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Abstract

This paper proposes a new alternative to beamforming for extraction of multiple waveforms of desired

sources in the presence of interfering signals. Waveform extraction is useful for communications in hostile

environments and to aid in classification of targets in radar applications.

Conventional approaches to this problem use a sequence of disjoint procedures for waveform extrac-

tion. These include model order detection, direction of arrival (DOA) estimation, DOA tracking, and

then finally beamforming. In contrast, the proposed approach combines all these processes jointly. A

disctinct advantage of the proposed method is the fact that it is effective in highly nonstationary en-

vironments, where classical beamforming approaches fail. Unlike modern competing methods, like the

LPA-beamformer [1] [2], the proposed method is not model sensitive, and does not assume smooth DOA

motion within an observation window.

The proposed method is based sequential Monte Carlo (otherwise known as particle filtering) tech-

niques for estimation and tracking of the required DOAs. Once the DOA estimates are available, the

desired source waveforms can be extracted using a maximum a posteriori (MAP) procedure. Model

order detection is obtained using a reversible jump Markov chain Monte Carlo (RJMCMC) resampling

algorithm. Simulation results, which compare performance to the extended Kalman filter and the LPA

beamformer, are presented.

I. Introduction

The problem of recovering waveforms from multiple sources is of considerable interest in elec-

tronic systems. This problem has application in communications in hostile environments, or in

radar where the waveforms from the multiple targets are to be used to aid in target classifica-

tion. Standard approaches to this problem rely on arrays of sensors; first, the number of sources

or targets are detected (this is otherwise known as order detection), then the corresponding

directions-of-arrival (DOAs) are estimated, and then tracked. Once smoothed of filtered DOA

estimates are available, the desired waveforms can then be recovered using beamforming tech-

niques. In this paper we concentrate specifically on the more difficult case where the sources
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are highly mobile or nonstationary in angle. In the following portion of this Introduction, we

briefly discuss the shortcomings of the order detection, the DOA estimation, the tracking, and

the beamforming components as they relate to the waveform extraction problem.

As we see later, for signal recovery to perform well, the DOAs must be properly estimated and

tracked. Current DOA estimation techniques (MUSIC [3], ML [4], WSF, [5] etc) do not behave

well in the nonstationary case since these methods depend on covariance matrices averaged over

several past observations. Thus, the environment must be homogeneous and stationary over

the observation window, and performance degrades when these conditions are violated. An

analogous situation holds with respect to conventional order detection methods (e.g., the AIC

and MDL criteria [6]).

Conventionally, in DOA tracking applications, the DOA estimation phase precedes the track-

ing process as a completely disjoint operation. That is, signal processing precedes state es-

timation. In particular, tracking using DOA-only measurements, which has been considered

extensively in the literature (see [7], [8], [9], [10]), is a challenging problem because of nonlin-

earity and observability problems.

In the case where the DOAs are nonstationary, DOA estimation and tracking can be ap-

proached using state-space models. The aim is to estimate the state process using the obser-

vations that update the posterior distribution of interest as new observations arrive. Classical

methods to obtain approximations to the desired distributions include analytical approxima-

tions, such as the extended Kalman filter [11], the Gaussian sum filter [12], and deterministic

numerical integration techniques [13]. The extended Kalman filter (EKF) and Gaussian sum

filter are computationally cheap, but fail or diverge in some difficult scenarios. In particular,

if the nonlinearities in the state and measurement equations are significant, then the EKF’s

performance is degraded [14].

Beamforming [15] [16], a form of spatial filtering, is regarded as the ability of an array to

capture signals incident from a particular direction. The objective of beamforming is to estimate

a desired signal waveform arriving from a known direction, in the presence of noise and interfering

signals, or to separate desired signals incident from different spatial locations or directions. The

extracted signals can then be used as signatures or features for classification among different

objects or targets in radar and sonar applications. Beamforming has also proven very successful

in communications in hostile environments.

Typical beamforming approaches were developed assuming one desired source and considering

other sources as interference. To protect the desired source and to suppress the others, precise

knowledge of the desired source DOA must be available. Methods like MVDR, GSC, [15] etc.,

are just a few examples that require these assumptions to be valid for reasonable performance.

Thus these algorithms could only find application in the case where the signal sources or targets

are stationary and where their positions are perfectly known throughout the entire engagement.

Unfortunately, in practical systems and scenarios these assumptions are easily violated: the

target source may move from observation to observation and the assumed DOAs may be different

from the actual ones, and the number of sources may not be known, resulting in degraded
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performance in signal extraction. As a result, in applications where the sources are mobile,

traditional beamforming techniques are not very precise and better techniques are needed.

Recently, beamforming methods have been developed to handle nonstationary sources [1] [2]

[17]. These methods propose the use of a polynomial model to estimate DOA motion within

a short observation period (window) so that beamforming is possible in mildly nonstationary

environments. With these methods, the angular velocities of the DOA motion is taken into

account, and optimization techniques are then used to search for the optimal DOAs of the

sources. Once the estimates are available, traditional beamforming algorithms could then be

used to extract signals of interest. While these methods take target motion into account, they

still do not address the critical model order selection problem; also, the performance relies heavily

on the smoothness of target motion within the observation period. The PASTd approach [18] has

also been proposed as a means of dealing with nonstationary targets. This method estimates

a noise subspace over a sliding window from the observed data. Then, from this subspace,

the number of sources can be determined and the DOAs tracked. Thus, assumptions about

stationary sources and the knowledge of the number of sources is relaxed with this approach.

However, The PASTd method assumes that the subspace is constant within the window, which

means the DOAs must be almost stationary. Thus the method fails to track and extract the

sources if they move substantially within the window.

The performance of standard beamforming algorithms is sensitive to error in the DOA estimate

of the target, and deteriorates very significantly if the estimated DOA is different from the true

one. Robustness to DOA uncertainty [1] has been introduced such that the main lobe width is

traded off with the degradation caused by the deviation of the estimated and true DOAs.

