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Abstract

This paper addresses the application of sequential importance sampling (SIS) schemes to tracking

DOAs of an unknown number of sources, using a passive array of sensors. This proposed technique has

signi�cant advantages in this application, including the ability to detect a changing number of signals at

arbitrary times throughout the observation period, and that the requirement for quasi-stationarity over a

limited interval may be relaxed.

We propose the use of a reversible jump MCMC [1] step to enhance the statistical diversity of the par-

ticles. This step also enables us to introduce two novel moves which signi�cantly enhance the performance

of the algorithm when the DOA tracks cross. The superior performance of the method is demonstrated

by examples of application of the particle �lter to sequential tracking of the DOAs of an unknown and

non-stationary number of sources, and to a scenario where the targets cross. Our results are compared to

the PASTd method [2].
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I. Introduction

The problem of tracking the directions of arrival (DOAs) of multiple targets in background

noise using passive arrays of sensors is of great interest to the signal processing community,

with applications in communications, radar, sonar, acoustics and others. For example, in a

beamforming application, one is typically interested in extracting a signal of interest arriving

onto an array of sensors, from multiple interfering sources arriving from di�erent DOAs. For this

approach to be e�ective, the DOA of the desired source must be estimated from the received

data. In many scenarios, the desired source is moving, necessitating target tracking of the desired

DOA.

Recently, many DOA estimation techniques have been proposed. These include beamforming

methods [3][4], subspace-based methods [5][6] and maximum likelihood methods [7][8]. Since

these high-resolution methods incorporate the bene�ts of temporal averaging and knowledge of

the model order, the target must be assumed stationary over the period of observation. Thus,

these methods fail or su�er performance degradations when the DOAs of the target exhibits

signi�cant motion during the observation period.

In recent years there have been several methods developed for estimating or tracking the DOAs

of moving targets using passive sensors or arrays of sensors , e.g., [9][10][11], etc. Like the high-

resolution methods, these approaches also assume the targets are stationary over a limited time

interval. The approach in [10] is based on adaptively estimating a noise subspace basis from the

received signal covariance matrix. These methods then rely on a high-resolution technique such

as MUSIC [5] to estimated the desired DOAs. In [9], a method based on maximum likelihood

estimation of a novel state-space representation for tracking is presented.

An important consideration in target tracking problems is the data association problem; i.e.,

the association of tracks with measurements. In the case where passive arrays of sensors are

used, the data association problem reduces to the association of targets before and after their

DOA tracks cross each other. In [11], a method for DOA tracking for disparately-spaced sensors

using the EM algorithm is presented. This method treats the DOAs as unknown parameters and

the data associations as the missing data.

In this paper, we discuss the use of sequential MC (Monte Carlo) methods for target tracking.

MC and MCMC (Markov chain Monte Carlo) methods [12] [13] have been capturing the attention

of researchers in the �eld of statistics throughout the past decade and have more recently emerged
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as useful methods in the signal processing arena. They are Bayesian methods based on the idea

of numerically sampling posterior distributions of interest that are di�cult or impossible to

handle analytically. Statistical inferences on parameters of interest can then be made from the

resulting histograms. However, conventional MC methods are not well suited to problems where

data arrive sequentially, due to excessive computational requirements. This consideration has

motivated the development of sequential MC methods (also known as particle �lters) [14][15],

which are capable of recursively updating the probability distributions of interest as new data

become available.

In this paper, we propose the application of particle �lters to joint detection, estimation and

tracking of an unknown and time{varying number of sources. There are several advantages

o�ered by this approach. Firstly, previous methods require prior determination of model order.

The MDL and AIC criteria [16] are often used for this purpose. These methods require the

assumption of stationarity and are highly sensitive to the white noise assumption. The proposed

approach o�ers robust estimation of the model order jointly with other parameters of interest,

and furthermore can accommodate changes in model order occurring arbitrarily throughout the

observation interval. Secondly, the particle �ltering approach estimates the posterior distribution

of the parameters given all past data. This distribution can then be marginalized to yield the

\instantaneous" posterior distribution of the desired parameters at the current time instant.

Thus we need not assume stationarity. This is in contrast to most other methods which involve

estimation of second- or higher-order statistics by temporal averaging, a process which requires

stationarity over an appropriate interval. Thirdly, with the particle �ltering approach, the joint

posterior distribution of the target amplitudes given the received data is readily available. This

greatly facilitates high-accuracy data association. Finally, in contrast to other methods, because

any form of MCMC technique produces an approximation to the entire distribution of interest,

one can easily calculate con�dence intervals, marginalize with respect to desired parameters, or

make inferences on the parameters, etc.

One of the di�culties with particle �ltering is the loss of statistical diversity in the recursive

update of the importance weights [14]. To mitigate this di�culty, we have introduced a new form

of the Reversible Jump MCMC [17][18] process as a novel resampling engine. We propose the

use of two new moves, called the split/merge moves, which are speci�cally designed to handle

the crossing of the signal tracks, and allow for the joint detection and tracking of the number of
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sources.

The paper is organized as follows. Section II presents the state-space model. In sections III

and IV, we discuss and extend the particle �ltering approach as developed in [14] to the target

tracking problem. Results from simulations are presented in Section V where our results are

compared with the method presented in [10] [2]. Conclusions are given in Section VI.

