Logic Design

Chapter 2: Introduction to Logic Circuits

Introduction

- Logic circuits perform operation on digital signal
- Digital signal: signal values are restricted to a few discrete values
- Binary logic circuits: signals can have two values represented by 0 and 1 .

Switch networks

(a) Two states of a switch

(b) Symbol for a switch

Switch networks

(a) Simple connection to a battery

(b) Using a ground connection as the return path

Switch networks

(a) The logical AND function (series connection)

(b) The logical OR function (parallel connection)

Switch networks

Logic Operations

- The fundamental logic operations are:
- AND $\mathrm{F}=\mathrm{X} . \mathrm{Y}$
- OR
$\mathrm{F}=\mathrm{X}+\mathrm{Y}$
- NOT $\mathrm{F}=\mathrm{X}^{\prime}$ (complement)
- Note:
- X^{\prime} and X are used interchangeably!

Logic Operations

- Don't confuse the AND symbol (.) and OR symbol (+) with arithmetic multiplication and addition
- There are some differences:
- Example:
- Arithmetic addition: $1+1=2$
- OR operation: $1+1=1$
- Based on the context you should recognize if it is AND/OR or addition/multiplication
- One more thing: sometimes we drop the . symbol
- Example: a.b is the same as ab

Truth table

- The most basic representation of a logic function is a truth table.
- A truth table lists the output of the circuit for every possible input combination.
- There are 2^{n} rows in a truth table for an n -variable function

Truth table:

Logic Gate

- Binary signals are manipulated using logic gates. These are electronic devices whose inputs and outputs are interpreted with only two values, representing logic 0 and logic 1 .

Logic Gate

- The bubble on the inverter output denotes "inverting" behavior

Analysis and Synthesis of a Logic Network

- Combinations of gates form a logic circuit or logic network
- Analysis: For an existing network determine the function performed by the network
- Synthesis: Design a network that implements a desired function

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$			
0	0	1			
0	1	1			
1	0	0			
1	1	1	\quad	A	B
:---:	:---:	:---:			
1	0				
1	0				
0	0				
0	1				

(b) Truth table

(d) Network that implements $g=\bar{x}_{1}+x_{2}$

Copyright S. Shirani

Boolean Algebra

- A variety of implementations are available for a logic function
- How to find the best implementation?

Copyright S. Shirani

Boolean Algebra

- To design logic circuits and describe their operation we use a mathematical tool called Boolean algebra (from English mathematician George Boole in 1800's) that operates on twovalued functions.

Axioms of Boolean algebra

- The axioms (or postulates) of a mathematical system are a minimal set of basic definitions that we assume to be true.
- The first three pairs of axioms state the formal definitions of the AND (logical multiplication) and OR (logical addition) operations:
(1a) $0 \cdot 0=0$
(1b) $1+1=1$
(2a) $1 \cdot 1=1$
(2b) $0+0=0$
(3a) $0 \cdot 1=1 \cdot 0=0$
(3b) $1+0=0+1=1$
- The next axioms embody the complement notation: (4a) If $X=0$, then $X^{\prime}=1$ (4b) If $X=1$, then $X^{\prime}=0$

Theorems of Boolean algebra

- Theorems are statements, known to be true, that allow us to manipulate algebraic expressions to have simpler analysis or more efficient synthesis of the corresponding circuits.
- Theorems involving a single variable:
(5a) $\mathrm{X} \cdot 0=0$
(5b) $\mathrm{X}+1=1$
(Null elements)
(6a) $X \cdot 1=X$
(6b) $X+0=X$
(Identities)
(7a) $X \cdot X=X$
(7b) $X+X=X$
(Idempotency)
(8a) $X \cdot X^{\prime}=0$
(9) $\left(\mathrm{X}^{\prime}\right)^{\prime}=\mathrm{X}$
(8b) $X+X^{\prime}=1 \quad$ (Complements)
(Involution)
- These theorems can be proved to be true. Let us prove 6b:
$[\mathrm{X}=0] \quad 0+0=0$ (true, according to 2 b)
$[\mathrm{X}=1] 1+0=1$ (true, according to 3 b)

