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Abstract—
This paper presents a novel Bayesian solution to

the difficult problem of joint detection and estima-
tion of sources impinging on a single array of sensors
in spatially coloured noise with arbitrary covariance
structure. Robustness to the noise covariance struc-
ture is achieved by integrating out the unknown co-
variance matrix in an appropriate posterior distri-
bution. The proposed procedure uses the Reversible
Jump Markov Chain Monte Carlo method to extract
the desired model order and direction of arrival pa-
rameters.

We show that the determination of model order is
consistent provided a particular hyperparameter is
within a specified range. Simulation results support
the effectiveness of the method.

I. Introduction

Array signal processing has found important ap-
plications in diverse areas such as radar, sonar, com-
munications, and seismic exploration. The array
processing problem has to do with 1) the detection
of the number of discrete signal components, and
2) estimation of the angles of arrival of the signals
incident onto arrays of sensors. This detection and
estimation problem is by now mature [1]-[12] etc.
However, there is still considerable room for im-
provement beyond the current state of the art in this
area. For example, current algorithms commonly
make assumptions regarding the characteristics of
the noise field and the incident signals; in particular,
that the background noise is spatially white [1][2][3]
or of known covariance. Further, in the typical sce-
nario, the determination of model order (detection)
and the estimation of desired signal parameters are
executed independently rather than jointly. Array
signal processing methods which can accommodate
the unknown coloured noise case are desirable, since
they offer improved performance in coloured noise
over methods developed assuming white noise. Fur-
ther, the coloured background noise case is often
encountered in the practical scenario.

The direction of arrival (DOA) problem in the

case where the noise has unknown covariance has
been addressed in [4][5][6]. In these papers, the
model order is assumed known, and the associated
detection problem is not addressed. Joint detection
and estimation has been addressed in [2] and [3]
under the white noise assumption, and later gener-
alized in [7] to the autoregressive noise case. De-
termination of model order for the unknown arbi-
trarily spatially coloured noise case has long been
regarded as a difficult problem. Established meth-
ods, e.g., using information theoretic criteria [8][9],
have been developed under the assumption of white
noise, but exhibit considerable sensitivity to the
whiteness assumption and suffer significant perfor-
mance loss in the presence of coloured noise [11].
Methods for detection in unknown coloured noise
have been proposed [10][11][12], but these tech-
niques require in effect two separate sensor arrays
where the signal is assumed correlated between the
arrays and the noise uncorrelated. This assumption
places restrictions on the geometry of the configu-
ration and therefore these methods may have lim-
ited use in practice. In [13], this problem was ad-
dressed from the information theoretic stand point,
and a solution to the joint detection and estimation
problem in arbitrary unknown noise is proposed.
The method however involves the minimization of a
highly nonlinear objective function and is therefore
prone to being trapped in local minima.

In this paper, we propose a new array process-
ing technique [14][15] based on MCMC methods, for
joint detection and estimation of sources in arbitrar-
ily coloured noise, using a single sensor array. The
proposed method can therefore adopt unrestricted
array geometries. With this, and the fact that no
assumptions are made on the noise covariance struc-
ture, the proposed method overcomes many of the
difficulties associated with previous methods. The
technique proposed in this paper is an extension of
the method of [2] from the white noise case to the
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coloured noise case.

The use of MCMC methods in array processing
is advantageous for several reasons. First, by virtue
of the reversible jump Metropolis Hastings algorithm
[16], the MCMC techniques afford a joint detection
and estimation procedure, which offers improved
performance over each process being implemented
independently. Second, the performance of the de-
tection and estimation process for a given set of ob-
served data can be readily estimated. Finally, un-
like competing methods, they offer convergence to
the global optimum with arbitrarily high probabil-
ity, provided the number of samples is large enough.

Notation: In this paper, bold lower case sym-
bols denote a vector, while bold upper-case quanti-
ties represent matrices. Superscript T and H denote
the transpose and Hermitian transpose operations
respectively. A subscript o, e.g., φo, denotes the
true value of the associated variable. The quantity
N(µ,Σ) represents a normal distribution with mean
µ and covariance Σ, while U(a, b] represents a uni-
form distribution over the open interval (a, b]. The
symbol ∼ denotes “distributed as”; e.g., x ∼ U(·,·]
means the random variable x is distributed uni-
formly over some interval.

The problem formulation is presented in Section
II, and in Section III, the desired marginal posterior
distribution is developed. We perform the integra-
tion with respect to the unknown spatial covariance
matrix by projecting the observed data onto the
noise subspace N . After assigning a Jeffreys’ prior,
the resulting posterior may then be integrated by
comparison to a complex Wishart distribution. In
Section IV, we apply the reversible jump MCMC
algorithm to sample the posterior distribution and
so obtain joint estimates of the desired parame-
ters. In section V we discuss conditions for con-
sistency of the model order estimate. Simulation
results demonstrating the performance of the pro-
posed method are given in Section VI, and the con-
clusions are presented in Section VII.