Notation: Bold upper case symbols denote matrices, bold lower case symbols denote vec-

tors. The superscript 0 denotes the Hermitian transpose operation, and the symbol \�" means

\distributed as". We make use of the following probability density functions:

� N (�;�) to denote a complex normal distribution with mean � and covariance matrix �:

p(x) =
1

j��je
�(x��)0�

�1
(x��) (1)

� U is a uniform distribution over [0; 1].

p(x) =

8><
>:
1 0 � x � 1

0 otherwise:

(2)

� IG(�; ) is an inverse Gamma distribution with parameters � and .

p(x) / x�(�+1)e�=x: (3)

II. The State-Space Model

The problem of interest is the sequential detection of the number of sources impinging an array

and the estimation of their corresponding directions of arrival. For example, for a uniform linear

array composed of M sensors with known geometry, the manifold is described by the steering

matrix, S(�(t)) 2 CM�k(t), the kth column of which is:

s(�k(t)) = [1; ej!0d0 sin(�k(t))=v ; ej2!0d0 sin(�k(t)=v); : : : ; ej(M�1)!0d0 sin(�k(t))=v ]T : (4)

where k = 1; : : : ; k(t), and k(t) is the model order (number of sources) at time t. This notation

is adopted for k(t) to emphasize that model order is unknown and may change at any time

throughout the observation interval. In particular, we assume d0 � �v
!0
, where d0 is the distance

between the sensors, v is the velocity of propagation and !0 is the frequency of interest.

The signal model we consider consists of a complex vector of observations y(t) 2 CM which

represents the data received by an array of sensors at the tth snapshot. The observation vector
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is composed of incident narrow-band plane wave signals from k(t) distinct sources embedded in

Gaussian noise. Each of these incident plane-wave signals impinges on the array of sensors at

a physical angle �k; k = 1; : : : ; k(t), relative to the normal of the array. The amplitudes of the

sources at the tth time instant are denoted by the vector a(t) 2 Ck(t).
The sequential sampling approach we adopt admits a �rst order state-space hidden Markov

model. The states [�(t);a(t)] evolve according to:

�(t) = �(t� 1) + �vv(t); (5)

a(t) � N (0; �2aIk(t)); (6)

whereas the observation is given by:

y(t) = S(�(t))a(t) + �ww(t): (7)

The noise variables v(t), w(t) 2 CM are iid Gaussian variables with zero mean and unit

variance, independent of the parameters. The respective variances of the scaled noise terms are

�2v and �2w. The variance of the amplitudes �2a satis�es �2a = �2�2w, where the hyperparameter �2

is set to an a priori estimate of the SNR [18]. The dimension k(t) of the model is described by

the following stochastic relationship at time t:

k(t) = k(t� 1) + �k(t); (8)

where the �k(t) are discrete iid random variables such that

P (�k(t) = �1) = h=2

P (�k(t) = 0) = 1� h

P (�k(t) = 1) = h=2; (9)

where h 2 [0; 1]. In (9), it is tacitly assumed that the model order changes by no more than one

in each sample period.

In the proposed system of equations, the noise variances �2v and �2w are assumed unknown but

constant over time. The unknown vectors of amplitudes a(t) are assumed iid between snapshots.

We introduce a vector � of all the parameters describing the model:

�1:t , (f�k(t)g1:t; fak(t)g1:t; k1:t; �2v ; �2w); (10)
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where the notation (�)1:t indicates all the elements from time 1 to time t, and the subscript

k(t) indicates the size of the corresponding vector. The posterior distribution of interest is then

given by �(�1:t)
�
= p(�1:tjy1:t), and can be speci�ed within a normalizing constant, using Bayes'

theorem, as:

�(�1:t) / p(y1:tj�1:t)p(�1:t) (11)

where p(y1:tj�1:t) is the likelihood function and p(�1:t) is the prior distribution of the parameters.

From the model description, it is clear that the prior distributions for some of the parameters

are conditional on k1:t and also on other parameters. Thus, we expand the posterior distribution

in (11) to give:

�(�1:t) / p(y1:tj�1:t;a1:t; k1:t; �
2
v ; �

2
w)�

p(�1:tj�2v ; k1:t)p(a1:tj�1:t; �
2
w; k1:t)p(k1:t)p(�

2
v)p(�

2
w): (12)

We now assign distributions for each of the terms in (12). It is assumed that the observations,

given the states, are iid and that the conditional update likelihoods of the states are also iid.

Therefore, assuming the distribution of the initial states to be uniform, and using the Markov

properties of the model, the distributions of (12) can be written in the form:

p(y1:tj�1:t;a1:t; k1:t; �
2
w) =

tY
l=1

N (S(�l)al; �
2
wIM ); (13)

p(�1:tjk1:t; �2v) =
tY

l=1

N (�l�1; �
2
vIkl); (14)

p(a1:tj�1:t; k1:t; �
2
w) =

tY
l=1

N (0; �2�2w(S
0(�l)S(�l))

�1); (15)

p(k1:t) =
tY

l=1

p(kljkl�1) =
tY

l=1

�k(l): (16)

The prior distribution on the variances �2v and �2w are both assumed to follow the inverse Gamma

distribution, which is the conjugate distribution for the Normal distribtuion:

p(�2v) � IG(
�0
2
;
0
2
); (17)

p(�2w) � IG(�1; 1): (18)
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Since p(�2v) is later combined with a real Normal distribution (instead of complex), the factors of

1
2 in (17) are required to maintain the conjugate property. The above priors are noninformative

when the hyperparameters � and  are set to zero.