Theorems of Boolean algebra

- Theorems involving two or three variables:

Duality

- Theorems were presented in pairs.
- The b version of a theorem is obtained from the a version by swapping " 0 " and " 1 ", and "." and " + ".
- Principle of Duality: Any theorem or identity in Boolean algebra remains true if 0 and 1 are swapped and \cdot and + are swapped throughout.
- Duality is important because it doubles the usefulness of everything about Boolean algebra and manipulation of logic functions.

Consensus theorem

Consensus Theorem:

- $X Y+\bar{X} Z+Y Z=X Y+\bar{X} Z$

redundant
Note: Y and Z are associated with X and \bar{X}, and appear together in the term that is eliminated.

Consensus theorem

- Using duality:

$$
(x+y) \cdot(y+z) \cdot(\bar{x}+z)=(x+y)(\bar{x}+z)
$$

Boolean Algebra

$\mathrm{X}+0=\mathrm{X}$	$x \cdot 1=x$	Identity
$x+1=1$	$x \cdot 0=0$	
$\mathbf{X}+\mathbf{X}=\mathbf{X}$	$\mathbf{X} \cdot \mathbf{X}=\mathbf{X}$	Idempotent Law
$\mathbf{X}+\mathrm{X}^{\prime}=\mathbf{1}$	$\mathbf{X} \cdot \mathbf{X}^{\prime}=\mathbf{0}$	Complement
$\left(\mathbf{X}^{\prime}\right)^{\prime}=\mathbf{X}$		Involution Law
$\mathbf{X}+\mathbf{Y}=\mathbf{Y}+\mathbf{X}$	$X Y=Y X$	Commutativity
$\mathbf{X}+(\mathbf{Y}+\mathbf{Z})=(\mathbf{X}+\mathbf{Y})+\mathbf{Z}$	$\mathbf{X}(\mathbf{Y Z})=(\mathbf{X Y}) \mathbf{Z}$	Associativity
$\mathbf{X}(\mathbf{Y}+\mathbf{Z})=\mathbf{X Y}+\mathbf{X Z}$	$\mathbf{X}+\mathbf{Y Z}=(\mathbf{X}+\mathbf{Y})(\mathbf{X}+\mathbf{Z})$	Distributivity
$\mathbf{X}+\mathbf{X Y}=\mathbf{X}$	$\mathbf{X}(\mathbf{X}+\mathbf{Y})=\mathbf{X}$	Absorption Law
$\mathbf{X}+\mathbf{X}^{\prime} \mathbf{Y}=\mathbf{X}+\mathbf{Y}$	$\mathbf{X}\left(\mathbf{X}^{\prime}+\mathbf{Y}\right)=\mathbf{X Y}$	Simplification
$(\mathbf{X}+\mathbf{Y})^{\prime}=\mathbf{X}^{\prime} \mathbf{Y}^{\prime}$	$(\mathbf{X Y})^{\prime}=\mathbf{X}^{\prime}+\mathbf{Y}^{\prime}$	DeMorgan's Law
$\begin{array}{r} \mathbf{X Y}+\mathbf{X}^{\prime} \mathbf{Z}+\mathbf{Y Z} \\ =\mathbf{X Y}+\mathbf{X}^{\prime} \mathbf{Z} \end{array}$	$\begin{array}{r} (\mathbf{X}+\mathbf{Y})\left(\mathbf{X}^{\prime}+\mathbf{Z}\right)(\mathbf{Y}+\mathbf{Z}) \\ \quad=(\mathbf{X}+\mathbf{Y})\left(\mathbf{X}^{\prime}+\mathbf{Z}\right) \end{array}$	Consensus Theorem

Boolean Algebra

- Differences between Boolean and ordinary algebra:
- Distributive law of + over . $\quad x+(y \cdot z)=(x+y) \cdot(x+z)$ is not valid in ordinary algebra
- Boolean algebra does not have additive or multiplicative inverse so there is no subtraction or division operations

Boolean Algebra

- Boolean algebra is used for manipulating logical functions when designing digital hardware.
- However, today most design is done using Computer-Aided Design (CAD) software that includes schematic capture, logic simplification and simulation.
- Other methods include truth tables, Venn diagrams and Karnaugh Maps.

