
Logic Design 

Chapter 2: Introduction to Logic Circuits 
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Introduction 
•  Logic circuits perform operation on digital signal 
•  Digital signal: signal values are restricted to a few discrete 

values 
•  Binary logic circuits: signals can have two values represented 

by 0 and 1. 
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Logic Operations 
•  The fundamental logic operations are:  

•  AND  F = X.Y 
•  OR   F = X + Y 
•  NOT  F = X′  (complement) 
•  Note:  
•  X′ and        are used interchangeably! 
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Logic Operations 
•  Don’t confuse the AND symbol (.) and OR symbol (+) with 

arithmetic multiplication and addition 
•  There are some differences: 
•  Example: 

–  Arithmetic addition: 1+1=2 
–  OR operation: 1+1=1 

•  Based on the context you should recognize if it is AND/OR or 
addition/multiplication  

•  One more thing: sometimes we drop the . symbol 
•  Example: a.b is the same as ab 
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Truth table 
• The most basic representation of a logic function is a truth 

table. 
• A truth table lists the output of the circuit for every 

possible input combination. 
• There are 2n rows in a truth table for an n-variable function 
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Logic Gate 
•  Binary signals are manipulated using logic gates.  These are 

electronic devices whose inputs and outputs are interpreted 
with only two values, representing logic 0 and logic 1.  
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Logic Gate 
•  The bubble on the inverter output denotes “inverting” 

behavior 
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Analysis and Synthesis of a Logic Network 
•  Combinations of gates form a logic circuit or logic network 
•  Analysis: For an existing network determine the function 

performed by the network 
•  Synthesis: Design a network that implements a desired 

function 
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1  1  0  0 → → → 0  0  1  1 → → → 
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Boolean Algebra 
•  A variety of implementations are available for a logic function 
•  How to find the best implementation? 
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Boolean Algebra 
•  To design logic circuits and describe their operation we use a 

mathematical tool called Boolean algebra (from English 
mathematician George Boole in 1800’s) that operates on two-
valued functions. 
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Axioms of Boolean algebra 
  The axioms (or postulates) of a mathematical system are a 

minimal set of basic definitions that we assume to be true. 
  The first three pairs of axioms state the formal definitions of 

the AND (logical multiplication) and OR (logical addition) 
operations: 
(1a)  0·0 = 0  (1b)  1+1 = 1 
(2a)  1·1 = 1  (2b)  0+0 = 0 
(3a)  0·1 = 1·0 = 0  (3b)  1+0 = 0+1 = 1 

  The next axioms embody the complement notation: 
(4a)  If X=0, then X’=1  (4b)  If X=1, then X’=0 
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Theorems of Boolean algebra 
  Theorems are statements, known to be true, that allow us to 

manipulate algebraic expressions to have simpler analysis or 
more efficient synthesis of the corresponding circuits. 

  Theorems involving a single variable: 
(5a) X·0 = 0  (5b)  X+1 = 1   (Null elements)  

    (6a) X·1 = X            (6b) X+0 = X   (Identities) 
(7a) X·X = X           (7b) X+X = X  (Idempotency)  
(8a) X·X’ = 0           (8b) X+X’ = 1  (Complements) 

     (9)  (X’)’ = X     (Involution) 
•  These theorems can be proved to be true. Let us prove 6b: 

[X=0]  0+0=0 (true, according to 2b) 
[X=1]  1+0=1 (true, according to 3b) 
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Theorems of Boolean algebra 
•  Theorems involving two or three variables: 

(10a)  X·Y = Y·X            (10b) X+Y = Y+X                (Commutativity) 
(11a)  (X·Y)·Z = X·(Y·Z)   (11b) (X+Y)+Z = X+(Y+Z)  (Associativity) 
(12a)  X·Y+X·Z = X·(Y+Z)  (12b)  (X+Y)·(X+Z) = X+Y·Z

 (Distributivity)  
(13a)  X+X·Y = X  (13b)  X·(X+Y) = X  (Absorption)  
(14a)  X·Y+X·Y’ = X  (14b)  (X+Y)·(X+Y’) = X  (Combining) 
(15a)  (X1·X2)’ = X1´+X2´ 
(15b)  (X1+X2)’ = X1´·X2´              DeMorgan’s theorems 