II. Problem Formulation

The signal model we consider consists of a com-
plex data vector y(n) ∈ CM which represents the
data received by a linear array of M sensors at the
nth snapshot. The data vector is composed of in-
cident narrow-band plane wave signals each at cen-
tre frequency ω0 from ko distinct sources embedded
in Gaussian noise. The received vector at the nth

snapshot can be written as

y(n) = S(φ)

∣∣∣∣∣
φ=φo

a(n) + ν(n),

n = 1, . . . , N,

(1)

where N is the number of observed snapshots. In
particular, when the array elements are uniformly
spaced, we assume d0 ≤ πv

ω0
, where d0 is the dis-

tance between the sensors, and v is the velocity of
propagation. Each of these incident plane-wave sig-
nals impinges on the array of sensors at an angle
θk, k = 1, . . . , ko, to the normal of the array. Then
S(φ) is the M×ko matrix, the kth column of which
is

s(φk) = [1, ejφk , ej2φk , . . . , ej(M−1)φk ]T ,

k = 1, . . . , ko,
(2)

with
φk = ω0d0 sin(θk)/v. (3)

The quantity a(n) ∈ Cko represents the complex
amplitudes of the incident signals at the nth snap-
shot. We assume the amplitudes are iid nor-
mally distributed between snapshots, with unknown
and arbitrary means and covariance. The spa-
tially coloured noise vector ν(n) is an iid normally
distributed noise vector distributed according to
N(0,Σ), where Σ ∈ CM×M is an unknown and ar-
bitrary covariance matrix. The signal and noise are
assumed uncorrelated such that

E(aHSHν) = 0. (4)

For a hypothesized number of signals k, we des-
ignate by S(k) the signal subspace spanned by the
vectors [s(φ1), . . . , s(φk)]. The (M−k)-dimensional
orthogonal complement noise subspace of S(k) is
denoted by N (k). In the following discussion, we
simplify notation by writing S and N instead of
S(k) and N (k) respectively.

In this paper, we jointly estimate ko and φo us-
ing MCMC techniques. Determination of ko using
MCMC methods involves sampling a posterior dis-
tribution p(k,φ|y) of varying model order. This
consideration requires the use of the reversible jump
MCMC method [16], which is treated in further de-
tail in Sect. 4. We treat the unknown quantities
a(n), n = 1, . . . , N and Σ as nuisance parameters,
which are integrated out. It is the elimination of Σ
in this way which enables us to handle correlated
noise with unknown covariance. Even though these
parameters can be eliminated by the sampling pro-
cess inherent in the MCMC technique, we choose
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to integrate them analytically since the analysis is
tractable, to produce a more efficient sampler for
the parameters of interest.

After integration of the nuisance parameters, the
parameter space Φ of interest for joint detection of
the model order and estimation of the incident sig-
nal angles, includes k and the corresponding angles
φ1 . . . φk. We denote the permissible set of k to be
K = {0, . . . , M − 1}. To reflect the fact that the
number of parameters changes with model order,
we note that Φ can be written as a finite union of
subspaces as Φ = ∪M−1

k=0 {k} × Φk, where

Φk = {(0, 2π)k : |φi − φj | > ε}, i �= j, (5)

where ε is a small number > 0, and (i, j) =
{0, . . . , k}. The set Φk is defined in this way so
that S in (1) is always full rank. The set Φ0 = ∅.

III. Development of the Marginal

Posterior Distribution

Since the N snapshots are iid, the total likelihood
function of all the data can be expressed in the fol-
lowing form:

p(Y |φk,A,Σ, k) =
1

πMN
∣∣Σ∣∣N

× e−
∑

n(y(n)−S(φk)a(n))HΣ−1
(y(n)−S(φk)a(n)),

(6)

where Y, A are all the data and amplitudes, respec-
tively and | · | denotes determinant.

To proceed with the integration of the nuisance
parameters Σ and A, we first define an orthonormal
matrix U(φ, k) ∈ CM×M as in [5][7]

U(φ, k) = [U s(φ, k) Uν(φ, k)],
M×k M×(M−k)

(7)

where U s(φ, k) ∈ S and Uν(φ, k) ∈ N . We
now transform the received data y(n) into z(n) ∆=
UHy(n), with a signal component zs(n) ∈ S and a
noise component zν(n) ∈ N defined respectively as

zs(n) = UH
s (φ, k)y(n), (8)

and
zν(n) = UH

ν (φ, k)y(n). (9)

In the following analysis we consider only the neigh-
bourhood around the true value where φ ≈ φo. It
is straightforward to show that for reasonably high
values of N and SNR, the maximum of the final pos-
terior distribution (22) of interest is close to φ = φo.