The model is now clearly de�ned. In the application addressed in this paper, the parameters

of interest are primarily the DOAs �1:t and the model order k1:t. The amplitudes a1:t, along

with the state update noise variances �2w and �2v , may be considered nuisance parameters. Even

though it is straightforward to numerically marginalize the posterior density to eliminate these

undesired parameters using the proposed Monte-Carlo based estimation methods, the resulting

procedure is more e�cient if the nuisance parameters can be integrated out analytically. Such

is the case with the signal amplitudes. We now proceed to eliminate the amplitudes from the

posterior distribution �(�1:t) by marginalization.

Using the iid Normal distribution of the noise variables, and the model structure given by (5)

to (7), and equations (13) to (18), the posterior distribution �(�1:t) of (12) can be written as

�(�1:t) /
tY

l=1

1

�2Mw �M
exp

�
� 1

�2w
(yl � S(�l)al)

0(yl � S(�l)al)

�

�
tY

l=1

jS0(�l)S(�l)j�
��w

�2kl�kl exp

�
� 1

�2�2w
(al)

0(S0(�l)S(�l))(al)

�

�
tY

l=1

1

�2
kl=2

v (2�)kl=2
exp

�
� 1

2�2v
(�l � �l�1)

0(�l � �l�1)

�

� �2
(��o

2 �1)

v exp

��o
2�2v

�
� �2

(��1�1)

w exp

��1
�2w

�

�
tY

l=1

p(kljkl�1);

(19)

The terms relating to the amplitudes can be collected together to give the following expression,
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as in [18]:

�(�1:t) /
tY

l=1

1

�2
kl

w �kl
exp

��1
�2w

(al �mal
)0��1

kl
(al �mal)

�

�
tY

l=1

1

�2Mw �2
kl
exp

��1
�2w

y0lP
?
s (�l)yl

�

�
tY

l=1

jS 0(�l)S(�l)j
�2

(kl=2)

v (2�)(kl=2)
exp

� �1
2�2v

(�l � �l�1)
0(�l � �l�1)

�

� �2
(� �o

2 �1)

v exp

��o
2�2v

�
� �2

(��1�1)

w exp

��1
�2w

�

�
tY

l=1

p(kljkl�1);

(20)

where

�
�1
kl

= S0(�l)S(�l)(1 + ��2);

mal = �klS
0(�l)yl (21)

and

P?
s (�l) = IM � S(�l)(S

0(�l)S(�l))
�1S0(�l)

(1 + 1=�2)
: (22)

From (20) a maximum a posteriori estimate of the amplitudes, knowing the other parameters

is readily available as:

âMAP (l) =mal : (23)

Thus, the amplitude parameters need not be included in the particle �lter. Instead, they can be

estimated at each iteration, after the sampling of the other parameters as discussed in Sects. 3

and 4.

It then becomes straightforward to integrate out the amplitudes in (20) to yield a simpler

de�nition of the posterior distribution in terms of the remaining parameters. The posterior
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distribution can then be simpli�ed to:

�(�1:t; �
2
v ; �

2
w; k1:t) /

tY
l=1

1

�2Mw (1 + �2)kl
exp

��1
�2w

y0lP
?
s (�l)yl

�

�
tY

l=1

1

�2
(kl=2)

v (2�)(kl=2)
exp

� �1
2�2v

(�l � �l�1)
0(�l ��l�1)

�

� �2
(�

�o
2 �1)

v exp

��o
2�2v

�
� �2

(��1�1)

w exp

��1
�2w

�

�
tY

l=1

p(kljkl�1):

(24)

The MAP estimators of the nuisance parameters of the variances can be readily obtained by

comparing the previous distribution with a product of inverse Gamma distributions. Using the

fact that the mode of the inverse Gamma distribution is 
�+1 , it follows that

�2vMAP
(t) =

0
2 + 1

2

Pt
l=1(�l ��l�1)

0(�l � �l�1)
�0
2 + 1

2

Pt
l=1 k(l) + 1

; (25)

�2wMAP
(t) =

1 +
Pt

l=1(ylP
?
s (�l)yl)

0

�1 +Mt+ 1
: (26)

We choose however to keep these parameters in the expression of the posterior distribution

in (24). This simpli�es the derivation of the acceptance probabilities of the moves as discussed

in Sect. 4. Since the nuisance parameters can be estimated, we now de�ne a new vector � of

parameters to sample, as:

�1:t
�
=
�
�1:t; k1:t

�
: (27)

III. Sequential Importance Sampling

This section briey describes the SIS procedure, which is used to extract the DOA estimates

for tracking. In this paper, the background treatment on the SIS methodology is necessarily brief.

The reader is referred to [14] [19] [25] and the references therein for a more complete coverage

of this topic. In this section, we �rst describe the Bayesian importance sampling procedure. We

then outline the recursive procedure to update the desired histogram from time t� 1 to time t,

without the need for recomputing the entire joint distribution all over again as new data become

available.