     (16a)  X+X’·Y= X+Y     (16b) X·(X’+Y)= X·Y     (simplification)  
     (17a)  X·Y+X’·Z+Y·Z = X·Y+X’·Z   (Consensus)  

(17b)  (X+Y)·(X’+Z)·(Y+Z) = (X+Y)·(X’+Z) 



Copyright S. Shirani 

Duality 
•  Theorems were presented in pairs. 
•  The b version of a theorem is obtained from the a version by 

swapping “0” and “1”, and “·” and “+”.  
•  Principle of Duality: Any theorem or identity in Boolean 

algebra remains true if 0 and 1 are swapped and · and + are 
swapped throughout. 

•  Duality is important because it doubles the usefulness of 
everything about Boolean algebra and manipulation of logic 
functions. 



Copyright S. Shirani 

Consensus theorem 
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Consensus theorem 
•  Using duality: 



Copyright S. Shirani 

Boolean Algebra 
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Boolean Algebra 
•  Differences between Boolean and ordinary algebra: 
•  Distributive law of + over .     x+(y.z)=(x+y).(x+z) is not valid 

in ordinary algebra 
•  Boolean algebra does not have additive or multiplicative 

inverse so there is no subtraction or division operations 
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Boolean Algebra 
•  Boolean algebra is used  for manipulating logical functions 

when designing digital hardware.   

•  However, today most design is done using Computer-Aided 
Design (CAD) software that includes schematic capture, logic 
simplification and simulation. 

•  Other methods include truth tables, Venn diagrams and 
Karnaugh Maps. 
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Venn Diagram 
•  A graphical tool that can be used for Boolean algebra 
•  A binary variable s is represented by a contour 
•  Area within the contour corresponds to s=1 
•  Area outside the contour corresponds to s=0 
•  Two variables are represented by two overlapping circles 
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Venn Diagram 
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Venn Diagram 
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Precedence of operations 
•  In the absence of parentheses, operations in a logic expression 

must be performed in the order: NOT, AND, OR 
•  Example: 
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Synthesis using AND, OR and NOT 
•  One way of designing a logic circuit that implements a truth 

table is to create a product term that has a value of 1 for 
each valuation for which the output function has to be 1.  

•  Then we take the logical sum of these product terms to 
realize f 
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Minterm, Maxterm 
•  Minterm 
•  A product term in which all variables of a function appear 

exactly once, uncomplemented or complemented. 

•  Maxterm 
•  A sum term in which all variables of a function appear exactly 

once, uncomplemented or complemented. 
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Minterm, Maxterm 
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Minterm, Maxterm 
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Canonical Sum of Products Form 
•  A Boolean function f(x1,x2,x3) can be expressed 

algebraically as a logical sum of minterms: 



Copyright S. Shirani 

Canonical Sum of Products Form 
•  f can be expressed as sum of product terms (SOP) 
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Canonical Product of Sums Form 
•  The complement of f(x1,x2,x3) can be formed as the logical 

sum of all  minterms not used in f(x1,x2,x3): 

This is called the product of sum presentation of f 
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Conversion Between the Canonical Forms 
•  It is easy to convert from one canonical form to other one, 

simply use the DeMorgan’s theorem. 
•  Example: 

€ 

F(A,B,C) = (1,4,5,6,7)∑
F ' (A,B,C) = (0,2,3)∑
F(A,B,C) = (m0 + m2 + m3)' = m0

' m2
' m3

' = M0M2M3

F(A,B,C) = (0,2,3)∏
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Cost of a Logic Circuit 
•  Cost of a logic circuit: total number of gates plus total number 

of inputs to all gates in the circuit 
•  The canonical SOP and POS implementations described 

before are not necessarily minimum cost 
•  We can simplify them to obtain minimum-cost SOP and POS 

circuits 
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Reducing Cost 
•  How can we simplify a logic function? 
•  There are systematic approached for doing this (e.g., 

Karnaugh map) that we will learn later  
•  The other way is to use theorems and properties of Boolean 

algebra and do algebraic manipulations.  
•  Do an example on the board.  
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Reducing Cost 
•  The simplified version of SOP is called minimal SOP 
•  The simplified version of POS is called minimal POS 
•  We cannot in general predict whether the minimal SOP 

expression or minimal POS expression will result in the 
lowest cost. 