Thus, for maximum a posteriori (MAP) estimation
as we propose, this neighbourhood is the only re-
gion of interest. In this region, we have SHUν ≈ 0.
Then using (4), we can write

Rzz = E
[
zzH

] ≈ [
Rãã + UH

s ΣU s UH
s ΣUν

UH
ν ΣU s UH

ν ΣUν

]
,

(10)
where Rãã

∆= E{ããH} and ã(n) = UH
s Sa(n). In

the following, we neglect the off-diagonal blocks of
Rzz in (10). This assumption makes the analy-
sis tractable, at the expense of a somewhat sub-
optimal solution1. Then locally around φ ≈ φo

we can assume that zs is independent of zν . Using
(10) it follows that zs|ã(n) ∼ N(ã(n),C), and zν ∼
N(0,W ), where C

∆= UH
s ΣU s, and W

∆= UH
ν ΣUν .

Under these conditions the joint likelihood function
of zs and zν is given as:

p(Zs,Zν |Ã,φ, k,W−1) ≈
π−Nk|C−1|N

× exp

{
−

N∑
n=1

(zs(n) − ã(n))HC−1(zs(n) − ã(n))

}

× π−N(M−k)|W−1|N exp

{
−

N∑
n=1

zH
ν (n)W−1zν(n)

}
.

(11)

The desired posterior distribution can then be writ-
ten using Bayes’ theorem as

p(Ã,φ, k,W−1|Zs,Zν) ∝
p(Zs,Zν |Ã,φ, k,W−1)

× p(Ã|φ, k,W−1) · p(W−1|φ, k) · p(φ|k) · p(k).
(12)

We now discuss the assignment of each of the prior
distributions in (12). These priors are chosen to be
non-informative where possible. When convenient,
we also choose the structural form of these distribu-
tions for their desirable conjugate properties. The
prior distributions are described as follows:
• Ã is assigned a non-informative prior distribu-
tion. This non-informative prior is implemented as
a normal distribution with zero mean, whose covari-
ance matrix D is such that the corresponding joint
confidence region at a specified probability level is

1Simulation results have verified that the performance
of the algorithm is within a few dB of the corresponding
Cramer-Rao lower bound. Thus, the effect of neglecting the
off-diagonal blocks is not substantial.
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significantly larger than that of a normal distri-
bution with mean zero and covariance matrix C.
Thus,

p(Ã|φk, k,W−1) =
N∏

n=1

N(0,D) (13)

where
D = d2Ik, (14)

and Ik is the identity matrix of size k. We discuss
the choice of the hyper-parameter d2 in Sect. 5.
• the prior distribution for φ is chosen to be uni-
form2:

p(φk|k) = U[0, 2π]k. (15)

• The prior on k is chosen to be Poisson with expec-
tation Λ. Although this choice is not strictly non-
informative, it results in a more efficient MCMC
sampling procedure, and further, simulation results
as shown in Section 6 have shown that performance
is not sensitive to the choice of prior on k.

p(k) = Λke−Λ/k! (16)

• W−1: We use a non-informative multi-
dimensional Jeffreys’ prior [17] for the unknown
transformed noise covariance matrix. Jeffreys de-
rived a general rule for obtaining a non-informative
prior, which may be stated as: The prior distri-
bution for a set of parameters is taken to be pro-
portional to the square root of the determinant of
the Fisher information matrix. A further extensive
treatment on this topic is provided in [18] and in
[5].
According to this principle, the non-informative
prior distribution of the transformed noise covari-
ance matrix can be written as [5]

p(W−1 | φ, k) ∝| W−1 |−(M−k) . (17)

The posterior distribution is then:

p(k,φ,W−1, Ã|Zs,Zν) ∝
|C−1|Ne−

∑
n(ã(n)−zs(n))HC−1

(ã(n)−zs(n))

× π−kN |D−1|Ne−
∑

n ã(n)HD−1ã(n)

× |W−1|N−(M−k)e−
∑

n zH
ν (n)W −1zν(n)

× Λk

k!(2π)k
,

(18)

2Strictly speaking, this prior should be defined only over
the region specified by (5). However, in practice, this con-
straint on the valid region for φ is implemented in the algo-
rithm which evaluates the desired posterior distribution (22).
Thus we leave the prior for φ in its more tractible form given
above.

where superfluous constants independent of φ or
k have been absorbed into the constant of propor-
tionality.

Remark 1: The hyper-parameter Λ could either
be estimated ahead of time, or could be considered
known as part of the design parameters. It could
also be treated as a random variable, with its own
prior distribution, to make the algorithm more ro-
bust. However, this complicates the problem and
does not prove necessary. �

We now proceed to integrate out the nuisance pa-
rameters analytically. Since we have assumed the
matrix D is “larger” than the matrix C, then for
sufficiently large N , the term ãHD−1ã in the sec-
ond exponential on the right in (18) is small in com-
parison to the term ãHC−1ã in the first exponen-
tial. This simplifies the posterior to:

p(k,φ,W−1, Ã|Zs,Zν) ∝
π−kN |C−1|Ne−

∑
n[ã(n)−zs(n)]HC−1[ã(n)−zs(n)]

×|W−1|N−(M−k)e−
∑

n zν(n)HW −1zν(n)|D−1|N

× Λk

k!(2π)k
.

