order to evaluate the effectiveness in reducing the storage requirements for large

validation sequences, the CRSGs are configured to generate stimuli for resembling 168-

bit packet heads for H.264 real-time transport protocol (RTP) (Wang et al., 2011)

shown in Figure 4.15, as well as 160-bit packet heads in the PCI-express (PCIe)

3.0 transaction layer packet (TLP) format (Ajanovic, 2009) shown in Figure 4.16.

Each field in the packet head must satisfy the requirements specified in the protocol

standards, including the format, defined/reserved values and the coordination among

fields. The fields that can be randomized are extracted for the design of constraints,

thus leaving the non-random CRC field to be attached by CRC computation logic.

The results of converting the constraints to cubes with the customized software tools

in Section 3.3, are listed in Table 4.4(a). In addition to supporting logic constraints,

i.e., T = 1, the method for mixed type constraints can generate each packet in

multiple cycles as a partitioned packet. Table 4.4(b) illustrates the CBC set size for

different values of T . When T increases, the length of the stimulus generated in each

cycle decreases, which leads to fewer byte decoders and consequently less hardware

overhead.

Only the cubes in the CBC format are required to be loaded to the cube memory;

this requires a quarter to a half of the storage needed for the binary cubes. Compared

to the reference method (Kinsman et al., 2013) that stores basis vectors from which

LFSR seeds are expanded on-the-fly, the volume of data that is required by the

proposed method is at least an order of magnitude less. This is because the number

of basis vectors from (Kinsman et al., 2013) needed to satisfy a particular cube can be

88

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

PTMCCXPV Sequence No.

Time stamp

Synchronization Source Identifier

Contributing Source Identifiers

TYPENRIF DON[15:0]Size[15:0]

32-bit

40-bit Network Abstract Layer (NAL) packet

NAL

Figure 4.15: A typical packet format of H.264 RTP.

ADDR
[31:0]

DW
[63:0]

LEN
[9:0]

ATTR
[13:0]

TYPE
[4:0]

FMT
[1:0]

MSB

TLP
payload

SEQ
[7:0]

SEQ
[11:8]

Frame
CRC

LEN
[10:4]

Parity
STP

1111
LEN
[3:0]

16-bit Framing (STP) 16-bit Sequence No. 128-bit

32-bit header

Figure 4.16: A typical packet format of PCIe 3.0 TLP.

large and, more importantly, the dimension of each of these vectors is as large as the

LFSR size. Hence, the savings of the proposed CRSG are explained by the fact that

the storage requirements are not dependent on the LFSR size. Table 4.5 shows the

total size of data that are applied to the design for the case of H.264 RTP and PCIe

TLP compared with the reference method (Kinsman et al., 2013). Considering that

the total number of constrained-random patterns that can be applied to the design

using only one cube is defined by 2ξ, where ξ is the number of free bits (i.e., ‘X’ bits)

provided in Table 4.4(a), it is evident that the number of stimuli that can be used for

validation can easily meet the objectives of real-time execution that lasts for hours.

It should be also noted that in the event that the capacity of the on-chip memory is

89

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Table 4.4: The encoding result of the cube set for PCIe and H.264.

(a) The results by the algorithms for (1) logic constraints and (2) sequential
constraints

Packet head
format

Free
bits

Cube
count

Binary cube
set size

CBC set
size by (1)

CBC set
size by (2)

H.264 RTP 158 335 14.91KB 3.9KB 3.2KB

PCIe TLP 127 5119 204.76KB 81.8KB 76.4KB

(b) The compaction results of CBC sets according to the generation period T

T Items H.264 RTP PCIe TLP

CBC set size 3.6KB 81.5KB

2 Stimulus length m 84b 80b

CBC set size 3.8KB 83.5KB

4 Stimulus length m 42b 40b

a tight implementation constraint (e.g., approximately 80 KB for PCIe TLP might be

excessive for some designs), one can update CBCs on-chip dynamically, as described in

Section 4.2. The main reason why this dynamic update is feasible is because any CBC

will be decoded into a valid mask that will ensure that the pseudo-random patterns

at the output of the LFSR will be mapped onto functionally-compliant stimuli. This

is a direct consequence of translating the SystemVerilog constraints into cubes, as

described in Section 3.1. For example, considering that 5,119 CBCs for PCIe TLP in

Table 4.4(a) require 81.8 KB, one can store approx 250 CBCs into a 4 KB memory

block; in such a memory-constrained environment, the CRSG can iterate through the

masks expanded by these 250 CBCs, while a new subset of CBC is loaded through a

low-bandwidth serial interface from on-board storage or directly from the host.

90

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Table 4.5: Loaded data volume and the total number of implied stimuli, compared
with the reference method(Kinsman et al., 2013).

(a) Generating H.264 RTP

Methods Loaded data type Loaded
data size

No. of
stimuli

Reference
seeds for 24-bit LFSR 182Kb 1.23× 109

seeds for 128-bit LFSR 5.41Mb 2.50×1040

Proposed
CBC for logic constraints 31.2Kb

1.22× 1050

CBC for sequential constraints 25.6Kb

(b) Generating PCIe TLP

Methods Loaded data type Loaded
data size

No. of
stimuli

Reference
seeds for 24-bit LFSR 2.46Mb 1.69× 109

seeds for 128-bit LFSR 80.9Mb 3.26×1040

Proposed
CBC for logic constraints 0.654Mb

8.71× 1041

CBC for sequential constraints 0.611Mb

91

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

0 0.5 1 1.5 2

x 10
7

0

1

2

3

4
x 10

4

(a) The number of generated stimuli

T
h

e
n

u
m

b
er

 o
f

u
n

iq
u

e
st

im
u

li

Proposed CRSG

Random generator in software

0 2 4 6 8 10

x 10
7

0

2

4

6

8

10
x 10

7

(b) The number of generated stimuli

T
h

e
n

u
m

b
er

 o
f

u
n

iq
u

e
st

im
u

li

Proposed CRSG

Random generator in software

Figure 4.17: The relation between the number of generated stimuli and the number
of unique stimuli based on the constraint x ≥ y. The unsigned variables x and y are
set to 8 bits in (a) and 16 bits in (b) respectively.

4.4.4 The evaluation of stimuli distribution

Concerning the quality of the randomized stimuli generated by the proposed solutions,

the distributions of the stimuli produced by CRSGs are examined.

Figure 4.17(a) illustrates the relation between the number of stimuli generated and

the number of unique stimuli based on a simple constraint x ≥ y, in which x and y are

unsigned 8-bit variables. If the random values are drawn from the uniform distribution

92

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

then, until the entire valid space (as defined by the constraint) is exhausted, the value

on the vertical axis should almost match the value on the horizontal axis; thereafter,

the value on the vertical axis saturates to the maximum number of unique stimuli.

The maximum number of valid pairs that satisfy x ≥ y is 32,896 and the software-

based random generator in a SystemVerilog compliant simulator (Synopsys, 2015)

reaches this saturation point after 543,085 patterns; it should be noted that these

results have been obtained using the rand type for the randomized variables for

the software random generator). As the number of generated patterns increases,

the number of unique patterns generated by the hardware method is approximately

half of the ones generated in a software simulator (for the same number of total

patterns). Figure 4.17(b) shows this trend more clearly, where x and y are set to be

16 bits each. It should be noted that during post-silicon validation it is reasonable

to have experiments with a significantly larger number of clock cycles than during

pre-silicon verification; therefore, though the valid randomized stimuli are repeated

more often in the hardware implementation, as confirmed by this experiment, the

extensive number of clock cycles exercised on silicon prototypes, which is at least

four orders of magnitude more than during pre-silicon simulation (Goodenough and

Aitken, 2010), are expected to compensate for this repetition of constrained-random

stimuli.

4.5 Summary

In this chapter the solution for generating stimuli according to logic constraints has

been first introduced. In particular, this solution relies on a compaction strategy

93

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

which facilitates the design of cost-efficient on-chip decoders. Then in order to gener-

ate stimuli based on sequential constraints, an extended solution has been proposed.

The solution not only expands the support for sequential constraints, but it also in-

creases the speed of processing each cube (as fast as one clock cycle per cube). The

experimental results have investigated the impact of the proposed solutions on the

area cost, clock speed, volume of data and the quality of the constrained stimuli in

terms of their repetition.

When the distribution of stimuli is of critical importance during post-silicon val-

idation, methods to avoid the repetition of stimuli will be discussed in detail in the

next chapter.

94

Chapter 5

Controlling the distribution of the

constrained-random stimuli

The solutions in Chapter 4 are focused on the features of functional constraints. In

this chapter, the characteristics for the distribution of on-chip stimuli generation are

investigated and improved, followed by a series of solutions supporting the features

compliant to the SystemVerilog standard.

The root causes of repetitive stimuli are first examined. As elaborated in this

chapter, the repetition can be caused by either the overlaps between cubes or sampling

the same pattern multiple times from the same cube. The first problem is addressed

by proposing an efficient algorithmic procedure for reshuffling the cubes in order to

ensure the same constrained space is preserved (with insignificant overhead in cube

count) and also guaranteeing that the intersection between any two cubes is void.

The second problem is addressed through a new on-chip generator with a dynamic

LFSR structure and a vector assembler, which ensure that, as constrained patterns

are generated on-the-fly from any given cube, they are never repeated. Hence the

95

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

solution can generate in real-time uniformly distributed (more specifically, random-

cyclic) stimuli with no repetition until the space of the compliant stimuli is exhausted.

Furthermore, the extended generator is proposed which introduces a scheduler for

cubes in order to avoid consecutive patterns to be constrained by the same cube. Not

only that it can ensure that any compliant pattern is not repeated until the entire

constrained space is enumerated, but it can also reprogram the cube schedule from

one enumeration to another. Moreover, in order to support weighted distributions

as specified in SystemVerilog, a solution that can deal with multiple sets of cubes is

presented.

5.1 The motivation for controlling the distribution

during stimuli generation

The results from Section 4.4 showed that the unique patterns applied in-system are

approximately half of the ones generated by a software simulator. Since in-system

validation runs significantly faster than simulation, it is acceptable in practice that

the quality loss due to stimuli repetition is compensated by the quantity of clock cy-

cles and patterns applied at the post-silicon phase (Adir et al., 2011). Nonetheless, if

the redundant cycles due to repeated stimuli can be reduced, the saved cycles can be

allocated to previously unused compliant stimuli that can stress the DUV into valid

states which otherwise could not have been explored. For this reason, for pre-silicon

verification SystemVerilog standardizes the features of random modifiers. For exam-

ple, while both rand and randc ensure that the random variables are sampled from a

uniform distribution in the constrained space, only randc guarantees that a random

96

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

variable does not get assigned the same value twice until the entire constrained space

has been exhaustively enumerated (referred to as random-cyclic stimuli generation).

