Logic Design

Chapter 1: Design Concepts

Binary Numbers

- In logic circuits information is represented as electronic signals
- Each signal provides one digit of information
- Each digit is allowed to take on only two possible values, usually denoted as 0 and 1
- In decimal system a number consists of digits that have 10 possible values 0 to 9
$8547=8 \times 10^{3}+5 \times 10^{2}+4 \times 10^{1}+7 \times 10^{0}$

Binary Numbers

- In general

$$
\begin{aligned}
& D=d_{n-1} d_{n-2} \cdots d_{1} d_{0} \\
& V(D)=d_{n-1} \times 10^{n-1}+d_{n-2} \times 10^{n-2}+\cdots+d_{1} \times 10^{1}+d_{0} \times 10^{0}
\end{aligned}
$$

- Because digits have 10 possible values decimal numbers are called base-10 or radix-10
- In logic circuits there are only two possible values so the numbers are called binary or base-2

$$
\begin{aligned}
& B=b_{n-1} b_{n-2} \cdots b_{1} b_{0} \\
& V(B)=b_{n-1} \times 2^{n-1}+b_{n-2} \times 2^{n-2}+\cdots+b_{1} \times 2^{1}+b_{0} \times 2^{0}
\end{aligned}
$$

Binary Numbers

$$
\begin{aligned}
& B=1101 \\
& V(B)=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& (1101)_{2}=(13)_{10}
\end{aligned}
$$

- In a binary number the right most bit is called least-significant bit (LSB)
- The left most bit is called the most significant bit (MSB)
- A group of four bits: nibble
- A group of eight bits: byte

Conversion between Decimal and Binary

- Converting a decimal number into a binary number: successively divide the decimal number by 2 .

$$
\begin{aligned}
& V=b_{n-1} \times 2^{n-1}+b_{n-2} \times 2^{n-2}+\cdots+b_{1} \times 2^{1}+b_{0} \times 2^{0} \\
& \frac{V}{2}=b_{n-1} \times 2^{n-2}+b_{n-2} \times 2^{n-3}+\cdots+b_{1}+\frac{b_{0}}{2}
\end{aligned}
$$

- Do an example on the board