(19)

The first nuisance parameter (the amplitude of
the sources ã(n)) can now be easily integrated out
by comparison, since it only appears in an isolated
Gaussian distribution. The posterior distribution
can then be simplified to:

p(k,φ,W−1|Zν) ∝∣∣W−1
∣∣N−(M−k)

× e

{
−∑ N

n=1 zν(n)HW −1zν(n)
}

Λk

k!(2π)kd2kN

=
[
|W−1|N−(M−k) exp

{
−trNŴW−1

}]
× Λk

k!(2π)k(d2)kN
,

(20)

where tr(·) is the trace operator, NŴ ((φ, k)) ∆=∑N
n=1 zν(n)zν(n)H , and we have used (14) for D.

The noise covariance matrix can now be integrated
out by comparing the term inside the square brack-
ets above to a complex Wishart distribution on
W−1, with order p = M − k and parameter NŴ ,
i.e. the conventional roles of W and Ŵ are re-
versed. This term integrates to I(Ŵ ), given as [19]

I(Ŵ ) = π
1
2 (M−k)(M−k−1)

M−k∏
i=1

Γ(N−i+1)
∣∣∣NŴ

∣∣∣−N

,

(21)
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where Γ is the Gamma function. The posterior
distribution, after carrying out the integration and
some manipulation is then:

p(k,φ|Zν) ∝
π

1
2 (M−k)(M−k−1)

∏M−k
i=1 Γ(N − i + 1)

(2π/Λ)kk!(d2)kN

×
∣∣∣NŴ

∣∣∣−N

.

(22)

The objective is to estimate the parameters of this
highly non-linear function, as the following MAP
(maximum a posteriori) estimate:

{k̂, φ̂} = arg max
k,φ

p(k,φ|Zv). (23)

IV. The Reversible Jump MCMC

Algorithm

We now propose the Reversible Jump Metropolis-
Hastings (MH) algorithm [16][20] to perform the
Bayesian computation in extracting the parameters
of interest from the posterior distribution (22). The
proposed method is similar to that presented in [2]
which describes the white noise case. The following
presentation is therefore brief, with the intention of
presenting sufficient detail only to distinguish the
coloured noise case from the white noise case. A
further treatment on model order detection using
MCMC methods is given in [21].

This procedure samples directly from different
model orders from the joint distribution on Φ =
{φk, k}. In effect, the process jumps between
subspaces of different dimensions, thus visiting all
model orders for k ∈ K.

In the reversible jump case, candidate samples
{φ�, k�} are chosen from a set of proposal distri-
butions, which are randomly accepted according to
an acceptance ratio that ensures reversibility, and
therefore the invariance of the Markov chain with
respect to the desired posterior distribution. Here,
we choose our set of proposal distributions to cor-
respond to the following set of moves:
1. the birth move, valid for k < M . Here, a new in-
cident plane wave is proposed at random on (0, 2π].
2. the death move, valid for k > 0. Here, a ran-
domly chosen incident plane wave is removed.
3. the update move. Here, the parameters describ-
ing the incident plane wave are updated for a fixed
value of k.
The probabilities for choosing each move are de-
noted uk, bk and dk, respectively, such that uk +
bk + dk = 1 for all k. In accordance with [16], we

choose:

bk =c min{p(k + 1)
p(k)

, 1},

dk+1 =c min{ p(k)
p(k + 1)

, 1},
(24)

where p(·) is the prior probability of the kth model
according to (16), and c is the tuning parameter
for the ratio of update moves to jump moves. We
choose c = 0.5 so that the probability of a jump is
between 0.5 and 1 at each iteration [16].

An acceptance ratio r is then generated according
to:

r =
p(φ�, k�|Zν)q(φ(i), k(i)|φ�, k�)

p(φ(i), k(i)|Zν)q(φ�, k�|φ(i), k(i))
. (25)

where q(·|·) is the proposal distribution correspond-
ing to the respective move type. An acceptance
parameter α is then defined as

α = min {r, 1} . (26)

Then, the proposed candidate (φ�, k�) is accepted
as the current state at iteration i with probability
α.

The set of accepted candidates represents a set of
samples drawn form the posterior distribution of in-
terest. These samples can then be used to construct
a histogram from which the desired statistical infer-
ences can be made.

This description is summarized as follows:

Reversible Jump MCMC

1. Initialization: set Φ(0) = (φ(0), k(0))
2. Iteration i,
• Sample u ∼ [0, 1]
• if (u < bk(i)) then execute a “birth move” (see

part B).
– else if (u < bk(i) + dk(i)) then execute a “death

move” (see part B).
– else, execute an update move (see part A).