The contribution from this chapter is driven by the following question: what

would be the cost, in terms of content preparation and on-chip generation (both

storage and area), to support the application of random-cyclic stimuli in hardware?

To answer this question, an enhanced flow is developed, including preparing user-

programmable content for on-chip CRSG, as well as new circuit blocks for on-chip

stimuli generation. The results in Section 5.7 indicate that, with similar area and

storage as prior works, uniformly distributed stimuli can in fact be applied in post-

silicon validation environments. Based on this method, further work is done to refine

the evenness of the distribution by interleaving cubes during generation, as well as

supporting the weighted distributions compliant to SystemVerilog.

5.2 Causes of stimuli repetition

Before developing the software and hardware blocks needed to generate uniformly

distributed constrained-random patterns in real-time, it is critical to develop the

insights for the causes that lead to stimuli repetition.

One cause for the repetition of stimuli is the overlap between the stimuli implied

by two or multiple cubes. For example, consider two cubes “1X0X” and “11XX” from

the set of cubes derived from the constraint x ≥ y shown in Code 2.1. As illustrated in

Figure 5.1(a), both cubes imply the binary vector “1100” (and “1101” as well), so the

CRSG hardware will generate “1100” twice if both cubes are loaded. To address this

problem, a new algorithm based on the mathematical model developed in Section 3.2

will be elaborated, which rectifies the overlapped cubes without any loss of the valid

97

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

pattern space.

The other cause for repetition stems from the interaction between the autonomous

sequence generated by the LFSR and the on-chip stimuli correction strategy. The

unconstrained sequences from the output of the LFSR serve as the input to the

correction logic. This correction logic essentially forces the specified bits from a cube

and lets the don’t-care bits to be filled with random values from the LFSR. As shown

in Figure 5.1(b), given a cube “1X0X” and a 4-bit unconstrained sequences {. . . ,

1101, 1110, 1111, 0111}, the correction logic would mask the left first bit with ‘1’

and the third bit with ‘0’. Hence, the stimuli sequence will be {. . . , 1101, 1100, 1101,

1101}. As a result, although all the masked (corrected) stimuli are made compliant

to the constraint (based on cube “1X0X”), pattern “1101” is generated multiple

times because the LFSR values for the ‘X’ positions will happen to be the same for

multiple clock cycles. To address this problem, the new hardware generator including

a dynamic LFSR and a flexible correction component (vector assembler) that can

avoid repetition for the same cube are designed, as elaborated in Section 5.4.

5.3 Generate non-overlapped cubes

The flow for cube processing is similar to the general flow shown in Section 3.3. The

constraints on stimuli for validation sessions can be formalized using SystemVerilog.

The proposed method first converts the constraints into the set of non-overlapped

cubes. Then the set of non-overlapped cubes are encoded into a binary format, which

can be loaded on-chip.

This section presents a new algorithm used to rectify a set of cubes in order to

ensure that any two patterns expanded from two distinct cubes will not be identical.

98

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

00 01 11 10

00

01

11

10

1 1

1 1

1

1

1100
1111
1101
1110

11XX

1100
1000
1001
1101

1X0X

(a)

4-bit
LFSR

… 1 1 0 1, 1 1 1 0, 1 1 1 1, 0 1 1 1

… 1 1 0 1, 1 1 0 0, 1 1 0 1, 1 1 0 1

1 X 0 X(b)

Repetition

Repetition

Masking

Lo
ad o

n ch
ip

1 X 0 X1 X 0 X1 X 0 X

Overlap

x1x0

y1y0

Figure 5.1: Stimuli repetition due to (a) overlapped cubes and (b) LFSR and correc-
tion strategy.

Section 3.3 has shown the general algorithms for converting the constraints into

equivalent cubes and encoding them into binary format. First the constraints in

SystemVerilog are converted with manually-guided customized software and then a

third-party logic minimization tool can be used. The software and the tool can de-

duce and enumerate compliant cubes according to the constraints’ types (such as, for

example, arithmetic, logic or conditional expressions). They also use heuristic algo-

rithms to merge cubes and decrease the size of the set of equivalent cubes. However,

the overlapped cubes can be introduced during this step. In particular, a two-level

logic minimization tool, such as Espresso (McGeer et al., 1993), is designed for min-

imizing the number of cubes and specified bits (i.e., the non-‘X’ bits) in a cube;

hence, due to its original objective (i.e., two-level logic minimization), it is not con-

cerned with recognizing and removing overlaps between cubes. For instance, if the

customized processing software produces a set of cubes {110X, 100X, 111X} for an

arbitrary constraint, the tool then deduces the minimized equivalent set as {11XX,

99

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

1X0X}. Note, this result set contains overlapped cubes. As a consequence, an add-on

algorithm to process the cubes produced by a logic minimizer is developed, as shown

in Code 5.1. It rectifies the overlapped cubes without any loss of the patterns that

can be implied. Furthermore, this algorithm also maintains the goal to limit the total

number of rectified cubes.

Based on the definitions from Section 3.2, some corollaries on the cube pair 〈a, b〉

are introduced, which are needed to explain the algorithm for rectifying the set of

cubes to avoid overlaps between cubes.

• If 〈a, b〉 is a mutually exclusive cube pair, b does not overlap with a.

• If b is a sub-cube of a, b is redundant in the set and removable as long as a is

in the same set.

• Otherwise, i.e., there is no mutually exclusive bit pair but at least one over-

lapped bit pair in them, then b ∩ a 6= ∅. Hence b overlaps with a and it needs

to be rectified according to the reference cube a.

Code 5.1 iterates in a given cube set sin and produces the equivalent rectified set

sout, in which any two cubes are mutually exclusive. The function RectifySet first

deliberately chooses a reference cube a out of sin, and finds out the overlapped pairs

with it. For each overlapped pair 〈a, b〉, the sub-function RectifyCube produces

the rectified result of b according to a, which is ready to take the place of b in sin

for the next reference cube. After processing all overlapped cubes with a, it indicates

that no cubes in sin overlaps with a. Hence a is moved from sin to sout, and sin

is updated for the new reference cube in the next iteration. Figure 5.2 shows the

rectified result of sin ={1X0X,11XX}. Compared with Figure 5.1(a), the overlapped

100

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Code 5.1 The algorithm to rectify overlapped cubes for the given set sin and produce
the equivalent set sout.

1: function RectifySet(sin)
2: sout ← ∅
3: Compute initial values of ρ0, ρ1, · · · , ρm−1

4: while sin 6= ∅ do
5: a← FindReferenceCube(sin)
6: for each cube pair 〈a, b〉 in sin do
7: sin ← sin − {b}
8: snext ← snext∪RectifyCube(a,b)
9: end for
10: sout ← sout ∪ {a}
11: sin ← sin ∪ snext
12: Update ρi on all relative positions i
13: end while
14: return sout
15: end function
16:

17: function RectifyCube(a,b)
18: if 〈a, b〉 is a mutually exclusive pair then
19: return {b}
20: end if
21: sc ← ∅ . The result set of b− a
22: spairs ← all overlapped bit pairs in 〈a, b〉
23: sort spairs by ρ from small to large
24: for each 〈ai, bi〉 in spairs do
25: bi ← ai . Halve b
26: sc ← sc ∪ {b} . The part of b in b− a
27: bi ← ai
28: . The other part of b for the next iteration
29: end for
30: return sc
31: end function

101

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

00 01 11 10

00

01

11

10

1 1

1 1

1

1

1111
1110

111X

1100
1000
1001
1101

1X0X

No
repetition

Rectified

x1x0

y1y0

Figure 5.2: Eliminate repetition by rectifying overlapped cubes.

cube “11XX” is rectified as “111X” which is no longer overlapped with the reference

cube “1X0X”. Meanwhile the result set sout ={1X0X,111X} implies the same space

of valid patterns as sin.

The result of the function RectifyCube is the relative of complement of a in

b, i.e., b − a. As mentioned in Section 3.1, not all elements in the universal set 2U

can be equivalently expressed as one cube. Hence the result is a set containing one or

several cubes. The cubes in the result set should imply all the binary vectors which

are implied by b but not by a. Note that, if b ⊆ a, the function produces ∅, so it

simply removes the redundant cube b from sin. The algorithm guarantees that all

the cubes in the result set are mutually exclusive to each other, thus ensuring that

the same pattern is not sampled from two different cubes.

In order to achieve the goal of lowering the total number of final cubes and specified

bits, function FindReferenceCube uses cube weight introduced in Section 3.2 to

choose the reference cube and calculating b− a.

Function FindReferenceCube calculates cubes’ weights using Equation (3.4).

Then the heaviest cube is selected as the reference cube in each iteration. The cubes

of a larger implied space (as measured by the first component in the equation) are

preferred, because the algorithm then may use fewer cubes to cover the whole implied

102

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

space of sin. The adoption of X-density ρ in the second component quantifies the

correlation with other cubes in the set, which reflects the probability of overlapping

with other cubes. Selecting a cube with high correlation as the reference cube may

result in more other cubes to be rectified, which could adversely increase the cube

count. By setting WX = m, the function FindReferenceCube will adopt a large

implied space first strategy to select the reference cube for each iteration.

Function RectifyCube constructs a series of mutually exclusive cubes to recon-

struct the vector space of b − a, in which a is the reference cube and b is the cube

to be rectified. After removing the overlapped part with a, the residual space of b

(i.e., b−a) may not remain in regular cubic shape, i.e., it could not be a single cube.

However, it can be constructed by a series of non-overlapped smaller cubic spaces.

The function iteratively applies Shannon’s expansion on b at overlapped positions i

of 〈a, b〉 as:

f(bi, b0, b1, · · · , bm−1) =bif(1, b0, b1, · · · , bm−1)+

bif(0, b0, b1, · · · , bm−1) (5.1)

It adopts greedy searching for the smallest ρi during enumeration to reduce the num-

ber of cubes in the result set. The property of mutual exclusion among cubes is

guaranteed by constructing mutually exclusive bit pairs in them. The total number

of produced cubes for b−a is
∑m−1

i=0 X (bi)(1−X (ai)), i.e., the number of overlapped

bit pairs of 〈a, b〉. The time complexity for the worst case is O(m× log2m) decided

by the sorting procedure (Code 5.1 line 23).

The time complexity of the whole algorithm depends on the size of sin, which

is dynamically updated according to the reference cube selection and the result of

103

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

cube rectification. The experimental results in Section 5.7 show that the heuristic

algorithm can tackle constraints with thousands of cubes in a few seconds.

