
Logic Design

Chapter 2: Introduction to Logic Circuits

Copyright S. Shirani

Introduction
•  Logic circuits perform operation on digital signal
•  Digital signal: signal values are restricted to a few discrete

values
•  Binary logic circuits: signals can have two values represented

by 0 and 1.

Copyright S. Shirani

Switch networks

Copyright S. Shirani

Switch networks

Copyright S. Shirani

Switch networks

Copyright S. Shirani

Switch networks

S Light
Power
supply

R

x

Copyright S. Shirani

Logic Operations
•  The fundamental logic operations are:

•  AND F = X.Y
•  OR F = X + Y
•  NOT F = X′ (complement)
•  Note:
•  X′ and are used interchangeably!

Copyright S. Shirani

Logic Operations
•  Don’t confuse the AND symbol (.) and OR symbol (+) with

arithmetic multiplication and addition
•  There are some differences:
•  Example:

–  Arithmetic addition: 1+1=2
–  OR operation: 1+1=1

•  Based on the context you should recognize if it is AND/OR or
addition/multiplication

•  One more thing: sometimes we drop the . symbol
•  Example: a.b is the same as ab

Copyright S. Shirani

Truth table
• The most basic representation of a logic function is a truth

table.
• A truth table lists the output of the circuit for every

possible input combination.
• There are 2n rows in a truth table for an n-variable function

Copyright S. Shirani

Logic Gate
•  Binary signals are manipulated using logic gates. These are

electronic devices whose inputs and outputs are interpreted
with only two values, representing logic 0 and logic 1.

Copyright S. Shirani

Logic Gate
•  The bubble on the inverter output denotes “inverting”

behavior

Copyright S. Shirani

Analysis and Synthesis of a Logic Network
•  Combinations of gates form a logic circuit or logic network
•  Analysis: For an existing network determine the function

performed by the network
•  Synthesis: Design a network that implements a desired

function

Copyright S. Shirani

Copyright S. Shirani

1
0

1
0

1
0

1
0

1
0

x 1

x 2

A

B

f
Time

(c) Timing diagram

Copyright S. Shirani

1 1 0 0 → → → 0 0 1 1 → → →

1 1 0 1 → → →
0 1 0 1 → → → g

x 1

x 2

(d) Network that implements g x 1 x 2 + =

Copyright S. Shirani

Boolean Algebra
•  A variety of implementations are available for a logic function
•  How to find the best implementation?

Copyright S. Shirani

Boolean Algebra
•  To design logic circuits and describe their operation we use a

mathematical tool called Boolean algebra (from English
mathematician George Boole in 1800’s) that operates on two-
valued functions.

Copyright S. Shirani

Axioms of Boolean algebra
  The axioms (or postulates) of a mathematical system are a

minimal set of basic definitions that we assume to be true.
  The first three pairs of axioms state the formal definitions of

the AND (logical multiplication) and OR (logical addition)
operations:
(1a) 0·0 = 0 (1b) 1+1 = 1
(2a) 1·1 = 1 (2b) 0+0 = 0
(3a) 0·1 = 1·0 = 0 (3b) 1+0 = 0+1 = 1

  The next axioms embody the complement notation:
(4a) If X=0, then X’=1 (4b) If X=1, then X’=0

Copyright S. Shirani

Theorems of Boolean algebra
  Theorems are statements, known to be true, that allow us to

manipulate algebraic expressions to have simpler analysis or
more efficient synthesis of the corresponding circuits.

  Theorems involving a single variable:
(5a) X·0 = 0 (5b) X+1 = 1 (Null elements)

 (6a) X·1 = X (6b) X+0 = X (Identities)
(7a) X·X = X (7b) X+X = X (Idempotency)
(8a) X·X’ = 0 (8b) X+X’ = 1 (Complements)

 (9) (X’)’ = X (Involution)
•  These theorems can be proved to be true. Let us prove 6b:

[X=0] 0+0=0 (true, according to 2b)
[X=1] 1+0=1 (true, according to 3b)

Copyright S. Shirani

Theorems of Boolean algebra
•  Theorems involving two or three variables:

(10a) X·Y = Y·X (10b) X+Y = Y+X (Commutativity)
(11a) (X·Y)·Z = X·(Y·Z) (11b) (X+Y)+Z = X+(Y+Z) (Associativity)
(12a) X·Y+X·Z = X·(Y+Z) (12b) (X+Y)·(X+Z) = X+Y·Z