We now describe the Bayesian importance sampling scheme [20] in a general framework. Our

objective is to generate a numerical approximation of an arbitrary distribution p(x), in the form
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of a histogram, by drawing a large number of samples from p(x). However, in many practical

cases, it is not easy to sample directly from this distribution, since it may be in a \non-standard"

form, multivariate, and known only up to a normalizing constant. Therefore, in the Bayesian

importance sampling paradigm, N samples x(i); i = 1; : : : ; N (particles) are drawn from another

\easy-to-sample-from" function q(x) called the "importance function", whose support includes

that of p(x). The histogram of these samples approximates the distribution q(x). In order to

transform these samples to represent the desired distribution, we form the histogram p̂N (dx)

approximating p(x) as:

p̂N (dx) =

PN
i=1 ~w(x(i))�x(i)(dx)PN

i=1 ~w(x(i))
: (28)

where

~w(x(i)) =
p(x(i))

q(x(i))
; (29)

and dx is a small, �nite region surrounding an x of interest (i.e., a histogram \bin"), and �x(i)(dx)

is a Dirac delta de�ned as:

�x(i)(dx) =

8<
:

1; if x(i) 2 dx

0; otherwise:
(30)

Since p(x) in (29) can only be easily determined up to a normalizing constant, the denominator

of (28) in e�ect normalizes the weights ~w(x(i)) so that p̂N (dx) is a proper distribution. It can

be shown that the estimate p̂N (x) is biased; however, under mild conditions, the expectation

�IN (f(t; �) of any function f(t;x) over p̂N (x) converges to I(f(t; �)), which is the expectation of

f(t;x) over p(x), in the sense that:

p
N
�
�IN (f(t; �)� I(f(t; �))� =)

N!1 N (0; ��2f(t;�)); (31)

where =) denotes convergence in distribution and ��2f(t;�) is the variance of f(t; �) over �(�).
We now proceed to show how the Bayesian importance sampling approximation can be re-

cursively updated as new data arrives, in order to keep the previously simulated trajectories

of the particles, and to avoid sampling the increasingly long parameter vector as a whole. Re-

turning to the DOA tracking problem, we now assume at the (t � 1)th time instant a set of

weights ~w
(i)
1:t�1; i = 1; : : : ; N is available from which the approximation �̂N (d�1:t�1) of the joint
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distribution �(�1:t�1) can be determined, so that:

�̂N (d�1:t�1) =

PN
i=1 ~w(i)(�

(i)
1:t�1)��(i)

1:t�1

(d�1:t�1)

PN
i=1 ~w(i)(�

(i)
1:t�1)

: (32)

The joint posterior distribution of all parameters from time 1 to t can be written using Bayes'

theorem as:

�(�1:t) =
p(y1:tj�1:t)p(�1:t)

p(y1:t)
: (33)

It can be shown, using the Markov properties of the model and the iid assumptions on the noise

variables, that (33) can be written in the recursive, time-update form:

�(�1:t) = �(�1:t�1)� p(ytj�t)p(�tj�t�1)

p(ytjy1:t�1)
: (34)

In principle, this recursion would allow us to sequentially and recursively compute the poste-

rior distribution. However, it is not useful in its present form, since the normalizing constant

p(ytjy1:t�1) and the desired marginal distributions require the evaluation of complex, multi-

dimensional integrals, which are generally di�cult or impossible to evaluate analytically. We

therefore resort to the Bayesian importance sampling scheme.

Since the importance function may be chosen at our discretion, it can be selected to obey the

following property:

q(�1:tjy1:t) = q(�1:t�1jy1:t�1)q(�tj�1:t�1;y1:t): (35)

Equations (34) and (35) then de�ne a recursion on the weights of the ith particle at time t:

~w(i)(t) = w(i)(t� 1)
p(ytj�(i)

t )p(�
(i)
t j�(i)

t�1)

q(�
(i)
t j�(i)

1:t�1;y1:t)
i = 1; : : : ; N: (36)

The recursion is made complete with ~w(i)(1) being de�ned as:

~w(i)(1) =
�(�(i)(1)

��y(1))
q(�(i)(1)

��y(1)) : (37)

Eq. (35) and (37) represent the desired recursion of the weights. The method proceeds by

sampling N particles �(i)(t); i = 1; : : : ; N from the importance function q(�tj�1:t�1;y1:t) in

(35). The terms p(ytj�t) and p(�t

���t�1) can then be evaluated from these particles using the

model (13) and (14), and the new data y(t). Note that in (36) we have omitted the unknown
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normalizing component p(ytjy1:t�1). It is straightforward to show [14] that the e�ect of this

omission is compensated by normalizating the weights, as follows:

w(i)(t) =
~w(i)(t)PN
i=1 ~w(i)(t)

: (38)

A major di�culty with SIS methods in general is that in practice, the recursion of (36) degen-

erates quickly, even after a few iterations, so that only a handful of signi�cantly-valued particles

remain. Therefore, any estimate based on these very few particles would show a large variance.

In Sect. 4 we discuss methods to mitigate this e�ect.