It is also worth mentioning that, to reduce the final number of cubes, an optional

merging step can be performed on sout by Espresso (McGeer et al., 1993). It performs

a quick distance-1 merge on the set. It can be seen as the inverse process of halving

a cube. That is, during each iteration, it selects a cube pair 〈a, b〉 out of sout which

holds the same values (‘0’,‘1’ or ‘X’) on the same position except for only one mutually

exclusive pair 〈ai, bi〉. Then it modifies ai = X, and then only places the modified

a back to sout for the next iteration. Hence it reduces the cube count by one, while

the properties of mutual exclusion for non-overlapping cubes are preserved. The

time complexity of this step is O(|sout| × log2 |sout|), as reported in (McGeer et al.,

1993). For instance, the cube “111X” and “110X” can be merged into “11XX”. It

should be noted that one has to run Espresso with -Dd1merge to ensure that only

the above-mentioned step is performed.

The above rectification process follows the flow shown in Section 3.3, where the

generated cubes are encoded into the binary format and could be optionally com-

pacted using the loose coupling compaction algorithm presented in Section 4.3.

5.4 The on-chip generator for random-cyclic stim-

uli generation

As for all the variants of the on-chip CRSG hardware from this thesis, the CRSG for

random-cyclic stimuli generation receives the equivalent set of cubes from user-defined

constraints and forces the LFSR sequences to be functionally-compliant by employing

104

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

cubes as masks. As shown in Figure 5.3(a), the structure consists of embedded cube

RAM, decoding logic, a customized dynamic LFSR and a vector assembler.

The binary cubes, or the compact binary cubes (CBCs) if compaction is employed,

are loaded onto the embedded RAM. (CBCs, if applicable, are decoded to binary

cubes on-chip.) Then the dynamic LFSR and the vector assembler check the cubes

in order to generate the binary sequences of compliant stimuli. In the following, the

steps of cube decoding and compliant stimuli generation are elaborated. It should

be noted that the left hand side of Figure 5.3(a) builds on the architecture shown in

Figure 4.6 and therefore most of the details from this section are provided for the new

blocks from Figure 5.3(b) and Figure 5.3(c) respectively, which are critical to avoid

the repetition of patterns that are constrained by the same cube.

5.4.1 Decode cubes on-chip

The on-chip embedded cube RAM stores binary cubes (or CBCs) that have been

transmitted, for example, via a low-bandwidth interface. It only requires small ca-

pacity for loading a few cubes instead of the entire cube set. The addressing logic can

record the status of cubes and overwrite the used cubes by new cubes that can be

uploaded after all the patterns from the initial cube set have been exhausted. That

is, the cube RAM serves as a fist-in-first-out cube queue and refreshes its content as

the validation process progresses.

The decoding logic is similar to the one in Figure 4.6. It consists of a series of

combinational byte-wise decoders, which decode the CBCs from the cube RAM to

binary cubes. Each byte decoder processes one byte in the CBC. The results from the

byte decoders are combined together, which form a complete binary cube for stimuli

105

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Cube RAM

Addressing
logic

Byte
decoder

Byte
decoder

…

2m
-b

it
 b

in
ar

y
cu

b
e
a

Cube length

address

Dynamic
LFSR

Vector
assembler

m-bit primitive stimulus

a

ξa Load compact
binary cubes

C
o

m
p

ac
t

b
in

ar
y

cu
b

e

m-bit final stimuli
for target design

Decoding logic

(a) The top level of CRSG hardware

Reg1 Reg2 Regm…

c1(ξa) c2(ξa) cm-1(ξa) cm(ξa)

m-bit vector

…

1

…
Reg4

ξa=13

ξa

ξa=9
ξa=4

c4(ξa)

Dynamic LFSR

Insert an
all-0 vector

Avoid
all-0
state

m-bit primitive stimulus (from decoding logic)

(b) The inner structure of dynamic LFSR.The logic of c4(ξa) exemplifies the typical
logic for switching functions ci(ξa)

m-bit stimulus
from dynamic LFSR

>>1

X(a0)

>>1

lsb

s0

a0

0 1

0 1

X(a1)

s1

a1

0 1

0 1 Bitwise
assembler

p(0)

lsb
… …

Bitwise
assemblers

Distribute m 2-bit codes in cube a

…

Decoding
logic

Vector
assembler

m-bit final stimuli

(c) The inner structure of vector assembler, which comprises m bitwise assemblers

Figure 5.3: The structure of on-chip CRSG hardware for uniformly distributed stimuli
generation.

106

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

generation in the vector assembler. Meanwhile, the length of the CBC is sent back to

the addressing logic for computing the address of the next cube. Also the attribute

ξ of the cube is sent to the dynamic LFSR, which is used as explained in the next

subsection. It is worth noting that if a user chooses to transfer binary cubes directly

on-chip there is no need for the decoding logic (i.e., for applications where on-chip

area is more important than on-chip storage), however attribute ξ of each cube still

needs to be sent to the dynamic LFSR.

5.4.2 Generate ξ-bit primitive sequences

The m-bit LFSR, as used in the previous solutions in Chapter 4, supplies the m-

bit primitive stimuli, which is altered according to the content of cubes. However,

such fixed-length LFSR lacks the flexibility of varying distribution of the sequences

according to cubes, which causes stimuli repetition. Therefore, a dynamic LFSR is

designed based on it, and ξ, i.e., the number of ‘X’s in the cube (defined in Equa-

tion 3.2 from Section 3.2), is selected to control the behaviour of the dynamic LFSR

as a degenerated ξ-bit LFSR, as detailed next.

An m-bit LFSR consists of m 1-bit registers and XOR gates in its feedback. The

behaviour can be modelled with the characteristic polynomial fm(x) = 1 + c1x +

c2x
2 + · · · + cmx

m. If the coefficient ci 6= 0 (1 ≤ i ≤ m), it indicates the ith register

is used for the feedback computation. Note if f(x) is a primitive polynomial, the

LFSR can enumerate non-repetitive 2m − 1 vectors of m bits except the all-0 vector

(the forbidden state of LFSR) within each period T = 2m − 1. Note, the theory of

primitive characteristic polynomials over Galois Fields and how they relate to LFSR

models can be found in Bardell et al. (1987).

107

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Reg1 Reg2 Reg4

Reg1 Reg2 Reg4

Reg3

Reg1 Reg2 Reg3

Reg1 Reg2

Reg3

c1=(2,4) c2=(2,3) c3=(3) c4=(4)

2-bit LFSR

3-bit LFSR

4-bit LFSR

4-bit dymaic LFSR

Figure 5.4: The sketch of 4-bit dynamic LFSR evolving from fixed-length LFSRs,
which makes ci as a switching function based on the on-set.

The proposed dynamic LFSR changes ci from a constant coefficient to a variable

function that is dependent on ξ. Figure 5.4 depicts the framework of 4-bit dynamic

LFSR, which can degenerate to 2/3/4-bit fixed-length LFSR. That is, the feedback

with the ith register depends on ξ. If and only if ci(ξ) 6= 0, the ith register is connected

to the feedback net. In particular, if cm = cm−1 = · · · = cm−k+1 = 0 and cm−k 6= 0,

the m-bit LFSR is degenerated to (m − k)-bit LFSR. The switching functions are

designed based on the binary primitive polynomials table (Živkovic, 1994), so that

the LFSR can dynamically degenerate to ξ-bit long, while at the same time keeping

fξ(x) as a primitive polynomial. Table 5.1 exemplifies the switching functions for

up-to 16-bit long LFSR. A complete listing of switching functions for up to 64-bit

dynamic LFSR is given in Appendix A. For example, c4 = 1 ⇐⇒ ξ ∈ {4, 9, 13},

while c8 = 1 ⇐⇒ ξ = 8.

The left part in Figure 5.3(b) shows the general structure of the dynamic LFSR.

Each bitwise register is connected to the logic which implements ci(ξ). The right

part in Figure 5.3(b) illustrates a typical structure of the switching logic, including

a series of comparators connected with OR-gates and an AND-gate. The number of

108

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Table 5.1: Switching functions for a 16-bit dynamic LFSR that can be configured
into smaller LFSRs

Functions On-set Functions On-set

c1 1,2,4,6,7,8,13,14 c9 9

c2 2,3,5,11,16 c10 10

c3 3,10,12,13,16 c11 11,14

c4 4,9,13 c12 12,14

c5 5,8,16 c13 13

c6 6,8 c14 14

c7 7,12 c15 15

c8 8 c16 16

the comparators and the operands are set based on Table 5.1. For instance, because

the on-set of c4(ξ) is {4,9,13}, the logic for c4(ξ) includes 3 comparators (against

constants), which compare ξ with 4, 9 and 13. In addition, the first bitwise register is

set to 1 during cube switching to avoid the forbidden all-0 state, and an all-0 vector

generator is used for adding an all-0 vector to the output sequences. Consequently,

the proposed dynamic LFSR can enumerate non-repetitive 2ξ vectors in the first ξ bits

of the output in consecutive 2ξ cycles. This helps eliminate the problem of repetitive

patterns within each cube. For example, compared with the fixed length LFSR in

Figure 5.1(b), the dynamic LFSR shown in Figure 5.5 degenerates to 2-bit LFSR for

the cube “1X0X” and it exhaustively enumerates four 2-bit primitive stimuli.

5.4.3 Assemble compliant stimuli

The vector assembler maps the 2ξ vectors from the LFSR to the corresponding bit po-

sitions in the stimulus that is applied to the target design. As shown in Figure 5.3(c),

109

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

… 1 1, 1 0, 0 1, 0 0

… 1 1 0 1, 1 1 0 0, 1 0 0 1, 1 0 0 0

Dynamic LFSR

1 X 0 XMasking 1 X 0 X1 X 0 X1 X 0 X

Exhaustive enumeration

Lo
ade

d
 cub

e

Figure 5.5: Exhaustive enumeration by dynamic LFSR and the new correction strat-
egy, compared with Figure 5.1(b).

it consists of m bitwise assemblers to produce a compliant m-bit stimulus s, based

on the 2m-bit binary cube a from the decoding logic and ξa-bit vector as a primitive

stimulus from the dynamic LFSR. The ith bitwise assembler (0 ≤ i ≤ m−1) receives

a vector p(i−1) from the (i − 1)th bitwise assembler (except that the 0th assembler

receives the vector from the LFSR) and passes a modified vector p(i) according to

X (ai). Meanwhile it produces si as one bit in s based on X (ai). (X (ai) is exactly

the higher bit for each value in the binary cube as explained in Section 3.1.) Using

arbitrators, it determines the outputs according to X (ai) = 1 as:

• If X (ai) = 0, it means ai is a specified constant ‘0’ or ‘1’. Then si = ai and

p(i) = p(i−1).