In this paper, we present a novel alternative method to beamforming for online recovery of an

unknown number of desired source waveforms in the presence of interference, that is effective in

nonstationary conditions. The proposed method performs the DOA estimation/tracking, and

the order detection components of the waveform extraction problem jointly in one seamless op-

eration, rather than disjointly as before. The proposed method uses the sequential MC (Monte

Carlo) methods in conjunction with the MCMC (Markov Chain Monte Carlo) methods [19] [20],

that have emerged as useful methods in the signal processing arena. They are Bayesian methods

based on the idea of numerically sampling posterior distributions of interest that are difficult

or impossible to handle analytically. Using the histogram so obtained from these samples, sta-

tistical inferences on parameters of interest can be made. The sequential MC methods (also

known as particle filters) [19], [21], [22] are suitable for estimating the state process using the

observations and hence recursively updating the posterior distribution of interest as new obser-

vations arrive. Model order detection is achieved using the reversible jump MCMC procedure

[23]. Simulation results show that the proposed particle filtering approach for waveform recovery

does not suffer from the drawbacks associated with the more standard approaches, as discussed

above, at addressing this problem.

The proposed procedure is first to determine the number of incident signals, and then estimate

their respective DOAs using sequential Monte Carlo methods. We then use the estimated DOAs
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to extract the desired source amplitudes using a maximum a posteriori (MAP) procedure. The

desired sources can be distinguished from interferences using a priori knowledge of the desired

source waveforms.

This paper is organized as follows. Section 2 presents the state-space signal model and the

derivation of the necessary distributions. Section 3 describes the derivation of the sequential

update of the target posterior distribution. Section 4 describes the reversible jump MCMC pro-

cedure that facilitates model order detection. Section 5 presents simulation results and compares

the proposed method with the EKF [24] [14] and the LPA-beamformer [1] [2]. Conclusions are

given in Section 6.

Notation: Bold upper case symbols denote matrices, bold lower case symbols denote vectors.

The superscript H denotes the transpose operation, and the symbol “∼” means “distributed as.”

The quantity p(·) denotes a prior probability distribution, l(·) denotes a likelihood function, and

π(·) denotes a posterior distribution. The quantity N (µ, σ2) indicates a real normal distribution

with mean µ and variance σ2. The symbol Nc(·, ·) denotes the corresponding complex normal

distribution. The quantity U(a, b) indicates a uniform distribution over the interval [a, b].

II. The State-Space Model

A. The State-Space Model

The transmission medium is assumed to be isotropic and nondispersive so that the radiation

propagates along straight lines, and the sources are assumed narrowband and in the far-field of

the array. In other words, the radiation impinging on the array is in the form of a sum of plane

waves.

We denote the number of narrowband plane waves impinging on an M -element array from

distinct directions at time t as k(t), which is unknown and time–varying, such that k(t) < M for

all t. The signals are assumed to have the same known center frequency and, hence, the effect

of a time delay on the received waveforms is simply a phase shift. Denoting the DOA vector by

φ(t) ∈ [0, 2π]k(t), we define the steering matrix by S(φ(t)) ∈ CM×k(t) as follows:

S(φ(t)) = [s(φ1(t)), s(φ2(t)), . . . , s(φk(t))], (1)

where k = 1, 2, ..., k(t). Each column of S(φ(t)) is the steering vector corresponding to a

particular source, defined as follows:

s(φk(t)) = [e−jd1ξk(t), e−jd2ξk(t), . . . , e−jdMξk ]T , (2)

where

ξk(t) = (2π/λ) sin φk(t). (3)

The quantity φk(t) is the angle of the kth source incident onto the array at time t, dm for

m = 1, 2, . . . ,M is the position of the mth sensor, and λ is the wavelength. Denote a complex

vector of observations y(t) ∈ CM that represents the data received by a linear array of sensors
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at the tth snapshot, and a complex vector of amplitudes of the sources at the tth instant by

a(t) ∈ Ck(t). We adopt a first order state-space Markov model in the proposed sequential

sampling approach. It is assumed that the states [φ(t),a(t)] evolve according to the following

equations:

φ(t) = φ(t− 1) + σww(t), (4)

a(t) ∼ N (0, δ2σ2
w

[
SH(φ(t))S(φ(t))

]−1
), (5)

whereas the observation equation is defined as:

y(t) = S(φ(t))a(t) + σnv(t), (6)

where the noise variables v(t) ∈ CM and w(t) ∈ Rk(t) are Gaussian variables with zero mean

and unit variance uncorrelated with the signal and each other, the noise variances σw and σv

are assumed unknown and constant (for a stationary system), and the hyperparameter δ2 is set

to an a priori estimate of the SNR[25].

We define the vector θ1:t of unknown parameters as follows:

θ1:t � ({φk(t)}1:t, {ak(t)}1:t, k1:t, σ
2
v , σ

2
w), (7)

where the notation (·)t1:t2 denotes all values of the argument from time t1 to t2. Using Bayes’

theorem, we have the following expression for the joint posterior distribution π(θ1:t) from time

1 to t, involving the likelihood function l(y1:t|θ1:t) and the joint prior distribution p(θ1:t):

π(θ1:t) ∝ l(y1:t|θ1:t)p(θ1:t). (8)

The above can be expanded to give

π(θ1:t) ∝ l(y1:t|φ1:t,a1:t, k1:t, σ
2
v , σ

2
w)p(φ1:t|k1:t, σ

2
v)p(a1:t|φ1:t, k1:t, σ

2
w)p(σ2

v)p(σ2
w)p(k1:t). (9)

The quantity δ2 in (9) is a hyperparameter equivalent to the inverse signal to noise ratio.

Assuming the observations, given the states are iid, the conditional update likelihoods of the

states are also iid, and the distribution of the initial states is uniform, we can express the

following individual distributions, using the Markov properties of the model, as follows:

l(y1:t|φ1:t,a1:t, k1:t, σ
2
v , σ

2
w) =

t∏
l=1

N (S(φl)al, σ
2
wIM ), (10)

p(φ1:t|k1:t, σ
2
v) =

t∏
l=1

N (φl−1, σ
2
vIkl

), (11)

p(a1:t|φ1:t, k1:t, σ
2
w) =

t∏
l=1

N (0, δ2σ2
w

[
SH(φl)S(φl)

]−1
). (12)

The prior distribution for the model order k is assigned a discrete uniform distribution equal

to Λ = 1/kmax, k = 0, . . . , kmax, where kmax is the maximum allowable model order, equal to
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M − 1. The prior distributions of the noise variances are both assumed to follow the inverse

Gamma distribution, which is the conjugate distribution for the Normal distribution as follows:

p(σ2
v) ∼ IG(α0

2
,
γ0

2
), (13)

p(σ2
w) ∼ IG(α1, γ1), (14)

where α0, α1, γ0, γ1 are hyperparameters.