•  It is often useful to check both expressions to see which gives 
the best result. 
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Other Logic Operations 
•  NAND, 
•  NOR, 
•  XOR,  
•  XNOR 



Copyright S. Shirani 

NAND 
•  NAND: a combination of an AND gate followed by an 

inverter.   

•  Symbol for NAND is  
•  NAND gates have several interesting properties: 

€ 

↑
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NAND 
•  These three properties show that a NAND gate with both of 

its inputs driven by the same signal is equivalent to a NOT 
gate  

•  A NAND gate whose output is complemented is equivalent to 
an AND gate, and a NAND gate with complemented inputs 
acts as an OR gate. 

•  Therefore, we can use a NAND gate to implement all three of 
the elementary operators (AND,OR,NOT).   

•  Therefore, ANY Boolean function can be constructed using 
only NAND gates.   
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NAND 

NOT Gate 
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NOR 
•  NOR: a combination of an OR gate followed by an inverter. 

•  NOR gates also have several  
 interesting properties: 
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NOR 
•  Just like the NAND gate, any logic function can be 

implemented using just NOR gates. 
•  Both NAND and NOR gates are very valuable as any design 

can be realized using either one.   
•  It is easier to build an IC chip using all NAND or NOR gates 

than to combine AND,OR, and NOT gates.   
•  NAND/NOR gates are typically faster at switching and 

cheaper to produce. 
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NAND and NOR networks 
•  NAND and NOR can be implemented by simpler electronic 

circuits than the AND and OR functions 
•  Can these gates be used in synthesis of logic circuits? 
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NAND and NOR networks 
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NAND and NOR networks 
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NAND and NOR networks 
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Exclusive OR (XOR) 
•  The eXclusive OR (XOR) function is an important Boolean 

function used extensively in logic circuits. 
•  The XOR function maybe: 

–  implemented directly as an electronic circuit (truly a gate) or 
–  implemented by  interconnecting other gate types (used as a 

convenient representation) 
•  The XOR function means: 

  X OR Y, but NOT BOTH 
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XOR 
•  XOR gates assert their output 

 when exactly one of the inputs 
 is asserted, hence the name. 

•  The symbol for this operation is ⊕ 

A 
B 

Y 
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XNOR 
•  The eXclusive NOR function is the complement of the XOR 

function 
•  The symbol for this operation is , i.e. 

 1  1 = 1 and 1  0 = 0. 

•  Why is the XNOR function also known as the equivalence 
function? 
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XOR Implementations 
•  A SOP implementation 

•  A NAND implementation 
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XOR and XNOR 
•  Uses for the XOR and XNORs gate include: 

–  Adders/subtractors/multipliers 
–  Counters/incrementers/decrementers 
–  Parity generators/checkers 
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XOR 
•  XOR identities:  
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Gates with more than two inputs 
•  A gate can be extended to have multiple inputs if the binary 

operation it represents is commutative and associative. 
•  AND and OR operations have these two properties 
•  NAND and NOR are not associative: 
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Gates with more than two inputs 
•  We define multiple input NAND and NOR gates as follows: 
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Gates with more than two inputs 
•  XOR and XNOR are both commutative and associative 
•  Definition of XOR should be modified for more than two 

inputs 
•  For more than 2 inputs, XOR is called an odd function: it is 

equal to 1 if the input variables have an odd number of 1’s 
•  Similarly, for more than 2 inputs, XNOR is called an even 

function: it is equal to 1 if the input variables have an even 
number of 1’s 
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Learning Objectives 
•  List the three basic logic operations 
•  Draw the truth table for the basic logic operations 
•  Build truth table for an arbitrary number of variables 
•  Draw schematic for basic logic gates 
•  Perform analysis on simple logic circuits 
•  Draw timing diagram for simple logic circuits 