3. i ← i + 1, goto step 2
�

A. Update move

Here, we assume that the current state of the al-
gorithm is (Φk, {k}). When the update move is
selected, the algorithm samples only on the space
of Φk, for k fixed, using a proposal distribution
q(·|·) = U(0,2π]. The acceptance ratio r = rupdate
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from (25) and (22) for the update move, in the case
of coloured noise is therefore:

rupdate(φ�
k, k,φk, k) =

∣∣∣NŴ (φ�, k)
∣∣∣−N

∣∣∣NŴ (φ, k)
∣∣∣−N

, (27)

αupdate = min[rupdate, 1]. (28)

The candidate φ� is then accepted as the current
state (φ(i+1)

k = φ�
k), with probability αupdate. The

mixing performance of the proposed method is en-
hanced by selecting randomly between two types of
proposal distribution for the update case: one in-
volves a global exploration of the parameter space,
while the other involves a local exploration. Further
detail is presented in [2].

B. Birth and Death moves

In the death move case, we assume the current
state is in (Φk+1, {k + 1}) and we wish to deter-
mine whether the state is in (Φk, {k}) at the next
iteration. This involves the removal of an incident
signal, which is chosen randomly amongst the (k+1)
existing incident signals. The proposal distribution
q(φ�

k, k|φk+1, k + 1) for the death move is therefore
chosen as

q(φ�
k, k|φk+1, k + 1) = p(k) ÷

(
k + 1

1

)

∝ Λk

k!
1

(k + 1)
.

(29)

Similarly, in the birth move case, we assume the
current state is (Φk, {k}) and we wish to determine
whether the next state is in (Φk+1, {k + 1}). This
involves the addition of a new incident signal, which
is proposed uniformly over (0, 2π]. The proposal
distribution q(φ�

k+1, (k+1)|φk, k) for the birth move
is therefore

q(φ�
k+1, (k + 1)|φk, k) = p(k + 1) × 1

2π

∝ Λk+1

(k + 1)!
1
2π

.
(30)

For the death move, a candidate state (φ�
k, k) is then

sampled from (29). The acceptance ratio r = rdeath

from (25) and (22) is then given as

rdeath(φ�
k, k,φk+1, k + 1) =

∣∣∣NŴ (φ�, k)
∣∣∣−N

∣∣∣NŴ (φ, k + 1)
∣∣∣−N

×πM−k−1Γ(N − M + k + 1)(k + 1)d2N

.

(31)

The quantity αdeath is then defined according to

αdeath = min[rdeath, 1]. (32)

In [16], it is shown that a sufficient condition for
reversibility is that the acceptance ratio r = rbirth

for the birth move be given as

αbirth = min[1,
1

rdeath
]. (33)

The following block describes the algorithm for the
birth move.

Birth Move

• Propose a new direction of arrival φc ∼ U(0,2π]

φ
(i+1)
k+1 = [φ(i)

k

...φc],
• Evaluate αbirth with (33).
• Sample u ∼ U[0,1].
• if (u ≤ αbirth) then the state of the Markov Chain
becomes (φ(i+1)

k+1 , k + 1), else it remains at (φ(i)
k , k).

�

The description for the death move is similar,
with appropriate modifications.

Remark 2: At this point, it is enlighting to take
the logarithm of the previously obtained posterior
distribution (22):

log p(k,φk|Zν) =

γ − N log(
∣∣∣NŴ

∣∣∣) − kN log(d2)

+ k log(Λ/2π) + log(k!)

+
1
2
(M − k)(M − k − 1) log(π)

+ log(
M−k∏
i=1

Γ(N − i + 1))

(34)

where γ is a constant. In this form, the similarities
with previous model selection criteria such as AIC,
MDL, D-MAP of Djuric[22] or W-MDL of Wax [13]
are made apparent. The first term represents the
likelihood term, while the remaining ones jointly
constitute a “penalty term”, which is dependent on
the prior for ã and k. �

V. Model Order Determination

In this section, we discuss conditions which must
apply on the hyper-parameter d2 in (13) for con-
sistent determination of model order. That is, we
show that if d2 falls within a specified range, and if
certain assumptions on the posterior p(φ, k|Zν) are
satisfied, then the estimated k̂ → ko as N → ∞.
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The marginal posterior distribution for k is given
as

p(k|Zν) ∝
∫
Φk

p(k,φ|Zν)dφ. (35)

Let the eigenvalues of NŴ (φ, k) in (22) at φ =
φ̂, where φ̂ is the MAP estimate, be given as
λ1, λ2, . . . , λM−k arranged in ascending, rather than
the usual descending order. For the asymptotic case
we are considering, for moderate values of SNR, the
joint posterior distribution p(φ, k|Zν) concentrates
at φ = φ̂, which will be near the true value φo if
k = ko

3. Thus (35) can be written as

p(k|Zν) ∼
[

π
1
2 (M−k)(M−k−1)

(2π/Λ)kk!