Substituting (10) - (14) into (9) and rearranging, it can be shown [25][26] that the posterior

distribution π(θ1:t) can be represented as follows:

π(θ1:t) ∝
t∏

l=1

1
σ2kl

w πkl
exp

[−1
σ2

w

(al −mal
)HΣ−1

al
(al −mal

)
]

×
t∏

l=1

1
σ2M

w δ2kl
exp

[−1
σ2

w

yH
l P⊥

S (φl)yl

]

×
t∏

l=1

|SH(φl)S(φl)|
σ2kl/2

v (2π)kl/2
exp

[ −1
2σ2

v

(φl − φl−1)
H(φl − φl−1)

]

× σ2(− α0
2 −1)

v exp
[−γ0

2σ2
v

]
× σ2(−α1−1)

w exp
[−γ1

σ2
w

]
×

t∏
l=1

Λ,

(15)

where

Σ−1
al

= SH(φl)S(φl)(1 + 1/δ2), (16)

mal
= Σal

SH(φl)yl, (17)

and

P⊥
S (φl) = I − S(φl)[S

H(φl)S(φl)]−1SH(φl)yl

(1 + 1/δ2)
. (18)

From (15), it is seen that (17) is a maximum a posteriori (MAP) estimate of the amplitudes

al, which implies that the amplitudes need not be included in the particle filter but can be

estimated at each iteration after the sampling of the other parameters. Finally, integrating out

al analytically from (15) yields

π(α1:t) ∝
t∏

l=1

1
σ2M

w (1 + δ2)kl
exp

[−1
σ2

w

yH
l P⊥

S (φl)yl

]

×
t∏

l=1

1

σ2kl/2

v (2π)kl/2
exp

[ −1
2σ2

v

(φl − φl−1)
H(φl − φl−1)

]

× σ2(− α0
2 −1)

v exp
[−γ0

2σ2
v

]
× σ2(−α1−1)

w exp
[−γ1

σ2
w

]
×

t∏
l=1

Λ,

(19)

where the prior on the model order has been absorbed into the constant of proportionality. The

above yields a much simpler posterior distribution in terms of the remaining parameters. As a

result, we can write the parameter vector α1:t as follows:

α1:t � (φ1:t, k1:t, σ
2
v , σ

2
w). (20)
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It is also possible to obtain the MAP estimators of the variance parameters as follows:

σ2
v,MAP =

γ0

2 + 1
2

∑t
l=1

(
φl − φl−1

)H (
φl − φl−1

)
ν0
2 + 1

2

∑t
l=1 k(l) + 1

, (21)

σ2
v,MAP =

γ1 +
∑t

l=1 yH
l P⊥

S (φl)yl

ν1 + Mt + 1
. (22)

Thus, the proposed approach is to use the posterior distribution of (19) to estimate the DOAs

φ(t), and the model order k(t), as discussed later. Once these estimates are available, the

objective of this work can be achieved, which is to estimate the desired signal amplitudes. This

is done using (17).

III. Sequential MC (SMC)

A. Bayesian Importance Sampling

Monte Carlo sampling methods can be used to generate a numerical approximation in the

form of a histogram corresponding to an arbitrary distribution of interest. To illustrate the

use of this approach, consider a function f(x) of x. The expected value of the function over a

probability distribution function π(x) can be defined as:

If = Eπ(x)(f(x)) =
∫

π(x)f(x)dx. (23)

This expectation may be difficult or impossible to evaluate analytically. However, let’s assume

that we are able to draw N iid samples {x(i); i = 1, 2, . . . , N} from the desired distribution π(x).

We can then numerically approximate this distribution as:

π̂N (dx) =
1
N

N∑
i=1

δx(i)dx, (24)

where dx is a small, finite region surrounding an x of interest and δx(i) is an indicator function

defined as:

δx(i)(dx) =




1, if x(i) ∈ dx,

0, otherwise.
(25)

As a result, we can approximate the expected value of f(x) as follows:

Îf,N =
∫

π̂N (x)f(x)dx =
1
N

N∑
i=1

f(x(i)). (26)

According to the strong law of large numbers (SLLN) with N → +∞, Îf,N converges to If .

The advantage of the MC sampling method is now clear. One can easily and efficiently esti-

mate If and other statistical inferences based on the set of samples {x(i); i = 1, 2, . . . , N}. This

means that parameter estimates can be determined by numerical evaluation of the expectation

of the posterior distribution, a process which is easily implemented. MAP estimates are gen-

erated by finding the maximum of the histogram, which is implemented by finding the largest
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element of an array, a process which is much easier than a multi–dimensional search, required

by conventional Bayesian methods. In the proposed method discussed in this paper, we use

the MAP approach. With Monte Carlo sampling techniques, it is also straightforward to gen-

erate estimates of variances, or estimates of the confidence regions corresponding to parameter

estimates.

Unfortunately, it may be difficult or impossible to draw samples directly from the desired

distribution π(x). Instead, N samples are drawn from another “easy-to-sample” function q(x),

called the “importance function1,” whose support includes that of π(x). The histogram of these

samples (particles) approximates the distribution q(x). To generate a numerical approxima-

tion to the desired distribution π(x), we use the Bayesian importance sampling method. The

“importance weight” w(x(i)) is defined as follows:

w(x(i)) ∝ π(x(i))
q(x(i))

(27)

such that the posterior distribution π(x) can be approximated by a histogram defined as

π̂N (dx) =
∑N

i=1 w(x(i))δx(i)(dx)∑N
j=1 w(x(j))

,

=
N∑

i=1

w̃(x(i))δx(i)(dx),

(28)

where w̃(x(i)) is the normalized importance weight, given by

w̃(x(i)) =
w(x(i))∑N

j=1 w(x(j))
. (29)

The expected value of the function f(x) can now be estimated as follows:

Îf,N =
∫

π̂N (x)f(x)dx =
1
N

N∑
i=1

w(x(i))f(x(i)). (30)

It can be shown [27] that even though π̂N (x) is biased, the expectation Îf,N of any function f(x)

over π̂N (x) converges to If as N → +∞. Once the histogram is available, parameter estimation

can then proceed in the manner discussed above.