At each observation time t, samples from the importance function must be generated. It is

shown in [21], that the optimal importance function that satis�es the recurrence requirement

(35) and minimizes the variance of the weights generated by the recursion (36), is given by:

qoptimal(�) = q(�(i)(t)j�(i)(t� 1);y(t)): (39)

This distribution is not easily evaluated directly for the problem at hand. However, an approxi-

mation is readily obtained by means of a local linearization (Taylor expansion) of the observation

equation. The observation equation (7) and the state update equation (5) for � are reproduced

here for convenience:

�(t) = �(t� 1) + �vv(t);

y(t) = S(�(t))a(t) + �ww(t);

These equations yield:

y(t) � S(�(t� 1))a(t) +
@S(�(t))a(t)

@�(t)

����0
BB@
�(t) = �(t� 1)

a(t) = a(t� 1)

1
CCA

� ��(t)� �(t� 1)
�
+ �ww(t):

(40)

After solving the above for �(t), from the assumptions on the model noise, we see the resulting

distribution for �(t)
���(t� 1);y(t), i.e., the optimal importance function, is linear and Gaussian

and can be expressed as:

q(�(i)(t)j�(i)(t� 1);y(t)) � N (m(t);�(t)); (41)

where, for each particle:

�
�1(t) = ��2v (t)Ik(t) +G�1(��2w (t)IM))G; (42)
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m(t) = �(t)

�
��2v (t)Ik(t) +G�1(��2w (t)IM)[y(t)� S(�(t� 1))a(t� 1) +G�(t� 1)]

�
; (43)

where the matrix G is the gradient of the observation equation:

G =
@S(�(t))a(t)

@�(t)
: (44)

In summary, the recursive update for the weights is obtained using the following form of (36):

~w(i)(t) = w(i)(t� 1)� p
�
y(t)j�(i)(t); k(i)(t);a(i)(t); �2

(i)

w

�
p
�
�(i)(t)j�(i)(t� 1); k(i)(t); �2

(i)

v

�
q(�(i)(t)j�(i)(t� 1);y(t))

:

(45)

Eqs. (13) and (14) are used for the respective terms on the numerator, and (41) is used for the

denominator.

Even though the importance function (41) is chosen carefully, in practice the algorithm still

quickly degenerates. It is thus necessary to resample the particles according to their importance

weights. This operation can be done very e�ciently, with O(N) operations [22]. However, the

trajectories with high importance weights are statistically selected many times, limiting the true

statistical diversity amongst the particles.

A more clever approach, [1][21] [26] uses a reversible jump MCMC [17][18] step on each particle

at time t. The MCMC procedure samples �(�) directly, thus introducing statistical diversity

amongst the particles. Also, the reversible jump process is capable of exploring parameter spaces

of varying dimension, which as we see in Sect. 4 is the key to detection of model order [18][23].

The above procedure is summarized in the following schema:

Sequential Importance Sampling for Tracking an Unknown Number of DOA's

For time t = 1, initialize the weights w(i)(1); i = 1; : : : ; N using (37).

For each time step t = 2; 3; : : : ; DO

1. The Importance Sampling Step:

� For i = 1; : : : ; N , generate the particles by sampling from the distribution q(�j�), as follows
(see (41)):

q(�(i)(t)j�(i)(t� 1);y(t)) � N (m(t);�(t)) (46)

� For i = 1; : : : ; N , Evaluate the un-normalized importance weights from (45).
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� For i = 1; : : : ; N , normalize the weights:

w(i)(t) =
~w(i)(t)PN

j=1 ~w(j)(t)
(47)

2. The Resampling/Selection of the Particles:

� Sample a vector of index l distributed as:

P (l(j) = i) = w(i)(t) (48)

� Resample the particles with the index vector:

�
(i)
0:k = �

(l(i))
0:k (49)

� Re-assign all the weights to w(i)(t) = 1
N .

3. The Reversible Jump MCMC Step

� Apply the sampler to be described in section IV to enhance diversity amongst the particles

and facilitate detection of model order.

�

The SIS procedure is now completely described. In order to use this procedure to track

the DOAs, our objective is to estimate the parameters of interest �(t) and k(t) given all past

observations, at each time instant. This can be achieved by forming the marginal distribution

corresponding only to the speci�c parameters of interest from �(�1:t). One of the primary

advantages of using a numerical Bayesian procedure for parameter estimation is that this implicit

integration is readily performed directly from the histogram �̂N (d�1:t).

IV. The Reversible Jump MCMC Diversity Step

The reversible jump MCMC process is a variation of the Metropolis-Hastings (MH) algorithm

[20]. The algorithm inherently sets up a Markov chain whose invariant distribution corresponds

to the posterior of interest. After an appropriate \burn-in" period which is required for the

Markov chain to reach equilibrium, the states at successive iterations represent samples from the

distribution of interest.

In this application, we use the MH method to sample the posterior distribution with respect to

�(t) and k(t). Assume at the jth iteration of the chain we are in state (�(j); k(j)). A candidate

(�?; k?) for the next state of the chain is drawn at random from a proposal distribution d(�j�),
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which may be conditional on (�(j); k(j)). An acceptance ratio r is then generated according to:

r =
�(�?; k?)d(�(j); k(j)j�?; k?)

�(�(j); k(j))d(�?; k?j�(j); k(j))
J ; (50)

where J is the Jacobian of the transformation from � to �?. An acceptance parameter � is then

de�ned as:

� = min fr; 1g : (51)

Then, the proposed candidate (�?; k?) is accepted as the current state at iteration j + 1 with

probability �.

In our application, since the dimension of the parameter space �1:t varies with k1:t, we use the

reversible jump MCMC method which samples directly from the joint distribution over all model

orders of interest. In e�ect, the process jumps between subspaces of di�erent dimensions, thus

visiting all relevant model orders. In the reversible jump case, candidate samples are chosen from

a set of proposal distributions, which are randomly accepted according to an acceptance ratio

that ensures reversibility, and therefore the invariance of the Markov chain with respect to the

desired posterior distribution. Here, we choose our set of proposal distributions to correspond

to the following set of moves:

� the birth move, chosen with probability bk, for which a new source is proposed at random; i.e.,

k(t) = k(t� 1) + 1.