• Otherwise X (ai) = 1. It means ai is an unspecified bit ‘X’. Then si = p
(i−1)
0

and p(i) = 〈p(i−1)
ξa−1 · · · p

(i−1)
2 p

(i−1)
1 〉. That is, it uses a random bit originated from

the dynamic LFSR to fill a bit in the final stimulus, and passes the left random

bits (right shifting p(i−1) by one bit) to the following assembler.

Hence, the vector assembler selects the first ξa bits from the LFSR and the speci-

fied bits in the cube a to assemble a final compliant stimulus. As the example shown

in the correcting process of Figure 5.5, each bit of the primitive stimulus from the

110

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

dynamic LFSR substitutes an ‘X’ in the cube one by one. Thus the vector assem-

bler assembles a complete 4-bit stimulus with the 2-bit primitive stimulus and the 2

specified bits in the cube.

5.5 Interleaving cubes during on-chip generation

The previous sections were focused on the fundamentals for controlling distribution

of on-chip stimuli generation, based on which the solution for generating uniformly-

distributed constrained-random stimuli was presented. Nevertheless, it partitioned

the entire compliant sample space into a series subspace expressed by cubes, and it

random-cyclically sampled these subspaces one by one. In such way, the distribution

of cyclic-randomness still holds for the entire compliant space, however consecutive

samples are constrained by the same cube. In case that the generation process has

to be stopped due to the time limit of on-chip validation, the latter cubes will never

get the opportunity to be sampled. In such cases, the cubes that constrain the

stimuli are not evenly scattered. This might be a concern because the excitations

conditions might vary from one potential error to another, and it is desirable to

interleave patterns that are expanded from every single cube.

In this section an enhanced solution is proposed, which builds on the method to

control the stimuli distribution from the previous solution. It can not only generate

cyclic-random distributed stimuli in the compliant sample space according to user-

defined constraints, but it also alleviates the potential problems caused by an uneven

sampling of cubes. This is achieved by introducing a cycle-sharing schedule for cubes.

The hardware cost for the cube scheduler does not depend on the LFSR size, nor the

amount of data that is applied per clock cycle.

111

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

5.5.1 The analysis of the order of cube processing

Since the compliant sample space is expressed by a set of cubes in the Boolean space,

the stimuli are generated by forcing the known values from the cubes and filling in

the don’t-care bits with random values. This may lead to a sequence of stimuli that

are clustered due to expansion of consecutive samples from the same cube.

Considering the constraint x ≥ y from Code 2.1, a sequence of stimuli gener-

ated based on the equivalent cube set {1X0X, 11XX, XX00, X10X, 1XX0} could be

{
Use cube 1X0X︷ ︸︸ ︷

1000, 1001, 1100, 1101,

Use cube 11XX︷ ︸︸ ︷
1111, 1110, 1101, 1100, · · · }. The sampling process enumer-

ates all the stimuli based on one cube, followed by all the stimuli expanded from the

following cube and so on. Therefore it concatenates the permutation specified by

each cube to form a whole permutation specified by the constraint. Nevertheless, in

case that the subspaces for the first few cubes are large and the validation has to halt

due to the limited validation time, the latter cubes never get used. Consequently, as-

suming the cubes do not overlap, the stimuli represented by unused cubes will not be

generated, thus raising concerns whether the corner states that get excited by stimuli

expanded from the unused cubes get adequately exercised and validated. Consider

also the example of Code 5.2 derived from the SystemVerilog standard document(IEE,

2013a), which generates addresses with constraints designed according to the speci-

fication for a valid bus packet. If the validation process had halted before the third

cube in Table 5.2 started, no packets with addresses in the ProtectedMode (that are

in the range from 8’h10 to 8’h3F) would be generated to validate the corresponding

behavior.

In order to alleviate the potential deficiency caused by sampling one cube at a

time, an on-chip cube scheduler will be presented next. The purpose of this scheduler

112

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Code 5.2 The SystemVerilog constraints for generating bus packets.

typedef enum {
RealMode , ProtectedMode , FullMode

} AddrMode ;

class BusPacket ;
rand AddrMode mode ;
rand bit [7 : 0] addr ;
rand bit [7 : 0] data ;

constraint word a l ign {
addr [0]==1 ’b0 ;

}
constraint addr range {

(mode==RealMode) −> addr<=8’h0F ;
(mode==ProtectedMode) −> addr<=8’h3F ;

}
endclass

Table 5.2: The equivalent set of cubes for the constraints in Code 5.2.

mode[1:0] addr[7:0] data[7:0] Mode

0X 0000XXX0 XXXXXXXX RealMode, part of ProtectedMode

10 XXXXXXX0 XXXXXXXX FullMode

01 00XXXXX0 XXXXXXXX ProtectedMode

is to apply a time-sharing scheme by interleaving all the loaded cubes, in order to

balance the generation of constrained-random stimuli from every single cube.

5.5.2 On-chip cube scheduling

The on-chip generator conceptually consists of three functional parts, i.e., the cube

scheduler logic with the on-chip RAMs, the dynamic LFSR, and the vector assembler

as shown in Figure 5.6. In particular, in addition to the cube RAM, as used in

113

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

previous solutions, a context RAM is used as the second on-chip RAM for interleaving

cubes. The cubes are preloaded to the on-chip cube RAM. The scheduler selects cubes

based on a round-robin strategy. According to the selected cube, the vector assembler

manipulates the random sequence from the dynamic LFSR and it assembles the final

stimuli applied to the DUV.

Taking the hardware cost and efficiency into consideration, a compact on-chip

cube scheduler is designed. The cubes are treated with equal priority, and they are

interleaved within a T -cycle slice (if T equals 1 then cubes are switched every clock

cycle). A cube is used until it expires (i.e., all the patterns that can be expanded

from the respective cube have been generated). The scheduler also manages the

context RAM. The fixed-length item in the RAM for each cube contains two fields for

recording the accumulated cycles for the cube and the state of the LFSR respectively.

The scheduler handles each cube as follows:

1. When a new cube is loaded, it is stored at the end of cube items in the cube

RAM and it is waiting for its cycle slice; its context item is initialized to zero.

2. The scheduler circulates the cubes in the cube RAM. At the first cycle of each

T -cycle slice, it sends a new cube to the vector assembler, and sends the cor-

responding LFSR state to the dynamic LFSR (the behaviour of the dynamic

LFSR and the vector assembler is the same as for the ones used in Section 5.4).

It also assigns cycles for the current slice according to ξ (the number of ‘X’s

in the cube) and the number of patterns expanded from this cube so far tall

(this value is stored in the context RAM). If tall + T < 2ξ, it assigns T cycles;

otherwise it assigns 2ξ − tall and the cube is marked to be expired at the end of

the slice.

114

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Reg1 Reg2 Regm…

…

1

…

Dynamic LFSR

Insert an
all-0 vector

Avoid
all-0
state

0

1 0 1 0 …

0

1 0

…
…

ξa

…

c1 c2 cm

0

m-bit primitive stimulus

>>1
X(a0)

>>1
lsb

s0

a0

0 1

0 1

X(a1)

s1

a1

0 1

0 1

p(0)

lsb
… …

Bitwise
assemblers

Vector
assembler

m-bit final stimuli

p(1)

X(am-1)

sm-1

am-1

0 1

0 1

p(m-1)

lsb
>>1

addr

Load cubes

Addressing
logic

X(am-1)am-1, … … , X(a1)a1, X(a0)a0

Context
RAM

Cube a

addr
Cube used time

Cube
length

Cube
RAM

Figure 5.6: The structure of on-chip CRSG hardware to support cube scheduling.

115

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

3. If the cube does not expire, the cube is written back to the cube RAM at the

address wb managed by the scheduler. Meanwhile the next state of the LFSR

and the updated accumulated cycle count tall ← tall + T are written back to

the corresponding location in the context RAM, followed by incrementing wb.

Note, writing the next state of the LFSR instead of the current state eliminates

one stall cycle during the following T -cycle slice. Note also, if the cube expires,

the scheduler only increments the counter for expired cubes (in the current

circulation through all the cubes) without writing back. Since the cube RAM

and the context RAM are dual-port RAMs, the scheduler also issues the read

addresses (for both the cube and context RAMs) for the next cube.

4. When the current circulation ends at the last cube indicated by the address

end, the scheduler updates end according to the expired cube counter, and then

it resets this counter and wb in order to restart a new circulation.

Figure 5.7 illustrates a typical scheduling process. The scheduler manages to com-

plete all the steps without stall cycles for switching cubes during stimuli generation,

even if the cubes are switching cycle by cycle, i.e., T = 1. Meanwhile, the valid cubes

are collected in the continuous address space for each circulation which eliminates

extra cost for managing memory fragments due to expired cubes. This collection

process is also done without extra clock cycles (by deciding not to increment wb for

the expired cubes).

It is worth noting that, if the total number of cubes is very large, a subset of

cubes could be buffered in the on-chip memory. Since the cube and context RAMs

are both dual-port RAMs (and the write port is needed only at the end of a T -cycle

or an expired time slice), the cubes that did not fit into the on-chip memory can be

116

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

t

expire

a
b
c
d

wb

end

Cube a
Cube b
Cube c
Cube d …

expire

 Circulation 2 Circulation 1

a
b
c
d

wb

end

a
b
c
d

wb

end

a
c
c
d

wb

end

a
c
d

wb

end

a
c
d

wb

end

a
c
d

wb

end

d

wb

end

expire

Figure 5.7: The timeline for scheduling cubes and the snapshots of the cube RAM
with the address pointers wb and end (T = 2).

updated in the unused regions of these RAMs (marked in gray in Figure 5.7). After

all the cubes have expired, one can reload the content of the on-chip memory with the

cubes placed in a different order; also, the initial state of the dynamic LFSR for each

cube can be changed when the cubes are reloaded. This will ensure that, in the case

of very long validation sessions where the entire constrained space is exhausted and

it needs to be enumerated again, in the second enumeration the order of the samples

will be different.

5.6 Supporting weighted distributions

SystemVerilog supports sets of weighted distributions using the operator dist, as

exemplified in Code 2.2. It allows additional constraints along with dist operations,

which may influence the distribution. Implementations are not required to satisfy

the distribution expressions if they are not satisfiable. Note, more details about

weighted distributions can be found in the SystemVerilog standard (IEE, 2013a). The

requirement for on-chip stimuli generation with weighted distributions introduces new

circumstances that need to be supported, as elaborated in this section.