B. Sequential Update of The Posterior Distribution– Sequential Importance Sampling (SIS)

The idea of SIS, otherwise known as particle filtering (PF), is to update the weights w(x(i)) of

the approximate posterior distribution in (28) recursively and sequentially, based on the arrival

of new observations. It can be shown that an optimal importance function that minimizes the

variance of the weights and has support including that of the target distribution is given by:

qoptimal(·) = q(α(i)
t |α(i)

t−1,yt). (31)

1Because f(x) is sampled nonuniformly with the density q(x), some samples x have more “importance” than

others; hence, q(x) is called the importance function.
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Further, it is necessary for the recursive update of the weights that the importance function be

factorizable as

q(α1:t|y1:t) = q(α1:t−1|y1:t−1)q(αt|α1:t−1,y1:t). (32)

The above has the form of (31). Denoting the importance weight w(i)(t) by

w(i)(t) =
π(α1:t)

q(α1:t|y1:t)
,

using the Markov properties of the model, the form of (31), and the iid assumptions on the noise

variables, we have [22]

w(i)(t) = w̃(i)(t− 1)× p(yt|α(i)
t )p(α(i)

t |α(i)
t−1)

q(α(i)
t |α(i)

1:t−1,y1:t)
, (33)

where w̃(i)(t− 1), which absorbs the normalizing component p(yt|y1:t−1), is defined as follows:

w̃(i)(t− 1) =
w(i)(t− 1)∑N
i=1 w(i)(t− 1)

. (34)

Thus, because a recursive update on the weights is available, an approximation to the complete

joint posterior distribution (28) is available at each time instant. This ultimately leads to

improved performance over many other approaches for estimation, which rely solely on only a

reduced set of (e.g., second-order) statistics.

A major difficulty with the SIS procedure is that the recursion of (33) degenerates quickly

after a few iterations in such a way that all but a few of the normalized weights become very

close to zero. As a result, any estimate based on these very few significant particles would show

a large variance. Therefore, in addition to the use of the optimal importance function it is

necessary to introduce other procedures to improve the recursion of (33).

Resampling is an idea to eliminate the trajectories of the weights which have weak normal-

ized importance weights and to multiply trajectories with strong importance weights. The most

popular resampling scheme is Sampling Importance Resampling (SIR), which resamples the par-

ticles according to their respective importance weights. It can be shown [28] that the resampling

can be done very efficiently with order (N) operations. Unfortunately, the trajectories with high

importance weights are statisically selected many times, limiting the true statistical diversity

amongst the particles. This is the classical problem of depletion of samples, with the result that

the cloud of particles may eventually collapse to a single particle.

An efficient way of limiting sample depletion consists of using a reversible jump MCMC step

[19] [20] [23] on each particle at time t. The MCMC procedure provides new samples from the

posterior distribution π(φ(t)|y(t)), thus introducing statistical diversity amongst the particles. A

pertinent aspect of the reversible jump process is that it is capable of exploring parameter spaces

of varying dimension. This allows us to perform model order detection as well as estimation of

the other parameters.

In summary, the proposed SIS approach is basically a combination of a sequential Bayesian

importance sampling, sampling importance resampling, and an MCMC step. Note that the only
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parameter in α which is subjected to the sampling procedure is the DOA vector φ. The model

order k(t) is sampled using the reversible jump process to be described, the desired amplitudes

(which give the source waveforms), are estimated from (17), and the variances are estimated

according to (21) and (22). We summarize these steps in the following table:

Sequential Importance Sampling Algorithm

Initialization

For time t = 1,

• sample N particles φ(i), i = 1, . . . , N from q(·|·).
• initialize the weights w(i), i = 1, ..., N to π(φ(i)

)

q(φ(i)
)
.

• normalize the weights to w̃(i)(t) = w(i)(t)∑N
j=1 w(j)(t)

.

Then for t = 2, 3, ...

1. Sequential Importance Sampling Step

(a) Sample N particles of φ
(i)
t for i = 1, 2, . . . , N from the optimal importance function given

from (31) as follows:

φ
(i)
t ∼ q(φ(i)

t |φ(i)
1:t−1,y1:t). (35)

(b) Evaluate the importance weights for N particles as follows:

w(i)(t) = w̃(i)(t− 1)× p(yt|φ(i)
t )p(φ(i)

t |φ(i)
t−1)

q(φ(i)
t |φ(i)

1:t−1,y1:t)
,

and hence the normalized importance weights are given as follows:

w̃(i)(t) =
w(i)(t)∑N

j=1 w(j)(t)
.

2. Sampling Importance Resampling Step

Multiply/Suppress the particles φ(i)(t) respectively with high/low importance weights w̃(i)(t) to

obtain N random samples approximately distributed according to π(φ(i)
1:t).

• Sample a vector l distributed as:

P (l(j) = i) = w(i)(t).

• Resample the particles with the index vector:

φ
(i)
1:k = φ

(l(i))
1:k .

• Re-assign all the weights to w(i)(t) = 1
N .

3. MCMC Step

Follow the MCMC procedure to be described in Section IV to introduce diversity of the particles

and to facilitate detection of model order. �
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Note that the MCMC process normally requires a “burn–in” period for the chain to reach

equilibrium. However in this case, this is not required, since the particles are already distributed

according to the desired posterior distribution, which is the invariant distribution of the chain,

before application of the MCMC procedure.

IV. The Reversible Jump MCMC Diversity Step

The reversible jump MCMC (RJMCMC) process [23], which is a variation of the Metropolis-

Hasting (M-H) algorithm [29], can be used for model order detection. While one could sample

the subspace corresponding to a range of model orders independently, the computational cost of

such a scheme can be very large, since the same effort is allocated to all model orders, even though

some models will have a very low posterior probability. In contrast, the RJMCMC algorithm

directly samples the model order k(t) from the joint posterior distribution, by jumping between

subspaces of different dimensions, thus visiting all relevant model orders. The procedure is more

computationally efficient, since the most likely model orders are visited most often, and hence

correspondingly less effort is spent on model orders with lower probability. The RJMCMC

algorithm inherently sets up a Markov chain which is capable of jumping between model orders,

yet whose invariant distribution corresponds to the joint posterior π(φ, k) of interest.