]

×

∏M−k

i=1 Γ(N − i + 1)
d2kN

(
M−k∏
i=1

λi

)−N

 (36)

where ∼ indicates “approximately proportional to”.

Let us define the event Ei as the declaration of
a model order in error by i signals; i.e., Ei occurs
when we declare k̂ = ko + i or k̂ = ko − i. In the fol-
lowing analysis, we assume P (E1) > P (E2) > . . . >
P (EM−1), as in e.g., [23]. This implies p(k|Zν) is
unimodal in k. From this assumption, a necessary
and sufficient condition for consistent detection of
model order is therefore

lim
N→∞

p(ko + 1|Zν)
p(ko|Zν)

→ 0, (37)

and

lim
N→∞

p(ko − 1|Zν)
p(ko|Zν)

→ 0. (38)

3Here we have a situation which is typical of model order
detection problems. When k ≥ ko, then under good con-

ditions, ko elements of φ̂ will be close to the corresponding

elements of φo, and k − ko elements of φ̂ will be extraneous.
These extraneous values can easily be determined because
their associated amplitudes will not be statistically signifi-
cant. In the case where k < ko, then generally no elements

of φ̂ will be close to any in φo.

Using (36) we can write

p(ko + 1|Zν)
p(ko|Zν)

≈[
π

1
2 (M−ko−1)(M−ko−2)

(2π/Λ)ko+1(ko+1)!

]
[

π
1
2 (M−ko)(M−ko−1)

(2π/Λ)koko!

]

×

[∏M−ko−1
i=1 Γ(N−i+1)

(d)2N(ko+1)

(∏M−ko−1
i=1 λi

)−N
]

[∏M−ko
i=1 Γ(N−i+1)

(d)2koN

(∏M−ko

i=1 λi

)−N
]

=
π−(M−ko−1)(λM−ko

)N ( Λ
2π )

Γ(N − M + ko + 1)d2N (ko + 1)
,

(39)

where we have used the property Γ(n + 1) = (n +
1)Γ(n) and that the first (M−ko−1) smallest eigen-
values are common to both the numerator and to
the denominator. Since for k = ko and φ = φo, and
large N , we have Ŵ → UH

ν ΣUν ≈ UH
ν RyyUν ,

where Ryy
∆= E{yyH}. Since the eigenvalues of

UH
ν RyyUν are the same as the nonzero eigenval-

ues of PNRyyP H
N , where PN is the projector onto

N , the eigenvalue λM−ko
above is the largest eigen-

value of the covariance matrix formed from the data
projected onto N .

Using a similar development we also have

p(ko − 1|Zν)
p(ko|Zν)

≈ Γ(N − M + ko)d2N (ko)
π−(M−ko)(λM−ko+1)N ( Λ

2π )
. (40)

In this case, k = ko − 1, and since the estimated
dimension of the noise subspace is too large, it in-
corporates part of S. The quantity λM−ko+1 may
thus be associated with the smallest signal eigen-
value of Ryy projected into S, which is the same as
the smallest signal eigenvalue of Ryy.

We can now evaluate the limits of (39) and (40).
To do so, we require the Stirling approximation [24]
to the Γ-function, which is valid for large values of
the argument:

Γ(x) ≈
√

2πe−xx(x− 1
2 ). (41)

We also note from the definition of NŴ that the
eigenvalues λi are directly proportional to N , and
thus they can be written as

λi = Nλ̃i, i = 1, . . . , M − k, (42)

where λ̃i is the normalized version of λi. Substi-
tuting (41) and (42) into (39) we find that (37) is
satisfied if

λ̃M−ko
<

d2

e
. (43)
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In a similar way, using (40), (38) is satisfied if

λ̃M−ko+1 >
d2

e
. (44)

Therefore, by combining (43) and (44), we see that
detection of model order is consistent if the hyper-
parameter d2 is chosen so that

λ̃M−ko
<

d2

e
< λ̃M−ko+1, (45)

i.e., the quantity d2

e must lie in the gap between the
largest projected normalized noise eigenvalue and
the smallest normalized signal eigenvalue.

Strictly speaking, this procedure for determin-
ing d2 cannot be used for consistent detection be-
cause (45) depends on the unknown ko. However,
it should be possible in the practical scenario to
propose an ad hoc scheme to approximate (45). For
example, it is usually possible to form an estimate of
Σ during periods where it is known with reasonable
certainty there are no signals present. The largest
eigenvalue of this matrix could then be used as an
upper bound on λ̃M−ko

. If some a priori knowledge
on the DOAs were available, then an estimate of Uν

can be evaluated and a better estimate of λ̃M−ko

could be determined. In either case, d2 could be
given as an empirically determined constant times
this eigenvalue estimate.