117

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Code 5.3 Rewriting the dist expression in the constraint block from Code 2.2 to
multiple constraint blocks using inside expressions.

class Dis tConst ra int sub1 ;
rand bit [1 5 : 0] x ;
constraint x d i s t s u b 1 {

x inside { [1 0 : 9 9 9] } ;
}

endclass

class Dis tConst ra int sub2 ;
rand bit [1 5 : 0] x ;
constraint x d i s t s u b 2 {

x inside { [1 0 0 0 : 2 0 0 0]} ;
}

endclass

(a) Assigned weight=3 (b) Assigned weight=2

5.6.1 Cube preparation for weighted ranges

In order deal with constraints with dist expressions, the cube preparation process

disassembles dist expressions into a series of equivalent expressions with weighted

ranges using inside. This step preceds the normal flow of cube conversion. Given a

constraint block including dist expressions, each range in the expression is extracted

one by one, which is combined with the other operations in the original constraint

block to form an independent constraint block. Meanwhile, each new formed con-

straint block is assigned a weight according to the original expression. For instance,

Code 5.3 shows two constraint blocks rewritten from the dist constraint in Code 2.2.

Consequently, each rewritten constraint block could be converted to an equivalent

set of cubes by the normal flow, including the conversion to non-overlapped cubes

and their encoding into the binary format. Each set of cubes derives its weight from

the correspondent constraint block. The on-chip generator uses these multiple sets of

cubes, as explained in the next subsection.

118

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

5.6.2 On-chip scheduling of weighted sets of cubes

In order to fulfill the unique requirements for supporting stimuli generation with

weighted distributions, a two-level address scheduling logic is designed based on the

architecture shown in Figure 5.6. This is achieved by both arranging time slices

among multiple sets of cubes and scheduling cubes in each set.

According to the specification for customized distribution in the up-to-date Sys-

temVerilog standard (IEE, 2013a), the scheduling process should balance the total

numbers of cycles for each set among the cube sets so as to be proportional to their

weights during generation. Taking the constraint shown in Code 2.2 as an example,

the two cube sets shown in Code 5.3 are interleaved during on-chip generation. For

example, within a running period of 1,000 cycles, the total cycles for the two sets

according to Code 2.2(a) and (b) should be 600 and 400 respectively, so as to com-

ply with the weight ratio of 3:2. Note also, the stimuli generated according to each

cube set should remain uniformly distributed. Therefore, the new addressing logic

for scheduling multiple sets of cubes is designed based on the hardware framework

which supports uniformly distributed stimuli generation, e.g., the structure elabo-

rated in Section 5.5. Based on this framework, the addressing logic implements the

round-robin strategy at the level of cube sets.

Figure 5.8 shows an example of the timeline for scheduling two cube sets, one of

which has the weight of 3 and the other has 2. At the level of scheduling cube sets,

the addressing logic periodically activates each set for a number of cycles equal to its

weight one after another. When triggered to be active, each cube set can use its cubes

independently. As shown in Figure 5.8, it adapts the strategy of round-robin to select

between {ai} and {bj}; meanwhile, it interleaves cubes within the time slices of each

119

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

t

a1
a2
b1
b2
b3

a1
a2
b1
b2
b3

a1
a2
b1
b2
b3

a1
a2
b1
b2
b3

addr1

addr2

active addr1

addr2

a1
a2
b1
b2
b3

addr1

addr2

addr1

addr2
active

addr1

addr2

a1
a2
b1
b2
b3

addr1

addr2

active

Activate the 2nd set Activate the 1st set

…

Activate the 1st set

T1 T2 T3 T4 T5 T6

Figure 5.8: The timeline for scheduling two sets of cubes according to the weights of
3 for the set {ai} and 2 for the set {bj}.

set independently. Considering the case in which all the cubes in a set are expired

without additional updated cubes, the set of cubes are reset for scheduling again.

Consequently, the two-level scheduling method realizes the weighted distribution as

3:2 in any five consecutive cycles and stabilizes around this ratio in the longer run.

The up-to-date SystemVerilog standard allows fractions for weights. In order to

facilitate scheduling cube sets, the weights in the same dist expression are unified

(simultaneously multiplied by a number) to positive integers, so that greatest common

divisor of them is 1. For instance, the weights of 2/3, 1/4 and 1/6 in a dist expression

are unified to 8, 3 and 2.

Regarding the volatility of the distribution during generation, given N cube sets

(N ≥ 2), each of which has a positive integer weight wi(1 ≤ i ≤ N), the addressing

logic goes through all the sets once in each period of T cycles (T =
∑N

i=1wk). The

expected ratio of the running time allocated to the i-th set is ri = wi/T , while the

actual ratio for on-chip generation for t (t ≥ T) cycles is r̄i = ti/t (ti is the actual

cycles consumed by the i-th set). Assuming that t includes τ (τ ≥ 0) periods of T ,

then t = τT + ∆t (0 ≤ ∆t < T) and ti = τwi + ∆ti (0 ≤ ∆ti ≤ ∆t). Considering the

lower limit of r̄i in the case of ∆ti = 0 (i.e., no active cycles are assigned to the k-th

120

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

0.994

0.996

0.998

1

1.002

1.004

1.006

Number of running periods τ

r̄ i
/r

i

ri = 0.2
ri = 0.8

Figure 5.9: The actual distribution converges to the expected distribution.

set in ∆t) and the upper limit if ti = ∆t, it can be deduced:

τwi
τT + T − wi

≤ τwi
τT + ∆t

≤ r̄i =
τwi + ∆ti
τT + ∆t

≤ τwi + wi
τT + wi

(5.2)

Hence the bounds for the ratio between ri and r̄i can be computed by Equation (5.3):

1− 1− ri
τ + 1− ri

≤ r̄i
ri
≤ 1 +

1− ri
τ + ri

(5.3)

When generating the stimuli on-chip for long periods, the rate r̄i/ri is monotone

convergent to 1. Figure 5.9 illustrates the curves for the upper limit and the lower limit

according to Equation (5.3), which indicates that the actual distribution becomes

121

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

close to the expected distribution when the on-chip generation iterates a few times

through each cube set.

5.7 Experimental results

The solution of supporting constrained cyclic-random generation (introduced in Sec-

tion 5.4) and the two extensions (introduced in Section 5.5 and Section 5.6) are

evaluated in this section. In particular, the improvement, as well as the extra cost,

for cube preparation and on-chip generation are examined and are compared against

the solutions without distribution control that were presented in Chapter 4.

5.7.1 The evaluation of the algorithm for cube rectification

First the runtimes needed to generate non-overlapped cubes using Code 5.1 are eval-

uated. The experiments use the test cases with different types of constraints from

Section 4.4. The results are shown in Table 5.3. Cases #1-#4 include solving inequal-

ities based on integer linear programming constraints (shown in the second column),

which typically specify numerical relationship between variables by a series of arith-

metic, relational expressions. Cases #5 and #6 are designed to generate packet heads

based on the formats of PCIe 3.0 TLP and H.264 RTP respectively. The third col-

umn gives the stimulus length and the fourth column shows the dimension of the

constrained space from which valid patterns are sampled. The last column gives the

runtimes, which clearly indicate the practical feasibility of the algorithm in Code 5.1.

The impact of the rectification process on the amount of final cubes is also evalu-

ated, because it affects the size of the on-chip RAM resources. Figure 5.10 illustrates

122

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Table 5.3: The test cases for assessing the runtime of Code 5.1.

Case
No.

Constraints Stimulus
length

Space
size

Run
time

#1 1000 ≤ x+ 2y ≤ 8000 24 bits 1.2× 107 1.3s

#2 y ≥ 5x− 6000, and (1) 24 bits 5.2× 106 0.9s

#3 x ≥ 600, and (1),(2) 24 bits 3.1× 106 0.5s

#4 y ≥ 2000, and (1),(2),(3) 24 bits 1.6× 106 0.2s

#5 PCIe TLP 160 bits 8.7×1041 3.5s

#6 H.264 RTP 168 bits 1.2×1050 0.2s

the amount of the rectified (non-overlapped) cubes by the algorithm, compared with

the amount of original cubes obtained by the solutions from Chapter 4. If the optional

process of cube compaction is used, as it is the case for the solution in Section 5.4,

the volume of data for the compact binary cubes (which are stored on-chip) is shown

in Figure 5.11. These figures demonstrate that the algorithm in Code 5.1 can avoid

pattern overlaps without causing a significant penalty in the volume of data that

needs to be stored on-chip to configure the CRSGs in real-time. In fact, when cube

compaction is used, the total volume of data can also be reduced when compared to

the case when the cube overlaps are not removed (Figure 5.11).

5.7.2 The evaluation of the random-cyclic distribution

The quality of generated random-cyclic stimuli using the proposed methods is exam-

ined. It is compared with the results from the method shown in Section 4.3, which

could also generate constrained-random stimuli as much as one stimulus per cycle but

lacks the control on the distribution of stimuli. Note, both solutions from Section 5.4

and Section 5.5 support cyclic-random pattern generation.

123

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

#1 #2 #3 #4 #5 #6
0

2000

4000

6000

The test cases with different constraints

T
o
ta

l
n
u
m

b
e
r

o
f

c
u
b
e
s

Method (a)

Method (b)

Figure 5.10: The number of cubes of each test case in the method (a) presented in
Section 4.2 and the method (b) presented in Section 5.4.

Figure 5.12 illustrates the amount of unique stimuli within the first t generated

stimuli for binary pairs 〈x, y〉 based on different constraints. Figure 5.12(a), using the

constraint x ≥ y, shows the speed-up for the exhaustive enumeration in a relatively

small constrained sample space. In contrast, Figure 5.12(b), using the constraints #4

of Table 5.3, illustrates the result when the constrained sample space becomes larger.

Because of the characteristics of the random-cyclic distribution, the trend of results

is similar. That is, it generates t unique stimuli within t cycles in each permutation

(a complete iteration over all the compliant values) regardless of the constraints.

5.7.3 The evaluation of area cost for random-cyclic stimuli

generation

The comparison with generators without distribution control

The area cost (exclusive of RAM) of the proposed on-chip generator presented in

Section 5.4 is estimated according to the maximum length of the supported stimuli

124

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

#1 #2 #3 #4 #5 #6
0

20

40

60

80

100

The test cases with different constraints

T
o

ta
l

si
ze

 o
f

co
m

p
ac

te
d

 c
u

b
es

 (
K

B
)

Method (a)

Method (b)

Figure 5.11: The volume of on-chip data (compacted cubes) for the method (a)
presented in Section 4.2 and the method (b) presented in Section 5.4.

(m), as shown in Figure 5.13. The comparison is against the generators without

distribution control, which were presented in the previous chapter. Note the results

of the generator from Section 4.2 are plotted only for intuitive comparison, because

its strategy for supporting longer stimuli (m > 8) is by consuming more cycles for

decoding a cube, whereas the other methods quoted in Figure 5.13 enlarge the de-

coding hardware in order to process any cube within one cycle. As it can be noticed,

the proposed generator only uses a low amount of extra hardware to implement the

non-repetitive stimuli generation, when compared to the method from Section 4.3

that also processes one cube per clock cycle.