The algorithm itself is similar to the conventional Metropolis–Hastings algorithm [29]. At

each iteration, the algorithm proposes a candidate from a set of candidate distribution func-

tions. These functions are designed to change the model order. At each iteration, a candidate

distribution q(·) is randomly chosen, and a sample candidate φ� of size k� is obtained by sampling

q(·). This candidate sample will be accepted with probability α defined as

α((φ�, k�), (φ, k)) = min{r((φ�, k�), (φ, k)), 1}, (36)

with the acceptance ratio r being defined as

r((φ�, k�), (φ, k)) =
π(φ�, k�)q(φ, k)
π(φ, k)q(φ�, k�)

J((φ�, k�), (φ, k)). (37)

If the candidate is accepted, the chain takes on the new state; otherwise the chain remains at

the current state.

The term J((φ�, k�), (φ, k)) is the Jacobian of the transformation, required to reconcile the

total probability between spaces of different dimensions so that the reversibility condition 2 is

satisfied, and is defined [30] as

J((φ�, k�), (φ, k)) =
∣∣∣∣∂φ�

∂φ

∣∣∣∣. (38)

It may be be verified that for this study, J(·|·) = 1. The most widely used candidate functions

are the birth/death complementary moves. When the death move is selected, the algorithm
2The reversibility condition states that the probability distribution of the Markov chain entering a particular

state is equal to the probability of the chain leaving the state. The reversibility condition is sufficient for the states

of the chain to assume its invariant distribution. The procedure involving (36) and (37) ensures the invariant

distribution of the chain is indeed the desired joint posterior, in model order and parameters.
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proposes a candidate in the model of lower dimension, as opposed to the birth move, which

proposes a candidate of higher dimension. However, if neither move is selected, the update

move, which leaves the model order unchanged, is executed. The probabilities for choosing each

move are denoted uk, bk and dk, respectively, such that uk + bk + dk = 1 for all k. In this case,

we choose the probability of a jump to be between 0.5 and 1 at each iteration [23].

It is clear that once the joint posterior distribution π̂N (α(t), k(t)) is available from the RJM-

CMC procedure, the model order k can be determined by marginalizing with respect to α(t),

leaving only π̂N (k(t)). Then the estimate of model order k̂(t) can be determined using, e.g., a

MAP procedure.

These methods were first applied to engineering problems by Andrieu and Godsill [25] [31] [32]

[33] for the detection and estimation of parameters in white noise. The overall description of the

RJMCMC algorithm is determined by the choice of moves at each iteration. This description is

summarized as follows.

Reversible Jump MCMC

1. Current state of the chain = current state of the particles (k(t),φ(i)(t)).

2. Iteration t for the ith particle, i = 1, ..., N

• Sample u ∼ U , where U is a uniform distribution over [0, 1],

• if (u < bk) then execute a “birth move”,

• else if (u < bk + dk) then execute a “death move”,

• else, execute an update move .

3. t← t + 1, goto step 2

�

A. Update Move

In this move, the model order is kept fixed, i.e., k(t) = k(t− 1). The steps are summarized as

follows:

1. To introduce diversity of the particles, we execute one iteration of the Metropolis Hastings

MCMC algorithm [29]. This procedure generates a new set of N particles distributed according

to the desired posterior distribution π(α) given by (19):

for i = 1, . . . , N

(a) Sample a candidate DOA φ� from the following proposal distribution:

q(φ(i)(t)|φ(i)(t− 1)) = N (φ(i)(t− 1), σ2
vIk(t)), (39)

which has the form of (35).

(b) evaluate the acceptance ratio by substituting (39) and (19) into (37) as follows:

rupdate =
exp

[
− 1

σ2
w
yH(t)P⊥

S (φ�)y(t)
]

exp
[
− 1

σ2
w
yH(t)P⊥

S (φ(i)(t))y(t)
] , (40)
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(c) accept the candidate φ� with the probability:

ηupdate = min{rupdate, 1}. (41)

2. Estimate φ̂(t) using a MAP procedure from the histogram obtained from the particles.

3. Using φ̂(t), estimate the amplitudes a(t) according to (17).

4. Estimate the noise variances σ2
v and σ2

w according to (21) and (22), respectively, for use in

(39) and (40).

B. Birth/Death moves

The procedure for executing the birth/death moves is similar to that of the update move

discussed above. However, the birth move proposes a candidate in a higher dimension model,

whereas the death move proposes a candidate in a lower dimension model. In the birth move,

we assume that the current state is (φk, k) and we wish to determine whether the next state

is
(
φk+1, k + 1

)
at the next iteration. This involves the addition of a new source φc, which is

proposed at random from the prior distribution for the directions of arrival such that:

φ�
k(t)+1 = [φk(t)|φc] . (42)

Then, the acceptance ratio corresponding to (40) for the birth move is:

rbirth =
exp

[
− 1

σ2
w
yH(t)P⊥

S (φ�
k+1)y(t)

]

exp
[
− 1

σ2
w
yH(t)P⊥

S (φ(i)
k )y(t)

] × 1
(1 + δ2)(k + 1)

, (43)

where the φ�
k+1 will be accepted with a probability:

ηbirth = min{rbirth, 1}. (44)

The underlying Markov chain must be reversible with respect to moves across subspaces of

different model order, so that the desired invariant distribution of the chain with respect to

model order is preserved by the MCMC algorithm. That is, the probability of moving from

model order k to k + 1 must be equal to that of moving from k + 1 to k. Thus, there must also

be the death move in which a source in the current state
(
φk+1, k + 1

)
is randomly selected to

be removed such that the next state becomes (φk, k) at the next iteration. In order to preserve

reversibility, the acceptance ratio for the death move must be [23]

rdeath =
1

rbirth
, (45)

and a new candidate of dimension k is accepted with probability:

ηdeath = min{ 1
rdeath

, 1}. (46)

The schemas for the birth and death moves are similar to those for the update move.
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Parameter M k σ2
v a(0)

Value 8 2 (10)◦2
[10, 8]

TABLE 5.1

Parameters of the state-space model for simulating the data for Experiment 1.