VI. Simulation Results

In this Section, we present simulation results of
the sampling scheme developed in Sections 3 and 4.
The estimates are obtained as the MAP estimator
of the histogram of the samples, as defined in (23).

The spatially coloured noise is generated with an
AR process of order 2 with roots 0.95e−j1.07π and
0.95e−j0.88π as in [7], with excitation from complex
white noise samples of equal variance σ2

w/2 for both
the real and imaginary parts. Figure 1 shows the
directional spectrum of the spatially coloured noise.

The hyperparameter d2 in (14) was assigned the
value of 1000, in accordance with the criterion (45).
Figures 2 and 3 show typical results for 10000 it-
erations (after a sufficient burn-in period of 5000
iterations, based on the observation of the chain
behaviour) of the Reversible Jump Sampler with
N = 30 observations of a circular array made of
5 equi-spaced sensors (with a radius of 0.102m) at
1.86GHz, when the SNR is 2 dB, where the hyper-
parameter Λ in (16) was assigned the true value of
two. The SNR is defined as:

SNR =
a2
1

2σ2
w

. (46)

−200 −150 −100 −50 0 50 100 150 200
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Incident Angle (Degrees) 

 N
oi

se
 S

pe
ct

ra
l D

en
si

ty

DOA 1 DOA 2 

Fig. 1. Spectrum of the spatially coloured noise used in
simulations.

The characteristics of the signals and parameters
used to obtain these simulation results are summa-
rized in Table 6.1. This scenario is very difficult,
using only a small number of snapshots at low SNR
with two sources well within a beamwidth of the
receiver array.

Amplitude DOA Sensors Snapshots SNR MCMC iterat
10 20◦ 5 30 2 dB 10000
10 45◦

TABLE 6.1

Signal parameter values for the simulation results.

It is interesting to observe the evolution of the
instantaneous model probabilities (top portion of
Figure 2) and how they reach an equilibrium value.
The bottom portion of Figure 2 shows the posterior
histogram of the estimated number of sources after
burn-in. Figure 3 shows the histograms P̂ (φ|k = 2).
Clearly, from visual inspection of the figures, we see
the algorithm detected the right number of sources
and has estimated their respective DOAs as 19.5◦

and 46.0◦, which are close to the true values.
The next figure, Figure 4, shows the behavior of

the algorithm when the hyperparameter Λ in (16)
is initialized to Λ = 5. This represents the sce-
nario where the prior distribution favours the wrong
choice of model order. As expected, the algorithm
takes somewhat longer to converge to the proper
model order, but the correct a posteriori estimate is
ultimately obtained. This supports the claim that
the algorithm is not sensitive to this hyperparame-
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Fig. 2. Instantaneous estimate of the model probability vs.
iteration index (top half); Histogram of the number of
sources after burn-in (bottom half), for the hyperparam-
eter Λ = 2 (from (16)).
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Fig. 3. Histogram of the DOA’s after burn-in: Source 1
(top) and Source 2 (bottom).

ter.
The previous results represent only one realiza-

tion of the noise. In order to assess the performance
of the algorithm for DOA estimation only, in terms
of mean- squared error of the estimates as a func-
tion of the SNR for multiple noise realizations, the
algorithm was applied to 50 Monte Carlo noise real-
izations, for a range of values of SNR, from −8dB
to 16dB, with the other parameter values given as
before in Table 6.1. Specifically, the value of d2

was again held at the value 1000, which was ver-
ified to satisfy (45) over the entire range of SNR
values considered. The results are shown in Fig-
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Fig. 4. Similar to Figure 2, but for Λ = 5. Instantaneous
estimate of the model probability (top half); Histogram
of the number of sources after burn-in (bottom half).

ure 5. Even though two sources are simulated, only
the results for the source corresponding to DOA1

for each respective method are shown; otherwise,
the figure becomes too dense. The performance for
each method is shown for the case where k is as-
signed its true value. The curves for DOA2 behave
similarly, but are degraded somewhat, due to the
fact that, as shown in Figure 1, the source at DOA2

receives more noise than that at DOA1.
Figure 5 shows the Cramér-Rao lower bound for

this simulation scenario, evaluated from the re-
sults in [25][26]. In this figure, it may be observed
that the performance of the MCMC method almost
achieves the CRLB. The slight degradation may be
caused by neglecting the off-diagonal terms of the
covariance matrix in the development of the poste-
rior distribution (11).