� the death move, chosen with probability dk, for which one of the existing sources is proposed

to be removed; i.e., k(t) = k(t� 1)� 1.

These moves, in conjunction with the update move below, enable us to sample the parameter k1:t.

By forming the marginal of �(�1:t) with respect to k1:t, we can detect the most likely number

of sources vs. time. In addition to these moves, we propose two further novel moves, which we

have shown in simulations to improve performance when two neighbouring DOA tracks cross.

These additional moves are

� the split move, for which an existing source is proposed to be split into two sources. This move

is chosen with probability sk .

� the merge move, for which two neighbouring sources are proposed to be merged into one. This

move is chosen with probability mk .

We also have the update move:
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� with the update move, all the parameters are updated with �xed dimension; i.e., k(t) = k(t�1).
This move is executed with probability 1� bk� dk � sk�mk. With the update, birth and death

moves, J in (50) is readily shown [18] to be unity.

It is shown in [26] that the proposed MCMC sampling procedure requires no burn in period

in this application. This is a consequence of the fact the particles before the MCMC step are

already distributed according to the limiting distribution of the chain. Thus, in the interest of

computational e�ciency, only one MCMC iteration need be applied to each particle at each time

step.

Notation: For the following subsections, it is understood that the moves are applied to

particle i at time t. Hence, we simplify the notation by omitting reference to both t and i, when

no confusion is possible. In order to emphasize that the various moves result in a change in

model dimension, we explicitly denote dependence of the respective parameters on model order;

e.g, �k.

The selection of moves is described by the following schema.

Reversible Jump MCMC

1. Current state of the chain = current state of the particles (k(t);�(i)(t)).

2. Iteration t for the ith particle, i = 1; : : : ; N :

� Sample u � U

� if (u < bk) then \birth move"

� else if (u < bk + dk) then \death move"

� else if (u < bk + dk + sk) then \split move"

� else if (u < bk + dk + sk +mk) then \merge move"

� else update all the parameters

3. t t+ 1; goto step 2

�
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A. Update move

If the update move is selected, all the parameters are resampled, with �xed model order k.

The proposal distribution d
�
�k(t)

���k(t� 1)
�
for the candidate �?

k is given using (5) as

d
�
�k(t)

���k(t� 1)
�
= N (�k(t� 1); �2v(t)Ik(t)): (52)

By substituting (52) and (24) into (50), after some algebraic manipulation we obtain the following

expression for the acceptance ratio for the update move:

rupdate =
exp

�1

�2w
y0(t)P ?

s (�
?

k(t))y(t)

exp
�1

�2w
y0(t)P ?

s (�k(t))y(t)
: (53)

The candidate �?
k is accepted as the ith particle at time t, with probability:

�update = min(rupdate; 1): (54)

The amplitude parameters, which are required for data association in section V, are estimated

directly from (23). The noise variance parameters �2w and �2v , which are required in (52) and

(53), are estimated directly from (25) and (26).

The update move is summarized with the following schema:

Update Move

� Propose a candidate �? from (52).

� Evaluate �update with (54)

� Sample u � U

� if (u � �update) then

{ The state of the Markov Chain becomes (k;�?),

{ If desired, estimate aj� from (23)

{ update �2v and �2w from (25) and (26) respectively.

else it remains at (k;�)

�

B. Birth/Death moves

The birth move proposes a candidate in a higher dimension model, as opposed to the death

move, which in turn proposes a candidate in a lower dimension model.
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For the birth move, a new source �c is proposed at random from the prior distribution for the

directions of arrival:

�?
k(t)+1 = [�k(t)

���c] (55)

After straightforward algebra, the acceptance ratio for the birth move is (using (24 )):

rbirth =
exp

�1

�2w
y0(t)P ?

s (�
?

k(t)+1)y(t)

exp
�1

�2w
y0(t)P

?

s (�k(t))y(t)
� 1

(1 + �2)(k + 1)
(56)

with corresponding acceptance probability given by:

�birth = minfrbirth; 1g: (57)

If the move is accepted, then the amplitudes and noise variance parameters are then updated in

the same manner as described for the update move process.

The death move is just the reverse. A source, amongst the (k+1) sources is randomly selected

to be removed. It is straightforward to show the new candidate, of dimension k, is then accepted

with probability:

�death = minf 1

rbirth
; 1g: (58)

The schemas for the birth and death moves are similar to that for the update move with appro-

priate changes. However, for the birth move, if the candidate is accepted, the new state becomes

(k+ 1;�k+1), otherwise, it remains at (k;�k). For the death move, if the candidate is accepted,

the new state becomes (k;�k), otherwise, it remains at (k + 1;�k+1).

C. Split/Merge moves

The split move proposes a candidate in a higher dimension model, as opposed to the merge

move, which in turn proposes a candidate in a lower dimension model. The split move is de-

signed to handle the situation where two DOA tracks separate after crossing. The merge move

corresponds to the case where two adjacent DOA tracks coalesce before crossing.