V. Simulation Results

The proposed PF algorithm is now applied to three sets of simulation data, generated for

k = 2 sources with the parameter values listed in Tables 5.1 and 5.6, respectively. A uniform

linear array composed of M = 8 elements with a half–wavelength spacing of the elements is used

in all the simulations. In each experiment, N = 300 particles are used.

In the first experiment, the ability of the proposed method to simultaneously track and detect

the number of sources as well as extract the source waveforms is demonstrated. The variance

of the observation noise σ2
w(t) is made nonstationary, with corresponding SNR values shown

in Table 5.3. In this experiment, one of the sources vanishes suddenly. The proposed particle

filtering (PF) method is compared with the extended Kalman Filter (EKF) [14][24], which

linearizes the highly nonlinear observation model in (6).

In the second experiment, the PF method is compared with the LPA-beamformer [1] [2]. The

LPA- beamformer has the ability to adapt to a target direction which changes throughout the

observation interval.

In the last experiment, a smoother track is used to compare the proposed method with the

LPA-beamformer. This is a more favorable case for the latter method. In this case, the DOAs

tracks correspond to two sinusoidal functions.

A. Experiment 1 : Joint DOA tracking and detection of unknown sources

In the first experiment, the DOA tracks of the two sources correspond to autogressive (AR)

processes whose coefficients represent a 10th–order low–pass Butterworth filter, with normalized

cutoff frequency 0.1, variance σ2
v , and with AR coefficients which are specified in Table 5.2.

These simulated tracks are representative of a difficult but realistic tracking scenario in real

life. Likewise, the source waveforms are AR processes, generated from a 10th–order low–pass

butterworth filter with normalized cutoff frequency 0.3, whose coefficients are also listed in Table

5.2. Figure 1 depicts the locations of the roots of the AR coefficients used for the generation of

DOAs and signal amplitudes, respectively. The initial value φ(0) is [−20◦, 30◦] and the initial

SNR is about 18.56 dB for both sources. 300 snapshots are generated. One of the sources

vanishes at t = 200. In order to show the robustness of the PF method in a nonstationary

noise environment, the observation noise is generated such that the variances are varying or

nonstationary in different regions of time. The average SNRs in the different time regions are

summarized in Table 5.3.

In this experiment, the EKF simulation assumes the number of sources k = 2 is known and



15

AR coefficients for DOA generation AR coefficients for signal amplitude generation

1 1

-7.9923 -3.9877

28.9122 8.0944

-62.3154 -10.4736

88.5877 9.4233

-86.7671 -6.0842

59.2810 2.8353

-27.8903 -0.9364

8.6457 0.2089

-1.5942 -0.0283

0.1328 0.0018

TABLE 5.2

The AR coefficients for the generation of the DOA and signal amplitude processes.

Roots of AR coefficients for DOAs             
Roots of AR coefficients for signal amplitudes

r = 1 

Fig. 1. The roots of the AR processes.

Time range SNR (dB)

1-100 18.56

101-200 15.32

201-300 19.78

TABLE 5.3

The average SNRs in the different time ranges.
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constant, but the PF method is capable of detecting the number of sources sequentially, and

therefore does not require knowledge of k. Unlike the PF method, the EKF requires the exact

AR process model, and the noise covariance matrices.

The proposed algorithm randomly initializes the unknown parameters and assigns the model

order k(0) to kmax = M − 1 = 7, where kmax is the maximum allowable model order.

First, we consider the performance of the PF approach in detecting model order. The instan-

taneous model order estimate versus time is shown in Figure 2. We see that the detection process

takes about 10 snapshots to converge to the true model order k = 2, and that the vanishing

source is properly detected at t = 200.

Even though the objective of this work is to recover the amplitudes, the DOA estimation pro-

cess is a critical step in determining the source waveforms. This is because the MAP amplitude

estimate of (17) requires the φ’s. Thus, we first consider a comparison of the DOA estimation

performance of the PF method versus that of the EKF. As shown in Figure 3, it is seen the

PF method significantly outperforms the EKF in terms of accuracy in tracking the DOAs. In

the region 0 < t < 20, the PF approach is recovering from a transient due to the tracks being

initialized to the incorrect values. The relatively poor performance of the EKF is due in part to

the highly nonstationary behavior of the tracks. The performance of the PF method degrades

over the interval 160 ≤ t ≤ 180 where the sources are very closely spaced, as shown in Figure

4 (This figure is a zoomed version of Figure 3, for the region t = [151, 209]). This behavior is

expected since the matrix S(φ) becomes poorly conditioned in this case. It is seen that after

t = 200 when source 1 vanishes, the PF method detects the change in model order, and sub-

sequently, produces accurate DOA estimates, as shown in Figures 3 and 4. However, since the

EKF has no facility for model order detection, it assumes there are still k = 2 sources during

this interval. As a result, because of this error in the model, the DOA estimates produced by

the EKF are grossly in error.

We now consider the performance of the source waveform recovery. The performances of both

approaches are directly dependent on the accuracy of the DOA estimation. Figure 5 shows

amplitude waveforms recovered using three different methods. The first uses the PF approach

to determine the DOAs at each time instant, and then uses (17) to generate the corresponding

amplitudes. The second is similar, except it uses the EKF to generate the DOAs. In this case, the

amplitudes are determined using (17) with δ2 = 0. The third method uses the EKF to estimate

the DOAs, but then uses a conventional beamformer method [15] to compute of a set of adaptive

weights based on the estimated DOAs from the EKF procedure. The source waveforms â(t)

are then recovered from the output of the beamformer. By assuming that the two sources are

the targets to be protected, we can compute the weights, u(t), using a constrained optimization

procedure as follows

uopt(t) = arg min
u(t)

uH(t)R̂(t)u(t)

s.t. C(t)u(t) = c,

(47)



17

50 100 150 200 250 300
0

1

2

3

4

5

6

7

Sample Index

M
od

el
 O

rd
er

, k
(t

)

Fig. 2. Sequential estimates of model order for Experiment 1.

where R̂(t) is a sample covariance matrix, recursively updated as

R̂(t) = R̂(t− 1) + y(t)yH(t), (48)

C(t) is the constraint matrix, the columns of which are the steering vectors evaluated at the

estimates φ̂(t), and c is a column of constraining values. In this particular simulation, all con-

straining values are set to one, that is, all targets are kept intact at unity gain. The beamformer

output â(t) is given as â(t) = uH
opt(t)y(t). The respective DOA estimates used by the PF and

EKF approaches are those shown in Figure 3.