In Figure 5 the performance of the MCMC
method is compared with the algorithm developed
by Wax (W-MDL) [13] and implemented by the
alternating projection [27] algorithm (as suggested
in [13]), where a steepest descent gradient method
was used for the one dimensional optimization.
There were two methods used to initialize the Wax
method. When the initialization was done ran-
domly, performance was severely degraded due to
convergence of the algorithm to local minima, as
shown in the figure. However, when the W-MDL
method was initialized to the true value of the DOA
parameters, then the performance is similar to that
achieved by the MCMC method with random ini-
tialization. With the MCMC method, 20,000 sam-
ples were used, of which the first 15,000 were dis-
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carded as burn-in. The MCMC reliably determines
the global optimum (e.g., at 2 dB SNR, 49/50 of the
Monte Carlo trials were successful in this respect).
These results demonstrate that, even though this
implementation of the Wax method is significantly
faster, the proposed MCMC method has much bet-
ter global convergence performance than W-MDL.
This behaviour suggests the need for a global search
procedure for the Wax method.

A close relationship between MCMC methods
and the simulated annealing technique [28] for
global optimization has been cited [29]. We may
therefore regard the optimization inherent in the
DOA estimation portion of the MCMC procedure
as being related to a simulated annealing algorithm.
Since a global search procedure for the DOA esti-
mation portion of the Wax method could also be
implemented using a simulated annealing method
or equivalent, the proposed method requires about
the same order of computation as the W-MDL
method when estimating DOAs alone with global
convergence. However, when model order as well
as the DOAs are to be determined, by virtue of
the reversible jump MCMC algorithm, the proposed
MCMC procedure concentrates its samples on the
most probable values of k, and hence does not waste
excess effort on less likely values. In contrast, since
the Wax method must expend equal effort over all
feasible values of k, it is less efficient.

We also include performance results of the so-
called maximum likelihood (ML) method for DOA
estimation [27], which was developed explicitly as-
suming spatially white noise. From this figure,
it is apparent that the proposed DOA estimation
method which assumes arbitrary noise characteris-
tics has significant performance benefits over one
which assumes white noise. It is interesting to note
that the ML DOA estimate, assuming k is known,
is given as

φ̂ = arg min
φ

trace
[
UH

ν RY Y Uν

]
(47)

where RY Y is the covariance matrix of the observed
data. In comparison, the DOA MAP estimate for
the proposed method, for the case where k is known,
may be written from (22) as

φ̂ = arg min
φ

∣∣UH
ν RY Y Uν

∣∣. (48)

That is, the proposed method minimizes the deter-
minant of a matrix, whereas the ML method min-
imizes the trace of the same matrix. Further com-
parisons of the two methods are given in [5].

The probability of detection for the MCMC and
W-MDL methods is shown in Table 6.2. Both de-
tection procedures provide similar performance, as
indicated in Table 6.2. It is worthy of note that
classical methods for detection of model order, such
as MDL and AIC [8] (which were developed under
the white noise assumption) tend to consistently es-
timate the number of signals as M in the presence
of coloured noise, regardless of the true value, even
at high values of SNR [11].
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Fig. 5. Mean Squared Error of the DOA estimates vs. SNR,
over 50 Monte Carlo runs for the MCMC, W-MDL and
ML methods, and the corresponding Cramér Rao bound.
The figure shows curves for two different initializations of
the Wax method: up-triangles and down-triangles which
correspond to initialization to the true and random val-
ues, respectively. The ML method was initialized at the
true values, whereas the MCMC method was initialized
arbitrarily. Curves are shown only for DOA1 for reasons
of clarity.

Further results shown in Figure 6 demonstrate
that the probability of an error in detection dimin-
ishes towards zero with increasing N for this choice
of d2, thus verifying the development of Section 5.

VII. Conclusion

A new application of the Reversible Jump MCMC
method was developed and presented for the prob-
lem of joint detection and estimation of sources im-
pinging an array of sensors in spatially coloured
noise. This work extends previous methods to the
case of noise with arbitrary covariance structure us-
ing only a single array. This method is based on the
formulation of a posterior pdf which has all the nui-
sance parameters integrated out. Consistent detec-
tion has been verified, for values of d2 in the range
given by (45). Simulation results support the ef-
fectiveness of the method, and demonstrate reliable
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SNR (dB)
-4 -3 -2 -1 0 1 2

M 1 6 14 28 26 40 18 30
C 2 64 82 72 74 60 82 70
M k 3 28 4
C 4 2

5
W 1 2 2
M 2 74 82 66 78 72 78 78
D k 3 18 10 20 12 20 20 10
L 4 4 8 12 2 8 2 6

5 2 2 8 4

TABLE 6.2

Probability of Detection (in %) VS SNR
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Fig. 6. Probability of detection vs. number of observations.

detection of the number of sources in coloured noise.
Although MCMC approaches are computationally
intensive, a significant advantage as demonstrated
in this work is that they provide the global solu-
tion to the difficult problem of joint detection and
estimation, with robustness to the initial guess of
the parameter values. In comparison, classical ap-
proaches have been shown to suffer degradations in
DOA estimation performance due to local solutions,
unless a priori knowledge of the DOA estimates is
available, or a global search procedure is used.
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