For the split move, two new sources �?j and �?j+1 are proposed as a replacement of the source

�j 2 �k, selected at random amongst the existing k sources:

�?j = �j � uW; (59)

�?j+1 = �j + uW; (60)
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where W is some �xed and known parameter and u � U . These new angles are inserted in the

parameter vector, replacing the jth element, to produce a candidate vector �?
k+1 for the split

move as follows:

�?
k+1 =

�
�k

�
1 : (j � 1)

�
; �?j ; �

?
j+1;�k

�
(j + 1) : k

��
: (61)

As opposed to the previously de�ned moves, the split/merge moves require the evaluation of

the Jacobian term in (50). The Jacobian can be evaluated as:

J =


@u
@�1

@�
@�1

@u
@�2

@�
@�2

 =
1

2W
: (62)

After some straightforward algebra, the acceptance ratio for the split move is given as:

rsplit =
exp

h
�1
�2w
y0(t)P?

s (�
?
k(t)+1)y(t)

i

exp
h
�1
�2w
y0(t)P?

s (�k(t))y(t)
i

�
exp

�
�1
2�2v

�
�?
k(t)+1(t� 1)� �k(t)+1(t� 1)

�0�
�?
k(t)+1(t� 1)� �k(t)+1(t� 1)

��

exp
h
�1
2�2v

(�k(t)(t)� �k(t)(t� 1))0(�k(t)(t)��k(t)(t� 1))
i

� 1

2
p
2��v(1 + �2)

;

(63)

�split = minfrsplit; 1g: (64)

This split move is attempted only if no original sources fall between the two proposed candi-

dates, such that the reverse move, the merge move, makes the sampling reversible. This measure

is necessary to satisfy the reversibility condition [17], which in turn is su�cient for the invariant

distribution of the Markov chain to converge to the desired density.

The merge move is just the reverse of the split move. A source, �j , amongst the �rst k of the

(k + 1) sources is randomly selected. A candidate source �?j is proposed as the superposition of

two adjoining sources:

�?j = (�j + �j+1)=2: (65)

This combined angle is inserted in the parameter vector, replacing elements j and j+1 to produce

the candidate vector for the merge move as follows:

�?
k =

�
�k

�
1 : (j � 1)

�
; �?j ;�k

�
(j + 2) : (k + 1)

��
: (66)
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Similar to the death move case, it is straightforward to show that the candidate vector �?
k, of

dimension k is accepted with probability:

�merge = minf 1

rsplit
; 1g: (67)

For both the split and merge moves, the amplitude and noise variance parameters are also

updated in the manner described for the update move.

Split Move

� Pick at random one DOA element �j , amongst the �rst k existing directions. Evaluate:

�?j = �j � uW (68)

�?j+1 = �j + uW (69)

� Evaluate �split with (64)

� Sample u2 � U

� if (u2 � �split)then

{ The state of the Markov Chain becomes (k + 1;�?
k+1),

{ If desired, estimate ak+1jk + 1;�?
k+1 from (23)

{ update �2v and �2w from (25) and (26) respectively.

else it remains at (k;�k)

�

Merge Move

� Pick at random two adjacent directions of arrival among the (k + 1) existing DOA

�?j = (�j + �j+1)=2 (70)

� Evaluate �merge with (58)

� Sample u � U

� if (u � �merge) then

{ The state of the Markov Chain becomes (k;�?
k),

{ If desired, estimate akjk;�?
k from (23)

{ update �2v and �2w from (25) and (26) respectively.
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else it remains at (k + 1;�k+1)

�

V. Simulation Results

The proposed algorithm is now veri�ed with simulated data, generated for the true number

of sources ko = 2, with parameters described in Table 5.1. The received array is circular1 and

composed of M = 8 elements. The parameters and observations evolve according to the state

space model (5) - (7), with an initial SNR of 20dB, which is de�ned as:

SNR =
a0(1)a(1)

�2w
(71)

Parameter �2v �2w �(0) a(1) �2a

Value 5deg2. 0.15 [70�; 110�] [2� 2j; 4 + j] 0:0707

TABLE 5.1

Parameters of the state-space model for simulated data

The hyperparameter �2 = 100 in accordance with the initial SNR value, and the hyperparam-

eters �0; �1; 0; 1 are all set to zero, corresponding to a non-informative prior on the respective

variances. (Brief experiments have veri�ed performance is robust to the values of the hyperpa-

rameters). The DOAs are simulated using a �rst{order random walk, with variance �2v , thus

generating a mildly nonstationary DOA environment. The parameter k for the model order is

initialized at k(1) = 1 or k(1) = kmax (where kmax is the maximum allowable model order) and

all the other parameters are initialized at random over their respective parameter space. The ini-

tialization is therefore done blindly. The particle �lter uses N = 300 particles. We compare the

performance for the SIS method with that of the PASTd method [2] with joint rank estimation.

A. First scenario: Change Point in the number of sources

In this �rst scenario, the number of sources is initialized to k = 1, and is complicated by a

change point at t = 50, when one of the sources vanishes. Figure 1 shows the results obtained

with the particle �lter. It shows that the directions of arrival are well traced by their estimates

1Circular arrays are used more often in practice as they do not su�er from the ambiguity between the forward

and backward look directions, as is inherent to linear arrays.



22

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Sequential Detection/Estimation

T
ra

ck
s

Time

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

Time

E
st

im
at

ed
 n

um
be

r 
of

 s
ou

rc
es

Fig. 1. Top: Sequential estimates of the directions of arrival, and Bottom: the number of detected signals,

each vs. time, using the particle �lter (Scenario A), initialized to k(1) = 1. The �nely dotted line

shows the true values, and the coarsely dotted line gives the estimated values.

throughout the entire tracking process and that the number of sources is correctly estimated.

Initially, since k = 1, the algorithm tracks towards only one source, until a birth move is accepted.