 (Distributivity)
(13a) X+X·Y = X (13b) X·(X+Y) = X (Absorption)
(14a) X·Y+X·Y’ = X (14b) (X+Y)·(X+Y’) = X (Combining)
(15a) (X1·X2)’ = X1´+X2´
(15b) (X1+X2)’ = X1´·X2´ DeMorgan’s theorems

 (16a) X+X’·Y= X+Y (16b) X·(X’+Y)= X·Y (simplification)
 (17a) X·Y+X’·Z+Y·Z = X·Y+X’·Z (Consensus)

(17b) (X+Y)·(X’+Z)·(Y+Z) = (X+Y)·(X’+Z)

Copyright S. Shirani

Duality
•  Theorems were presented in pairs.
•  The b version of a theorem is obtained from the a version by

swapping “0” and “1”, and “·” and “+”.
•  Principle of Duality: Any theorem or identity in Boolean

algebra remains true if 0 and 1 are swapped and · and + are
swapped throughout.

•  Duality is important because it doubles the usefulness of
everything about Boolean algebra and manipulation of logic
functions.

Copyright S. Shirani

Consensus theorem

Copyright S. Shirani

Consensus theorem
•  Using duality:

Copyright S. Shirani

Boolean Algebra

Copyright S. Shirani

Boolean Algebra
•  Differences between Boolean and ordinary algebra:
•  Distributive law of + over . x+(y.z)=(x+y).(x+z) is not valid

in ordinary algebra
•  Boolean algebra does not have additive or multiplicative

inverse so there is no subtraction or division operations

Copyright S. Shirani

Boolean Algebra
•  Boolean algebra is used for manipulating logical functions

when designing digital hardware.

•  However, today most design is done using Computer-Aided
Design (CAD) software that includes schematic capture, logic
simplification and simulation.

•  Other methods include truth tables, Venn diagrams and
Karnaugh Maps.

Copyright S. Shirani

Venn Diagram
•  A graphical tool that can be used for Boolean algebra
•  A binary variable s is represented by a contour
•  Area within the contour corresponds to s=1
•  Area outside the contour corresponds to s=0
•  Two variables are represented by two overlapping circles

Copyright S. Shirani

Venn Diagram

Copyright S. Shirani

Venn Diagram

Copyright S. Shirani

Precedence of operations
•  In the absence of parentheses, operations in a logic expression

must be performed in the order: NOT, AND, OR
•  Example:

Copyright S. Shirani

Synthesis using AND, OR and NOT
•  One way of designing a logic circuit that implements a truth

table is to create a product term that has a value of 1 for
each valuation for which the output function has to be 1.

•  Then we take the logical sum of these product terms to
realize f

Copyright S. Shirani

Copyright S. Shirani

Copyright S. Shirani

Minterm, Maxterm
•  Minterm
•  A product term in which all variables of a function appear

exactly once, uncomplemented or complemented.

•  Maxterm
•  A sum term in which all variables of a function appear exactly

once, uncomplemented or complemented.

Copyright S. Shirani

Minterm, Maxterm

Copyright S. Shirani

Minterm, Maxterm

Copyright S. Shirani

Canonical Sum of Products Form
•  A Boolean function f(x1,x2,x3) can be expressed

algebraically as a logical sum of minterms:

Copyright S. Shirani

Canonical Sum of Products Form
•  f can be expressed as sum of product terms (SOP)

Copyright S. Shirani

Canonical Product of Sums Form
•  The complement of f(x1,x2,x3) can be formed as the logical

sum of all minterms not used in f(x1,x2,x3):

This is called the product of sum presentation of f

Copyright S. Shirani

Conversion Between the Canonical Forms
•  It is easy to convert from one canonical form to other one,

simply use the DeMorgan’s theorem.
•  Example:

€

F(A,B,C) = (1,4,5,6,7)∑
F ' (A,B,C) = (0,2,3)∑
F(A,B,C) = (m0 + m2 + m3)' = m0

' m2
' m3

' = M0M2M3

F(A,B,C) = (0,2,3)∏

Copyright S. Shirani

Cost of a Logic Circuit
•  Cost of a logic circuit: total number of gates plus total number

of inputs to all gates in the circuit
•  The canonical SOP and POS implementations described

before are not necessarily minimum cost
•  We can simplify them to obtain minimum-cost SOP and POS

circuits

Copyright S. Shirani

Reducing Cost
•  How can we simplify a logic function?
•  There are systematic approached for doing this (e.g.,

Karnaugh map) that we will learn later
•  The other way is to use theorems and properties of Boolean

algebra and do algebraic manipulations.
•  Do an example on the board.

Copyright S. Shirani

Reducing Cost
•  The simplified version of SOP is called minimal SOP
•  The simplified version of POS is called minimal POS
•  We cannot in general predict whether the minimal SOP

expression or minimal POS expression will result in the
lowest cost.