The critical path delay comparisons against the generator in Section 4.3 are given

in Figure 5.14. The delay of the CRSG without pipeline stages is affected by the

feedback paths from the decoding logic through vector assemblers to the stimulus

output. Nonetheless, the data path can be partitioned using pipeline registers without

any impact on the throughput. Hence the results for the 1-step pipelined generator

are also given in the two figures, which confirm that the pipelining decreases the delay.

125

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
7

0

1

2

3

4
x 10

4

The number of generated stimuli

T
h
e

n
u
m

b
er

 o
f

u
n
iq

u
e

st
im

u
li

Method (a)

Method (b)

(a) The result for the constraint x ≥ y where x and y are 8-bit unsigned integers.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
8

0

0.5

1

1.5

2
x 10

6

The number of generated stimuli

T
h
e

n
u
m

b
er

 o
f

u
n
iq

u
e

st
im

u
li

Method (a)

Method (b)

(b) The result for the constraints #4 shown in Table 5.3.

Figure 5.12: Assessing the repetition in the generated stimuli for the method (a) in
Section 5.4 and the method (b) in Section 4.3.

126

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3
x 10

4

The length of the stimulus per cycle (m bits)

N
A

N
D

2
 e

q
u
iv

al
en

t

Method (a), non−pipelined

Method (a), pipelined

Method (b)

Method (c)

Figure 5.13: The hardware cost (exclusive of RAM) according to the length of sup-
ported stimuli for the method (a) (pipelined and non-pipelined) in Section 5.4, the
method (b) in Section 4.3 and (c) in Section 4.2.

The comparison without the cube compaction

The on-chip generator, as presented in Section 5.5, is designed without cube decoding

logic. Therefore it does not recognize compact binary cubes (in this case the area cost

is reduced at the expense of more data to be stored on-chip). As shown in Figure 5.15,

the area cost of this generator is against the area for the generator presented in

Section 4.3. Note, the original generator presented in Section 4.3 also takes the area

of on-chip decoding logic into account. In order to perform a fair comparison that

could objectively show the extra cost for supporting on-chip distribution control, the

results of the generator from Section 4.3 are estimated by excluding the area cost of the

decoding logic. The method for random-cyclic distributed stimuli does require more

hardware, and as the stimulus per cycle increases, the vector assembler dominates

that area more than the other components (cube scheduler and the dynamic LFSR).

In terms of on-chip memory, the method presented in Section 5.5 that also supports

cube interleaving uses an additional on-chip RAM for storing the context of each cube,

127

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

The length of the stimulus per cycle (m bits)

C
ri

ti
ca

l
p
at

h
 d

el
ay

 (
n
s)

Method (a), non−pipelined

Method (a), pipelined

Method (b)

Figure 5.14: The critical path delay according to the length of supported stimuli for
the method (a) (pipelined and non-pipelined) in Section 5.4 and the method (b) in
Section 4.3. The data is collected from static timing analysis with a CMOS 90nm
standard cell library.

as they get swapped during the scheduling process. Each context item contains two

fields including k bits for the LFSR state and l bits to keep track how many patterns

have been expanded from the corresponding cube (note, the maximum value is l will

not exceed k). Also, assuming there are c cubes (and the byte alignment for each

context item), the capacity of the context RAM is therefore equal to c× d(k + l)/8e.

5.7.4 The evaluation of the solution for supporting weighted

distribution

The solution for generating stimuli according to the constraints with weighted dis-

tributions is evaluated, including the quality of the distribution during the dynamic

generation process. The two-level addressing logic for scheduling multiple cube sets

is implemented based on the generator for uniformly-distributed stimuli generation,

as shown in Figure 5.6. The generator is configured to generate values according to

128

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

The length of the stimulus per cycle (bit)

N
A

N
D

2
 e

q
u
iv

al
en

t

Method (a)

Method (b) w/o decompression logic

Figure 5.15: The hardware cost (exclusive of RAMs) of the generator from the method
(a) in Section 5.5 and the generator without decoding logic from the method (b) in
Section 4.3 according to the length of stimulus per cycle.

the weighted distributions of each range. Figure 5.16 illustrates the ratio of values

that belong to the two ranges according to the constraint from Code 2.2. It shows

that actual ratio of values in each range converges at the expected weight (0.6 and

0.4 respectively).

Figure 5.17 illustrates the area results by varying the number of supported cube

sets. Area increases linearly, because the two-level addressing logic needs one more

set of addressing registers in order to schedule an additional cube set.

129

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

0 1 2 3 4 5

x 10
4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

The number of generated stimuli

T
h
e

ra
ti

o
 f

o
r

ea
ch

 r
an

g
e

Values in [10,999]

Values in [1000,2000]

Figure 5.16: The ratio of values according to the constraint in Code 2.2 during on-chip
generation.

2 3 4 5 6 7
2000

4000

6000

8000

10000

12000

14000

The maximum number of cube sets supported by the addressing logic

N
A

N
D

2
 e

q
u

iv
al

en
t

m=16

m=32

m=64

Figure 5.17: The area cost of the generator according to the number of supported
cube sets. (The length of stimuli is m bits.)

130

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

5.8 Summary

In this chapter, solutions for on-chip constrained-random stimuli generation with

distribution control have been presented. Special emphasis has been placed on the

random-cyclic feature from SystemVerilog. A new algorithm, which re-shuffles the

cubes to avoid distinct cubes to produce the same functionally-compliant patterns, has

been presented. Using two new circuit blocks (dynamic LFSR and vector assembler)

can avoid repetition of patterns causes by the same cube, thus ensuring that random-

cyclic patterns (which are uniformly distributed) can be applied in real-time. Extra

features have been added to avoid consecutive patterns to be constrained by the same

cube, as well as to support weighted distributions during on-chip stimuli generation.

131

Chapter 6

Conclusion

Post-silicon validation is the critical step in the implementation flow of integrated

circuits for exposing the subtle design errors that have escaped to the silicon pro-

totypes. Its effectiveness is conditioned by in-system application of a large volume

of functionally-compliant stimuli for extensive periods of time that can range from

seconds to hours or even days. This is achieved by expanding on-the-fly random-

ized stimuli, which are subjected to user-programmable constraints, and monitoring

the behaviour of the design under validation to determine if any design properties

have been violated. This dissertation has focused on the controllability aspects of

post-silicon validation and it has studied how to efficiently and cost-effectively apply

large volumes of constrained-random stimuli in-system. The proposed solutions are

programmable, thus enabling the users to update the constraints on the randomized

stimuli at validation time.

In this chapter the main contributions of the work from this dissertation are

summarized, followed by the suggestions for future work.

132

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

6.1 Summary of the contributions

In order to enable the reuse of the verification content from the pre-silicon stage in

a post-silicon validation environment, several systematic methods based on content

preparation and in-system configuration of on-chip signal generation circuitry have

been proposed.

Central to the proposed methods is a cube-based representation of constraints

expressed in a design and verification language, such as SystemVerilog. These cubes

are used as masks that force pseudo-random sequences to map onto stimuli that are

consistent with the constraints. The volume of data to be downloaded in-system

could be further reduced by compacting cubes at design time and expanding them at

validation time.

A method for designing programmable constrained-random signal generators has

been presented. These generators can be placed on-chip and are parameterizable at

design time and can be used to generate randomized stimuli in-system based on the

configuration data derived from user-defined constraints. Both logic and sequential

constraints can be supported and stimuli can be generated as fast as every clock cycle.

In order to support the control of the distribution of the constrained-random

stimuli, a novel method for preparing cubes, as well as new circuit blocks for on-

chip stimuli generation, have been developed. This method enables the generation

of uniformly distributed, more specifically random-cyclic, stimuli within the user-

constrained space. The results show that the process of cube preparation is fast and

the area of the on-chip hardware is scalable. This method has been further expanded

to support constraints that contain weighted distributions.

The features of the proposed solutions are summarized in Table 6.1.

133

P
h
.D

.
T

h
esis

-
X

iaob
in

g
S
h
i

M
cM

aster
-

E
lectrical

&
C

om
p
u
ter

E
n
gin

eerin
g

Table 6.1: The summary of the proposed solutions for on-chip constrained-random stimuli generation.

Requirements Functional constraints Control of distribution

Solutions for Logic constraints Sequential
constraints

Uniform dis-
tribution

Interleaving
cubes

Weighted distributions

Presented in Section 4.2 Section 4.3 Section 5.4 Section 5.5 Section 5.6

Features1

Logic constraints

Sequential
constraints

Uniformly/Random-cyclic
distributed variables

Constraints with
weighted distributions

See to the part of
SystemVerilog

Functional op-
erators, e.g.,
+, >, if -else;
function2

task2, rand-
sequence

rand/randc dist, sovle-before3

1 The ability to change (reprogram) the constraints, as done during pre-silicon verification in SystemVerilog, is
natively supported via dynamically reloading cubes to the on-chip generator.
2 Restrictions apply according to the SystemVerilog standard (IEE, 2013a).
3 Only for the constraints with solve-before that can be rewritten to constraints with value ranges with
weighted distributions.

134

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

6.2 Suggestions for future work

The contributions from this dissertation have provided a step forward to bridge the

gap between pre-silicon verification and post-silicon validation. To further improve

the productivity, more tasks during the post-silicon validation stage will require sys-

tematic and automated methods.

Unlike during pre-silicon verification, where each block can have its own signal

generator, in a post-silicon validation environment it is important to be conscious of

the amount of hardware resources that are placed on-chip. Considering that modern

system-on-a-chip devices contain tens to even hundreds of cores, it is worth investi-

gating how to share the on-chip constrained-random signal generators across multiple

cores. What and when can be shared is influenced by the parameters of the inputs

for each core (e.g., bitwidth or throughput), as well as by the system interactions

between cores (i.e., which blocks must be validated concurrently). Regarding the

on-chip area cost, the interconnection between the shared CRSG and multiple blocks

that are validated will not be negligible, and therefore it must be taken into consid-

eration during place and route. If the wire delays become excessive, pipelining might

be necessary to ensure that functional clock speeds will be satisfied. Performing a

system-level analysis to decide where to place the signal generators, and how to share

them across multiple validation sessions, is a topic worth further consideration.