The second source is then detected and later on correctly estimated. The change-point was

detected within one sample period and the estimates of the parameters, following the change

point, quickly adapt to the true values. The same scenario is used in �gure 2, but the model

order is initially set to kmax = 5. Within 35 observations, the correct model order is determined,

and the DOA trajectories follow the true values. Again, the change point is detected within one

sample period. It is therefore seen that the proposed particle �lter approach performs well under

nonstationary conditions and variations in the initial values of the parameters.

We now discuss the comparison of the particle �lter results results with those from the PASTd

algorithm. Due to the nonstationarity, the PASTd algorithm fails to give meaningful results in

this environment. In the nonstationary case, rank estimation fails as the number of sources is

always over-estimated and the DOA estimates obtained are smoothed versions of the true values.

This behaviour is typical of any algorithm which is based on time-averaged statistics.

We therefore consider a simulation scenario which is more favourable to the PASTd algorithm.

In this case, the source DOAs are held steady at �30� for the �rst 500 observations. As shown

on �gure 3, the PAST algorithm with joint rank estimation is much slower to converge to the
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Fig. 2. Same as Figure 1, except the �lter is initialized to k(1) = kmax = 5.
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Fig. 3. Sequential estimates of directions of arrival using PAST and root-MUSIC (Scenario A).

true number of sources than the particle �lter case, both initially and after the change point.

For this favourable case, the DOA estimates produced by the algorithm include values which are

close to the true values, as shown.

B. Second scenario: Sources crossing

In this subsection, we apply the previously developed algorithm to a scenario where the source

DOAs cross, thus verifying the performance of the split/merge move combinations. In this
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scenario, the variance �2v of the update equation is reduced to �2v = 1 deg2 .

The same initial parameters as for the previous case are used. As veri�ed in �gure 4, the

algorithm performs well under these adverse conditions. As is evident from the �gure, the number

of detected sources varies cleanly from 2� 1 and back again in the region where the tracks cross.

Also, the algorithm shows no apparent tendency towards outliers in the DOA estimates in the

cross region, as is commonly exhibited with other algorithms. When the sources cross, the
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Fig. 4. Top: Sequential estimates of the directions of arrival, using the particle �lter (Scenario B), and

Bottom: corresponding number of detected sources.

steering matrix S(�) becomes rank one and hence the two targets are seen as a single source,

which explains the apparent miss-detection of a second source during the period of time when

they are very close. This scenario is more di�cult than the ones presented in [10], as the sources

here follow steep trajectories and the variance between snapshots is high, making estimation of

statistics by time-averaging very di�cult. As expected under these conditions, the performance

of the PAST method is signi�cantly degraded, as shown in �gure 5.

C. Data association via matching of probability distributions

The data association problem in our case becomes determining the most likely correspondence

of trajectories with DOA enumeration, particularly after the merging of trajectories. In our

numerical framework, we can use the estimated posterior distributions of the parameters to

perform the data association task. For example, we can compare �rst and second moments of
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Fig. 5. Sequential estimates of directions of arrival using PAST and root-MUSIC (Scenario B).

the approximate marginal distributions of the amplitude parameters before and after crossing of

the targets. Many other possibilities exist. Figure 6 shows an example of data association using

the (unnormalized) marginal distribution of the amplitudes of the two sources for the above

scenario of part B. The �rst column shows the histograms of the two amplitudes before the

targets cross, while the second column shows the histograms after crossing. In this case, from

visual inspection, it is clear the diagonally opposite distributions match.
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Fig. 6. Data association via the marginal posterior distributions of the amplitudes.
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D. Approximate joint con�dence regions

An advantage of numerical approaches to parameter estimation is that an approximation to the

joint con�dence region of the parameters is readily established from the histogram approximating

the joint posterior distribution of the parameters. Figure 7 shows a contour plot for the joint

histogram of the DOAs for the scenario of Part B above, at the 17th sample. The probability

level associated with the joint con�dence region is determined by integrating inside the respective

contour of the normalized distribution.
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Fig. 7. Contour plots of the approximate posterior distribution of the DOAs at the 17th sample.

E. Further Discussion

It is easily shown that as N !1, the global optimum of the desired posterior distribution co-

incides with the most heavily-weighted histogram bin corresponding to the particles. In practice,

the global optimum is achieved within a histogram bin-width with �nite N with high probability.

Thus, the global optimum can be attained by a simple search, instead of a complicated global

optimization over what is shown in Figure 7 to be a multi- modal surface.

The computational expense of the particle �lter approach is fairly high, requiring O(N) func-
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tion evaluations each time step. However, the evaluation of the particles is easily parallelizable,

and this order of computation does not necessarily compare unfavourably with that of a global

optimization procedure. Further, the relative computational expense of the method is o�set by

its advantages; namely, a joint detection capability and improved performance in nonstationary

environments.

VI. Conclusions

In this paper, a particle �lter that includes a reversible jumpMCMC with two new components,

the merge and split moves, is used for joint sequential detection and estimation of an unknown

number of directions of arrival.

The algorithm compares favourably to an established approach in computer simulations. The

algorithm proved robust to changes in initial values and shows robust convergence to the global

minima. The superior performance of the particle �lter over conventional methods which use

time-averaged statistics in nonstationary environments has been clearly indicated. Examples of

data association of tracks before and after crossing using histogram matching, and of the joint

con�dence region of the parameter estimates, have been given.
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