•  It is often useful to check both expressions to see which gives
the best result.

Copyright S. Shirani

Other Logic Operations
•  NAND,
•  NOR,
•  XOR,
•  XNOR

Copyright S. Shirani

NAND
•  NAND: a combination of an AND gate followed by an

inverter.

•  Symbol for NAND is
•  NAND gates have several interesting properties:

€

↑

Copyright S. Shirani

NAND
•  These three properties show that a NAND gate with both of

its inputs driven by the same signal is equivalent to a NOT
gate

•  A NAND gate whose output is complemented is equivalent to
an AND gate, and a NAND gate with complemented inputs
acts as an OR gate.

•  Therefore, we can use a NAND gate to implement all three of
the elementary operators (AND,OR,NOT).

•  Therefore, ANY Boolean function can be constructed using
only NAND gates.

Copyright S. Shirani

NAND

NOT Gate

Copyright S. Shirani

NOR
•  NOR: a combination of an OR gate followed by an inverter.

•  NOR gates also have several
 interesting properties:

Copyright S. Shirani

NOR
•  Just like the NAND gate, any logic function can be

implemented using just NOR gates.
•  Both NAND and NOR gates are very valuable as any design

can be realized using either one.
•  It is easier to build an IC chip using all NAND or NOR gates

than to combine AND,OR, and NOT gates.
•  NAND/NOR gates are typically faster at switching and

cheaper to produce.

Copyright S. Shirani

NAND and NOR networks
•  NAND and NOR can be implemented by simpler electronic

circuits than the AND and OR functions
•  Can these gates be used in synthesis of logic circuits?

Copyright S. Shirani

NAND and NOR networks

x 1
x 2

x 1
x 2

x 1
x 2

x 1
x 2

x 1
x 2

x 1
x 2

x 1 x 2 x 1 x 2 + = (a)

x 1 x 2 + x 1 x 2 = (b)

Copyright S. Shirani

NAND and NOR networks

x 1
x 2
x 3
x 4
x 5

x 1
x 2
x 3
x 4
x 5

x 1
x 2
x 3
x 4
x 5

Copyright S. Shirani

NAND and NOR networks

x 1
x 2
x 3
x 4
x 5

x 1
x 2
x 3
x 4
x 5

x 1
x 2
x 3
x 4
x 5

Copyright S. Shirani

Exclusive OR (XOR)
•  The eXclusive OR (XOR) function is an important Boolean

function used extensively in logic circuits.
•  The XOR function maybe:

–  implemented directly as an electronic circuit (truly a gate) or
–  implemented by interconnecting other gate types (used as a

convenient representation)
•  The XOR function means:

 X OR Y, but NOT BOTH

Copyright S. Shirani

XOR
•  XOR gates assert their output

 when exactly one of the inputs
 is asserted, hence the name.

•  The symbol for this operation is ⊕

A
B

Y

Copyright S. Shirani

XNOR
•  The eXclusive NOR function is the complement of the XOR

function
•  The symbol for this operation is , i.e.

 1 1 = 1 and 1 0 = 0.

•  Why is the XNOR function also known as the equivalence
function?

Copyright S. Shirani

XOR Implementations
•  A SOP implementation

•  A NAND implementation

Copyright S. Shirani

XOR and XNOR
•  Uses for the XOR and XNORs gate include:

–  Adders/subtractors/multipliers
–  Counters/incrementers/decrementers
–  Parity generators/checkers

Copyright S. Shirani

XOR
•  XOR identities:

Copyright S. Shirani

Gates with more than two inputs
•  A gate can be extended to have multiple inputs if the binary

operation it represents is commutative and associative.
•  AND and OR operations have these two properties
•  NAND and NOR are not associative:

Copyright S. Shirani

Gates with more than two inputs
•  We define multiple input NAND and NOR gates as follows:

Copyright S. Shirani

Gates with more than two inputs
•  XOR and XNOR are both commutative and associative
•  Definition of XOR should be modified for more than two

inputs
•  For more than 2 inputs, XOR is called an odd function: it is

equal to 1 if the input variables have an odd number of 1’s
•  Similarly, for more than 2 inputs, XNOR is called an even

function: it is equal to 1 if the input variables have an even
number of 1’s

Copyright S. Shirani

Learning Objectives
•  List the three basic logic operations
•  Draw the truth table for the basic logic operations
•  Build truth table for an arbitrary number of variables
•  Draw schematic for basic logic gates
•  Perform analysis on simple logic circuits
•  Draw timing diagram for simple logic circuits