Given the relatively poor performance of the EKF with regard to DOA estimation, the signal

extraction for both the EKF approaches is adversely affected, as shown in Figure 5. It is seen

that the waveforms recovered using the DOA estimates from the particle filter are significantly

improved over those given using the EKF. It is only in the region 160 < t < 180, where the

DOAs are extremely close together, that the particle filter approach deteriorates. The improved

behaviour of the PF method is in spite of the additional information (i.e., the covariance matrices

and the model order) that are required by the EKF method. Even though the EKF is simple and

relatively easy to implement, the linearization used in the EKF in the measurement and/or state

prediction can introduce a bias, and the covariance computation based on a series expansion is

not always accurate [14]. In addition, unless accurate estimates of all other important parameters

are given, the EKF will not perform as intended. Furthermore, a significant advantage of the

proposed method is that it is capable of detecting the instantaneous number of sources, which

is crucial in signal extraction, especially when the number of sources is time-varying.

B. Experiment 2: Comparison with the LPA beamformer

In the second experiment, the PF method is compared with the LPA-beamformer [1] [2]. The

DOA tracks and the two source waveforms are generated as in experiment 1, with initial values
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Fig. 3. Comparison of DOA tracking performance for the PF and the EKF methods, for Experiment 1.

155 160 165 170 175 180 185 190 195 200 205

−15

−10

−5

0

5

10

15

20

Sample Index

D
O

A
s

True  φ(t)
Estimated by PF   
Estimated by EKF  

source 1 vanished at t = 200 

Fig. 4. A zoomed version of Figure 3, from sample t = 151 to t = 209, highlighting the region where the

source disappears.

φ(0) = [0◦,−20◦], and k(0) = kmax, and with the other parameters listed as before in Table

5.1. Here, the DOA tracks cross each other at about t = 140, and the model order remains fixed

at k = 2 throughout the entire observation interval. In this experiment, the observation noise

variance is constant throughout the observation interval. The signal amplitudes are extracted

using (17) directly for the PF method. For the LPA method, the sources are extracted using

the beamformer approach described by (47) and (48).

Figure 6 shows the convergence of the model order estimate from its initial value of kmax to the

true value k = 2. As seen, it takes about 10 snapshots for the PF model order detection scheme

to converge to the correct value. The performance for both the DOA and waveform estimation

processes for the PF and the LPA methods are shown in Figures 7 and 8, respectively. It is
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Fig. 5. Comparison of the waveform extraction performance of the PF method and the LS and beam-

forming approaches based on the EKF, for Experiment 1. Top: recovered source waveform for source

0, Bottom: same for source 1.

seen that the observations concerning the relative performance of the PF vs. EKF approaches

in Experiment 1 persist in this experiment also.

The LPA-beamformer technique was developed to relax the assumption that DOAs are con-

stant within the entire observation period, as is required with conventional beamformers. It ac-

commodates DOA variation within a sliding time window by modelling the DOA trajectory vs.

time as a polynomial, whose coefficients must be estimated. Like the EKF, the LPA-beamformer

assumes the number of sources is known and constant throughout the entire observation period.

The length of the sliding window for the LPA-beamformer for this experiment is L = 15, and a

first-order polynomial is used to track the changing DOAs within the window3.

As shown in Figure 7, the estimated tracks produced by the LPA-beamformer are not close

to the true tracks until they are well-separated and relatively smooth, as is the case for t ≥ 150.

The degraded performance of the LPA-beamformer relative to the PF approach can be explained

by the fact that the DOA motion within the sliding window violates the assumption of smooth

and linear behaviour. Since the performance of the LPA-beamformer is somewhat degraded with

regard to DOA estimation, the signal extraction is also adversely affected, as shown in Figure 8.

Tables 5.4 and 5.5 provide a quantitative measure of the performance of the various algorithms

in terms of the MSE of the estimated DOAs and source waveforms. As expected, the MSE for

the DOA and amplitude estimates in the periods t ∈ [1, 114] and t ∈ [251, 300] are small,

respectively, for the PF method. In contrast, the errors are comparatively larger for the LPA

approaches. During t ∈ [115, 250] when the tracks are very close, the DOA estimation MSE
3The first-order polynomial was chosen because it gave the best performance. Higher-order polynomials have

the potential to track changing directions better, but degrade in performance because more coefficients must be

estimated.
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Fig. 6. Sequential estimates of model order for Experiment 2, using the PF method.
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Fig. 7. Comparison of the DOA tracking performance for the PF method and the LPA approach for

Experiment 2.

on average is far better than that for amplitude estimation for the PF method, implying that

amplitude estimation is very sensitive to DOA estimation, when the DOA tracks are close.

Nevertheless, these errors are still far smaller for the PF method than those produced by the

other approaches.

We will include MSEs for different numbers of particles, e.g., in Tables 5.4 and

5.5.
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Fig. 8. Comparison of the waveform extraction performance for the PF method and the LPA approach

for Experiment 2.

MSE (dB) t ∈ [1, 114] t ∈ [115, 250] t ∈ [251, 300]

PF -27.36, -30.28 -10.34, -18.22 -32.97, -40.45

LPA-beamformer -20.01, -18.21 -8.23, -6.12 -24.89, -32.91

TABLE 5.4

The MSE between the true and estimated DOAs over 50 independent trials for the PF

method and the LPA-beamformer, for Experiment 2.

C. Experiment 3: Comparison between the PF method and the LPA-beamformer

In this experiment, the two DOA tracks are smooth sinusoidal functions, given by

φ(t) = φ(0) + 10 sin
(

10πt

300

)
, t = 1, ..., 300,

where φ(0) = (20,−20)◦, are used to compare the tracking performance and hence the signal

extraction of the proposed method with that of the LPA-beamformer. The amplitudes are

generated using AR processes as in the previous experiments. The number of sources is assumed

known and constant. The other parameters used in this simulation can be found in Table 5.6.