The systematic way of offering in-system programmability remains an open re-

search top which is worthy of further investigation. The methods for cube manip-

ulation in the dissertation integrate a series of customized algorithms, as well as

third-party tools, e.g., two-level minimization tool, hardware synthesis software and

a BDD package, in order to achieve the goal of cube preparation. All these methods

135

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

are practically usable. Nevertheless, the performance can be improved. For instance,

if cube overlapping can be considered and solved at the beginning of cube generation

process, the cube rectification process could be eliminated.

While the work from this dissertation has focused exclusively on the controllabil-

ity aspects of post-silicon validation, a tighter interaction to the observability blocks

is worth considering in the future. For example, as the validation process progresses,

the on-chip monitors can provide “feedback” information to the on-chip constrained-

random signal generators to drive the circuit state into corner cases that have not be

sufficiently exercised. Also, if the system failures occur at validation time, by using

the in-system programmability feature enabled by the work from this dissertation,

the user can bias the stimuli in order to help narrow down the root cause of failure.

Therefore, another interesting line for future research is to analyze the failing infor-

mation off-chip and automatically suggest new sets of constraints (which can even be

expressed directly as cubes) that can confirm or deny a potential cause of failure.

In summary, it is worth articulating that both pre-silicon verification and man-

ufacturing test have matured into engineering disciplines that rely on systematic

methods based on strong theoretical foundations. Post-silicon validation has tradi-

tionally relied on ad-hoc methods, with limited support from design automation tools.

The lessons learned from the work presented in this dissertation add to the body of

knowledge that can improve the productivity of the post-silicon validation tasks and

enable more automated solutions in the foreseeable future.

136

Appendix A

The switching functions for the

dynamic LFSR

The switch functions listed below are generated according to the characteristic poly-

nomial table from (Živkovic, 1994). Only the on-set is shown in the table. For

example, the entry

c8: 8, 26, 27

indicates that c8 = 1 ⇐⇒ ξ ∈ {8, 26, 27}.

Table A.1: The on-set of switching functions for the 64-bit dynamic LFSR.

c1 : 1, 2, 3, 4, 6, 7, 8, 13, 14, 15, 19, 22,

24, 26, 27, 30, 32, 34, 38, 42, 43, 44,

45, 46, 48, 50, 51, 53, 54, 56, 59, 61,

62, 63, 64

c2 : 2, 5, 11, 1621, 35, 37, 40

c3 : 3, 10, 12, 13, 16, 17, 20, 24, 25, 28,

31, 41, 45, 52, 64

137

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

c4 : 4, 9, 13, 24, 39, 45, 64

c5 : 5, 8, 16, 19, 23, 38, 43, 47

c6 : 6, 8, 19, 38, 43

c7 : 7, 12, 18, 26, 27, 57

c8 : 8, 26, 27

c9 : 9, 49

c10 : 10, 37

c11 : 11, 14, 36

c12 : 12, 14, 37

c13 : 13, 33

c14 : 14, 34

c15 : 15, 30, 34, 51, 53, 61

c16 : 16, 30, 51, 53, 61

c17 : 17

c18 : 18

c19 : 19, 40, 58

c20 : 20, 46

c21 : 21, 40, 46, 56, 59

c22 : 22, 42, 56, 59

c23 : 23, 42

c24 : 24, 55

c25 : 25

c26 : 26, 44, 50

c27 : 27, 32, 44, 48, 50

c28 : 28, 32, 48

c29 : 29

c30 : 30

c31 : 31

c32 : 32

c33 : 33

c34 : 34

c35 : 35

c36 : 36, 54

c37 : 37, 54

c38 : 38

c39 : 39

c40 : 40

c41 : 41

c42 : 42

c43 : 43

c44 : 44

c45 : 45

c46 : 46

c47 : 47

c48 : 48

c49 : 49

c50 : 50

c51 : 51

c52 : 52

c53 : 53

c54 : 54

c55 : 55

c56 : 56, 62

c57 : 57, 62

c58 : 58

c59 : 59

c60 : 60

c61 : 61

c62 : 62

c63 : 63

c64 : 64

138

Bibliography

(2006). IEEE standard for Verilog hardware description language. IEEE Std 1364-

2005 (Revision of IEEE Std 1364-2001), pages 1–560.

(2008). IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70.

(2013a). IEEE standard for SystemVerilog–unified hardware design, specification,

and verification language. IEEE Std 1800-2012 (Revision of IEEE Std 1800-2009),

pages 1–1315.

(2013b). IEEE standard for test access port and boundary-scan architecture. IEEE

Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pages 1–444.

Aagaard, M. D., Jones, R. B., and Serger, C.-J. H. (1999). Formal verification using

parametric representations of boolean constraints. In Proc. ACM/IEEE Design

Automation Conference (DAC), pages 402–407. ACM.

Abramovici, M. (2008). In-system silicon validation and debug. IEEE Transactions

on Design & Test of Computers, 25(3), 216–223.

Adir, A., Almog, E., Fournier, L., Marcus, E., Rimon, M., Vinov, M., and Ziv,

A. (2004). Genesys-pro: innovations in test program generation for functional

139

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

processor verification. IEEE Transactions on Design & Test of Computers, 21(2),

84–93.

Adir, A., Copty, S., Landa, S., Nahir, A., Shurek, G., Ziv, A., Meissner, C., and

Schumann, J. (2011). A unified methodology for pre-silicon verification and post-

silicon validation. In Proc. Design, Automation & Test in Europe Conference &

Exhibition (DATE), pages 1–6.

Ajanovic, J. (2009). PCI express 3.0 overview. In Proc. Hot Chisp: A Symposium on

High Performance Chips.

Akers, S. B. (1978). Binary decision diagrams. IEEE Transactions on Computers,

27(6), 509–516.

Anis, E. and Nicolici, N. (2007). On using lossless compression of debug data in

embedded logic analysis. In Proc. IEEE International Test Conference (ITC),

pages 1–10. Paper 18.3.

Bardell, P., McAnney, W., and Savir, J. (1987). Built-in Test for VLSI: Pseudorandom

Techniques. Wiley-Interscience publication. Wiley.

Barnhart, C., Brunkhorst, V., Distler, F., Farnsworth, O., Keller, B., and Koene-

mann, B. (2001). OPMISR: the foundation for compressed ATPG vectors. In Proc.

IEEE International Test Conference (ITC), pages 748–757.

Bentley, B. (2001). Validating the Intel Pentium 4 microprocessor. In Proc.

ACM/IEEE Design Automation Conference (DAC), pages 244–248.

Bergeron, J., Cerny, E., Hunter, A., and Nightingale, A. (2006). Verification Method-

ology Manual for SystemVerilog. Springer US.

140

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Boule, M., Chenard, J.-S., and Zilic, Z. (2007). Debug enhancements in assertion-

checker generation. IET Computers Digital Techniques, 1(6), 669–677.

Bryant, R. (1986). Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers, C-35(8), 677–691.

Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L. (1990). Symbolic model

checking: 1020 states and beyond. In Proc. IEEE Fifth Annual Symposium on Logic

in Computer Science, pages 428–439.

Büttner, W. (1988). Unification in finite algebras is unitary(?). In E. Lusk and

R. Overbeek, editors, 9th International Conference on Automated Deduction, vol-

ume 310 of Lecture Notes in Computer Science, pages 368–377. Springer Berlin

Heidelberg.

Cerny, E., Dudani, S., Havlicek, J., and Korchemny, D. (2014). SVA: The Power of

Assertions in SystemVerilog. Springer International Publishing.

Chang, K.-H., Bertacco, V., and Markov, I. (2007). Simulation-based bug trace

minimization with BMC-based refinement. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 26(1), 152–165.

Cho, H., Hachtel, G., and Somenzi, F. (1993). Redundancy identification/removal

and test generation for sequential circuits using implicit state enumeration. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(7),

935–945.

Clarke, E., Grumberg, O., and Peled, D. (1999). Model Checking. MIT Press.

141

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proc. the Third

Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New

York, NY, USA. ACM.

Coudert, O. (1994). Two-level logic minimization: An overview. Integr. VLSI J.,

17(2), 97–140.

Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for theorem-

proving. Communications of the ACM, 5(7), 394–397.

Fallah, F., Devadas, S., and Keutzer, K. (2001). Functional vector generation for HDL

models using linear programming and Boolean satisfiability. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 20(8), 994–1002.

Foster, H., Krolnik, A., and Lacey, D. (2012). Assertion-Based Design. Springer US.

Fujita, M., Tamiya, Y., Kukimoto, Y., and Chen, K.-C. (1991). Application of

Boolean unification to combinational logic synthesis. In Proc. IEEE/ACM In-

ternational Conference on Computer-Aided Design (ICCAD), pages 510–513.

Gharehbaghi, A. and Fujita, M. (2011). Formal verification guided automatic design

error diagnosis and correction of complex processors. In IEEE International High

Level Design Validation and Test Workshop (HLDVT), pages 121–127.

Gherman, V., Wunderlich, H., Vranken, H., Hapke, F., Wittke, M., and Garbers,

M. (2004). Efficient pattern mapping for deterministic logic BIST. In Proc. IEEE

International Test Conference (ITC), pages 48–56.

Goodenough, J. and Aitken, R. (2010). Post-silicon is too late avoiding the $50

142

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

million paperweight starts with validated designs. In Proc. ACM/IEEE Design

Automation Conference (DAC), pages 8–11.

Gopal, M. (1993). Modern Control System Theory. Wiley.

Hopkins, A. and McDonald-Maier, K. (2006). Debug support for complex systems

on-chip: a review. IEE Proc. Computers and Digital Techniques, 153(4), 197–207.

Jaffar, J. and Maher, M. J. (1994). Constraint logic programming: A survey. The

journal of logic programming, 19, 503–581.

Keshava, J., Hakim, N., and Prudvi, C. (2010). Post-silicon validation challenges:

How EDA and academia can help. In Proc. ACM/IEEE Design Automation Con-

ference (DAC), pages 3–7.

Kilby, J. S. C. (2001). Turning potential into realities: The invention of the integrated

circuit (Nobel lecture). Chemphyschem: a European journal of chemical physics and

physical chemistry, 2(8-9), 482–489.

Kinsman, A. B., Ko, H. F., and Nicolici, N. (2012). In-system constrained-random

stimuli generation for post-silicon validation. In Proc. IEEE International Test

Conference (ITC), pages 1–10. Paper 3.3.

Kinsman, A. B., Ko, H. F., and Nicolici, N. (2013). Hardware-efficient on-chip gener-

ation of time-extensive constrained-random sequences for in-system validation. In

Proc. ACM/IEEE Design Automation Conference (DAC), pages 1–6. Paper 39.6.

Kitchen, N. and Kuehlmann, A. (2007). Stimulus generation for constrained random

simulation. In Proc. IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pages 258–265.