Figures 9 and 10 show the comparison between the proposed method and the LPA-beamformer

in terms of DOA tracking and signal extraction, respectively. According to these figures, these

methods provide comparable performance in both respects, although the PF method is slightly

better. Table 5.7 summarizes the MSE of the DOA estimation and signal extraction for these

methods over 50 independent trials.

The LPA-beamformer, which relies on a first-order linear model to track slowly fluctuating

DOAs, suffers from model mismatch in highly nonstationary conditions. If the assumptions for

the LPA-beamformer are violated, i.e. the tracks are not smooth and moderately nonstationary,
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MSE (dB) t ∈ [1, 114] t ∈ [115, 250] t ∈ [251, 300]

PF -17.28, -18.00 -5.63, -6.46 -24.28, -26.58

LPA-beamformer 10.76, -11.56 8.45, 13.67 -17.88, -19.01

TABLE 5.5

The MSE between the true and estimated amplitudes over 50 independent trials for

the PF and beamforming approaches, for Experiment 2.

Parameter M K SNR(dB) φ(0) a(0)

Value 8 2 15 [−20◦, 20◦] [8, 10]

TABLE 5.6

Parameters of the state-space model for simulating the data for Experiment 3.

the LPA-beamformer performs poorly with regard to DOA tracking, and hence in extracting

signals. However, we have seen that the PF method is capable of DOA tracking and source

extraction in highly nonstationary situations. On the other hand, if all conditions favor the

LPA-beamformer, as in this experiment, then it is seen that both methods have comparable

performance, and the LPA-beamformer is then preferred over the PF method because it is less

computationally intensive.

D. Discussion

In addition to the reasons previously cited, the superior performance of the PF method is

in part, through (33), due to the availability of an approximate instantaneous joint posterior

distribution of all the relevant parameters at each time instant. This is in contrast to previous
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Fig. 9. Comparison of the DOA tracking performance for the PF method and the LPA-beamformer.
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Fig. 10. Comparison of the waveform extraction process for the PF method and the LPA beamformer.

MSE (dB) MSE for DOA Estimation (dB) MSE for DOA Estimation (dB)

PF -24.24, -26.00 -16.63, -18.37

LPA-beamformer -21.30, -24.28 -14.02, -17.60

TABLE 5.7

The MSE for DOA estimation and signal extraction for the PF and the

LPA-beamformer approaches, over 50 independent trials for Experiment 3.

methods which are based on accumulating statistics by time averaging. This technique assumes

stationarity of the underlying process over an adequate time interval. This leads to degradation

in performance in situations where significant degrees of nonstationarity exist. On the other

hand, the PF method does not need to accumulate statistics by time averaging, since it has the

entire posterior distribution available at each instant of time.

A further advantage of the proposed PF method is that confidence regions of the parameter

estimates can be easily evaluated. This is a consequence of the fact that an approximation to the

posterior distribution is available at each time instant. An example of a posterior distribution

of the DOA estimates, from which confidence regions can be obtained, corresponding arbitrarily

to the 245th DOA sample in experiment 2 (see Figure 7), is shown in Figure 11.

Note that once the φ’s have been estimated, the waveforms could also be obtained using a

Kalman filter. The proposed MAP procedure and the Kalman filter should give almost equivalent

performance, since the MAP method is optimum in a Bayesian sense, while the Kalman filter is

optimum in a least-squares sense.

It is easily shown that as N → ∞, where N is the number of particles, the global optimum

of the desired posterior distribution coincides with the most heavy-weighted histogram bin cor-

responding to the particles. In practice, the global optimum is achieved within a histogram
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bin-width with finite N with high probability. Thus, the global optimum can be attained by a

simple search, instead of a complicated global optimization over a multi-modal surface.

The computational expense of the particle filter approach is fairly high, requiring O(N) func-

tion evaluations each time step. However, the evaluation of the particles is easily parallelizable,

and this order of computation does not necessarily compare unfavourably with that of a global

procedure required to estimate the multiple DOAs for the beamformer. Furthermore, the rela-

tive computational expense of the method is offset by its advantages; namely, a joint detection

capability and improved performance in nonstationary environments.
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Fig. 11. Contours of the approximate posterior distribution of the DOAs with true values at [−60o, 40o].

Finally, we investigate the effect of the number of particles N on the performance of the

proposed PF method. Table 5.8 compares the MSE between the true and estimated DOAs

for different values of N using the experimental configuration of Experiment 2. As can be

seen, the algorithm does not improve significantly as N increases from 300 to 500, whereas the

computational load is increased by approximately 60%. However, we notice that performance

does deteriorate as N drops to 100 particles. In other words, one can tradeoff the performance

of the algorithm and the complexity of the implementation by adjusting the number of particles

N . The use of the optimal importance function (39) is effective in reducing the required number

of particles.

VI. Conclusion

In this paper, an alternative to the classical beamforming approach, preceded by angle-only

estimation, for recovering multiple desired signals and tracking their sources in nonstationary

environments in the presence of interference using arrays of sensors is presented. The proposed

method implements sequential Markov Chain Monte Carlo (MCMC) estimation, also known as
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MSE (dB) t ∈ [1, 114] t ∈ [115, 250] t ∈ [251, 300]

N = 500 -28.37, -31.76 -10.89, -19.10 -34.01, -43.39

N = 300 -27.36, -30.28 -10.34, -18.22 -32.97, -40.45

N = 100 -20.85, -25.01 -9.90, -14.56 -28.19, -34.94

TABLE 5.8

The MSE between the true and estimated DOAs by PF for 50 independent trials for

different number of particles N for Experiment 2.

particle filtering. Unlike the traditional beamforming methods, the proposed method is able to

track rapidly moving sources and recover their waveforms.

In addition, the proposed method simultaneously detects the number of unknown sources. In

contrast to other methods like EKF and the LPA-beamformer, the proposed method is more

robust to nonlinearity in the data model and less sensitive to model selection. The simulations

have shown that the proposed method has superior performance in terms of DOA tracking ability

and signal recovery, relative to other methods. A seamless Bayesian framework for detecting the

number of sources as well as for tracking their DOAs was presented. Simulation results were

also presented to show the benefits of the new algorithm in terms of estimation accuracy and

diversity.
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