143

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Ko, H. and Nicolici, N. (2009). Resource-efficient programmable trigger units for

post-silicon validation. In Proc. IEEE European Test Symposium (ETS), pages

17–22.

Ko, H., Kinsman, A., and Nicolici, N. (2008). Distributed embedded logic analysis

for post-silicon validation of SOCs. In Proc. IEEE International Test Conference

(ITC), pages 1–10.

Köenemann, B. (1991). LFSR-coded test patterns for scan designs. In Proc. IEEE

European Test Conference (ETC), pages 237–242.

Kukula, J. H. and Shiple, T. R. (2000). Building circuits from relations. In Proc.

International Conference on Computer Aided Verification, CAV ’00, pages 113–123,

London, UK, UK. Springer-Verlag.

Lee, C. Y. (1959). Representation of switching circuits by binary-decision programs.

Bell System Technical Journal, 38(4), 985–999.

Marques Silva, J. and Sakallah, K. (1996). GRASP-a new search algorithm for satisfi-

ability. In Proc. IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pages 220–227.

Martin, U. and Nipkow, T. (1989). Boolean unification - the story so far. Journal of

Symbolic Computation, 7(3-4), 275–293.

McGeer, P., Sanghavi, J., Brayton, R., and Sangiovanni-Vicentelli, A. (1993).

Espresso-signature: A new exact minimizer for logic functions. IEEE Transactions

on VLSI Systems, 1(4), 432–440.

Mentor Graphics, I. (2015). ModelSim ASIC and FPGA design.

144

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Minato, S. (1996). Binary Decision Diagrams and Applications for VLSI CAD.

Kluwer international series in engineering and computer science: VLSI, computer

architecture, and digital signal processing. Springer.

Mitra, S., Seshia, S., and Nicolici, N. (2010). Post-silicon validation opportunities,

challenges and recent advances. In Proc. ACM/IEEE Design Automation Confer-

ence (DAC), pages 12–17.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. (2001).

Chaff: Engineering an efficient SAT solver. In Proc. Design Automation Conference

(DAC), pages 530–535. ACM.

Nahir, A., Ziv, A., Abramovici, M., Camilleri, A., Galivanche, R., Bentley, B., Foster,

H., Hu, A., Bertacco, V., and Kapoor, S. (2010). Bridging pre-silicon verification

and post-silicon validation. In Proc. ACM/IEEE Design Automation Conference

(DAC), pages 94–95.

Nicolici, N. (2012). On-chip stimuli generation for post-silicon validation. In IEEE

High Level Design Validation and Test Workshop (HLDVT), pages 108–109.

Park, S.-B., Hong, T., and Mitra, S. (2009). Post-silicon bug localization in processors

using instruction footprint recording and analysis (IFRA). IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 28(10), 1545–1558.

Rajski, J., Tyszer, J., Kassab, M., Mukherjee, N., Thompson, R., Tsai, K.-H., Her-

twig, A., Tamarapalli, N., Mrugalski, G., Eide, G., and Qian, J. (2002). Embedded

deterministic test for low cost manufacturing test. In Proc. IEEE International

Test Conference (ITC), pages 301–310.

145

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Sadasivam, S., Alapati, S., and Mallikarjunan, V. (2012). Test generation approach

for post-silicon validation of high end microprocessor. In Euromicro Conference on

Digital System Design (DSD), pages 830–836.

Schliebusch, O., Meyr, H., and Leupers, R. (2010). Optimized ASIP Synthesis from

Architecture Description Language Models. Springer Netherlands.

Sivaraman, M. and Strojwas, A. (2012). A Unified Approach for Timing Verification

and Delay Fault Testing. Springer.

Smith, M. (1997). Application Specific Integrated Circuits. Addison-Wesley VLSI

systems series. Addison-Wesley.

Somenzi, F. (1999). Binary decision diagrams. In Calculational System Design,

volume 173 of NATO Science Series F: Computer and Systems Sciences, pages

303–366. IOS Press.

Somenzi, F. (2012). CUDD: CU decision diagram package.

Spear, C. and Tumbush, G. (2012). SystemVerilog for Verification: A Guide to

Learning the Testbench Language Features. Springer.

Stroud, C. (2002). A Designer’s Guide to Built-in Self-Test. Frontiers in Electronic

Testing. Springer.

Synopsys, I. (2015). VCS - functional verification solution.

Synopsys, I. (2016). Design Compiler - RTL synthesis and test.

146

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Tang, S. and Xu, Q. (2008). In-band cross-trigger event transmission for transaction-

based debug. In Proc. Design, Automation and Test in Europe (DATE), pages

414–419.

Touba, N. and McCluskey, E. (2001). Bit-fixing in pseudorandom sequences for scan

BIST. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 20(4), 545–555.

Vermeulen, B., Waayers, T., and Goel, S. (2002). Core-based scan architecture for

silicon debug. In Proc. IEEE International Test Conference (ITC), pages 638–647.

Živkovic, M. (1994). A table of primitive binary polynomials. Mathematics of Com-

putation, 62(205), 385–386.

Wagner, I. and Bertacco, V. (2010). Post-Silicon and Runtime Verification for Modern

Processors. SpringerLink : Bücher. Springer US.

Wang, L.-T., Wu, C., and Wen, X. (2006). VLSI Test Principles and Architectures:

Design for Testability. Systems on Silicon. Elsevier Science.

Wang, Y.-K., Even, R., Kristensen, T., Tandberg, and Jesup, R. (2011). RTP payload

format for H.264 video. RFC 6184.

Welp, T., Kitchen, N., and Kuehlmann, A. (2012). Hardware acceleration for con-

straint solving for random simulation. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 31(5), 779–789.

Weste, N. and Harris, D. (2011). CMOS VLSI Design: A Circuits and Systems

Perspective. Addison Wesley.

147

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Wiemann, A. (2007). Standardized Functional Verification. Springer.

Wohl, P., Waicukauski, J., Patel, S., and Amin, M. (2003). X-tolerant compres-

sion and application of scan-atpg patterns in a BIST architecture. In Proc. IEEE

International Test Conference (ITC), volume 1, pages 727–736.

Wolf, W. (2004). FPGA-Based System Design. Pearson Education.

Wu, Y., Thomson, S., Mutcher, D., and Hall, E. (2011). Built-in functional tests for

silicon validation and system integration of Telecom SoC designs. IEEE Transac-

tions on VLSI Systems, 19(4), 629–637.

Yuan, J., Aziz, A., Pixley, C., and Albin, K. (2004). Simplifying Boolean constraint

solving for random simulation-vector generation. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 23(3), 412–420.

Yuan, J., Pixley, C., and Aziz, A. (2010). Constraint-Based Verification. Springer

US.

148

Index

Binary decision diagram (BDD), 25

Bit pair, 46

compatible bit pair, 46

mutually exclusive bit pair, 46

Overlapped bit pair, 46

Constraint, 30, 37

logic constraint, 31, 37, 62

sequential constraint, 31, 37, 39

CRSG

cube memory, 66

decoding logic, 69, 105

decoding parallelism, 69

dynamic LFSR, 98, 105

vector assembler, 98, 105, 109

Cube, 35, 44

X function, 46

ξ function, 46

binary cube, 56

compact binary cube (CBC), 48, 60,

62

completeness property, 45

cube weight w, 47

non-overlapped cube, 98

sufficiency property, 45

Cube compaction, 62

compaction for logic constraints, 62

loose-coupling compaction for sequen-

tial constraints, 73

mixed segment, 64

run-length segment, 64

Cube pair, 46

mutually exclusive cube pair, 47

overlapped cube pair, 47

sub-cube, 47

Linear Feedback Shift Register (LFSR),

20, 34, 107

Manufacturing test, 3, 8

149

Ph.D. Thesis - Xiaobing Shi McMaster - Electrical & Computer Engineering

Post-silicon validation, 3, 10

Pre-silicon verification, 3

Random-cyclic, 30, 97

Set of cubes, 44

X-density ρ, 47

SystemVerilog, 29

Weighted distribution, 31, 117

150

	Abstract
	Acknowledgements
	List of Abbreviations
	List of Tables
	List of Figures
	List of Codes
	Introduction
	IC design and verification tasks
	Pre-silicon verification
	Simulation-based verification
	Formal verification
	Physical verification

	Manufacturing test
	Post-silicon validation
	The contribution of this dissertation
	The structure of the dissertation

	Background and related work
	A brief review of pre-silicon verification methodologies
	Controlling the state of the circuit
	Observing the state of the circuit

	State-of-the-art for post-silicon stage
	Stimuli generation
	Error detection
	Root cause analysis

	Describing constraints with equivalent models
	Constraint solving for pre-silicon verification
	Capturing constraints using SystemVerilog
	Hardware-oriented representation for constraints

	Case studies using SystemVerilog constraints
	Logic constraints in the same clock cycle
	Sequential constraints over consecutive clock cycles

	Summary

	Representation of constraints as a set of cubes
	The concept of a cube
	Formal notations for cubes and their characteristics
	The characteristics of a cube
	The characteristics of a cube pair
	The characteristics of a set of cubes

	Converting constraints to cubes
	Converting constraints to cubes using customized algorithms
	Converting constraints to cubes using hardware synthesis and BDDs
	Hardware-oriented post-processing of cubes

	Summary

	Stimuli generation for functional constraints using compact binary cubes
	The overview of the on-chip stimuli generator
	The solution for logic constraints
	Content processing of cubes with compaction
	On-chip CRSG architecture
	The distribution of stimuli based on the architecture

	The solution for sequential constraints
	Cubes with timing information
	Loose-coupling compaction for cubes
	On-chip CRSG architecture

	Experimental results
	The hardware evaluation of the generator for logic constraints
	The hardware evaluation of the generator for sequential constraints
	The evaluation on the data volume of the cube set
	The evaluation of stimuli distribution

	Summary

	Controlling the distribution of the constrained-random stimuli
	The motivation for controlling the distribution during stimuli generation
	Causes of stimuli repetition
	Generate non-overlapped cubes
	The on-chip generator for random-cyclic stimuli generation
	Decode cubes on-chip
	Generate -bit primitive sequences
	Assemble compliant stimuli

	Interleaving cubes during on-chip generation
	The analysis of the order of cube processing
	On-chip cube scheduling

	Supporting weighted distributions
	Cube preparation for weighted ranges
	On-chip scheduling of weighted sets of cubes

	Experimental results
	The evaluation of the algorithm for cube rectification
	The evaluation of the random-cyclic distribution
	The evaluation of area cost for random-cyclic stimuli generation
	The evaluation of the solution for supporting weighted distribution

	Summary

	Conclusion
	Summary of the contributions
	Suggestions for future work

	Appendix The switching functions for the dynamic LFSR
	Bibliography
	Index