Venn Diagram

- A graphical tool that can be used for Boolean algebra
- A binary variable s is represented by a contour
- Area within the contour corresponds to $\mathrm{s}=1$
- Area outside the contour corresponds to $\mathrm{s}=0$
- Two variables are represented by two overlapping circles

Venn Diagram

(c) Variable x

(e) $x \cdot y$

(g) $x \cdot \bar{y}$

(d) \bar{x}

(f) $x+y$

Copyright S. Shirani

Venn Diagram

(a) x

(b) $y+z$

(c) $x \cdot(y+z)$

(d) $x \cdot y$

(e) $x \cdot z$

(f) $x \cdot y+x \cdot z$

Figure 2.13. Verification of the distributive property

Precedence of operations

- In the absence of parentheses, operations in a logic expression must be performed in the order: NOT, AND, OR
- Example:

$$
f=x_{1} \cdot x_{2}+\bar{x}_{1} \bar{x}_{2}
$$

Synthesis using AND, OR and NOT

- One way of designing a logic circuit that implements a truth table is to create a product term that has a value of 1 for each valuation for which the output function has to be 1 .
- Then we take the logical sum of these product terms to realize f

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

$$
f\left(x_{1}, x_{2}\right)=\overline{x_{1}} \overline{x_{2}}+\overline{x_{1}} x_{2}+x_{1} x_{2}
$$

$$
f=\overline{x_{1}}+x_{2}
$$

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

(a) Canonical sum-of-products

(b) Minimal-cost realization

Minterm, Maxterm

- Minterm
- A product term in which all variables of a function appear exactly once, uncomplemented or complemented.
- Maxterm
- A sum term in which all variables of a function appear exactly once, uncomplemented or complemented.

University

Minterm, Maxterm

For a Boolean function of \mathbf{n} variables, there are $2^{\mathbf{n}}$ minterms:

$$
\mathbf{m}_{0} \ldots \mathbf{m}_{2}^{\mathbf{n}}-1
$$

and $2^{\mathbf{n}}$ maxterms:

$$
\mathbf{M}_{0} . . \mathbf{M}_{2}{ }^{\mathrm{n}}{ }_{-1}
$$

Note that: $\quad \mathbf{M}_{\mathbf{i}}=\overline{\mathbf{m}_{i}}$

Minterm, Maxterm

Row No.	A $B C$	C	Minterms	Maxterms	
0	0	0	0	$A^{\prime} B^{\prime} C^{\prime}=m_{0}$	$A+B+C=M_{0}$
1	0	0	1	$A^{\prime} B^{\prime} C=m_{1}$	$A+B+C^{\prime}=M_{1}$
2	0	1	0	$A^{\prime} B C^{\prime}=m_{2}$	$A+B^{\prime}+C=M_{2}$
3	0	1	1	$A^{\prime} B C=m_{3}$	$A+B^{\prime}+C^{\prime}=M_{3}$
4	1	0	0	$A B^{\prime} C^{\prime}=m_{4}$	$A^{\prime}+B+C=M_{4}$
5	1	0	1	$A B^{\prime} C=m_{5}$	$A^{\prime}+B+C^{\prime}=M_{5}$
6	1	1	0	$A B C^{\prime}=m_{6}$	$A^{\prime}+B^{\prime}+C=M_{6}$
7	1	1	1	$A B C=m_{7}$	$A^{\prime}+B^{\prime}+C^{\prime}=M_{7}$

$$
M_{i}=m_{i}^{\prime}
$$

Canonical Sum of Products Form

- A Boolean function $\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)$ can be expressed algebraically as a logical sum of minterms:

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
McMaster	5	1	0	1
6	1	1	0	1
	7	1	1	1

Canonical Sum of Products Form

- f can be expressed as sum of product terms (SOP)

$$
\begin{aligned}
& f(x 1, x 2, x 3)=\sum(m 1, m 4, m 5, m 6) \\
& f(x 1, x 2, x 3)=\sum m(1,4,5,6)
\end{aligned}
$$

Canonical Product of Sums Form

- The complement of $\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)$ can be formed as the logical sum of all minterms not used in $f(x 1, x 2, x 3)$:

$$
\begin{aligned}
& f(x 1, x 2, x 3)=m 0+m 2+m 3+m 7 \\
& f=\overline{m 0+m 2+m 3+m 7} \\
& f=\overline{m 0} \cdot \overline{m 2} \cdot \overline{m 3} \cdot \overline{m 7} \\
& f=M 0 \cdot M 2 \cdot M 3 \cdot M 7
\end{aligned}
$$

This is called the product of sum presentation of f

Conversion Between the Canonical Forms

- It is easy to convert from one canonical form to other one, simply use the DeMorgan's theorem.
- Example:

$$
\begin{aligned}
& F(A, B, C)=\sum(1,4,5,6,7) \\
& F^{\prime}(A, B, C)=\sum(0,2,3) \\
& F(A, B, C)=(m 0+m 2+m 3)^{\prime}=m_{0}^{\prime} m_{2}^{\prime} m_{3}^{\prime}=M_{0} M_{2} M_{3} \\
& F(A, B, C)=\prod(0,2,3)
\end{aligned}
$$

Cost of a Logic Circuit

- Cost of a logic circuit: total number of gates plus total number of inputs to all gates in the circuit
- The canonical SOP and POS implementations described before are not necessarily minimum cost
- We can simplify them to obtain minimum-cost SOP and POS circuits

Reducing Cost

- How can we simplify a logic function?
- There are systematic approached for doing this (e.g., Karnaugh map) that we will learn later
- The other way is to use theorems and properties of Boolean algebra and do algebraic manipulations.
- Do an example on the board.

Reducing Cost

- The simplified version of SOP is called minimal SOP
- The simplified version of POS is called minimal POS
- We cannot in general predict whether the minimal SOP expression or minimal POS expression will result in the lowest cost.
- It is often useful to check both expressions to see which gives the best result.

Other Logic Operations

- NAND,
- NOR,
- XOR,
- XNOR

Copyright S. Shirani

NAND

- NAND: a combination of an AND gate followed by an inverter.

- Symbol for NAND is \uparrow

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

- NAND gates have several interesting properties:

$$
\begin{array}{r}
A \uparrow A=A^{\prime} \\
(A \uparrow B)^{\prime}=A B \\
\left(A^{\prime} \uparrow B^{\prime}\right)=A+B
\end{array}
$$

NAND

- These three properties show that a NAND gate with both of its inputs driven by the same signal is equivalent to a NOT gate
- A NAND gate whose output is complemented is equivalent to an AND gate, and a NAND gate with complemented inputs acts as an OR gate.
- Therefore, we can use a NAND gate to implement all three of the elementary operators (AND,OR,NOT).
- Therefore, ANY Boolean function can be constructed using only NAND gates.

NAND

NOR

- NOR: a combination of an OR gate followed by an inverter.

- NOR gates also have several

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

$$
\begin{aligned}
& A \downarrow A=A^{\prime} \\
& (A \downarrow B)^{\prime}=A+B \\
& A^{\prime} \downarrow B^{\prime}=A B
\end{aligned}
$$

NOR

- Just like the NAND gate, any logic function can be implemented using just NOR gates.
- Both NAND and NOR gates are very valuable as any design can be realized using either one.
- It is easier to build an IC chip using all NAND or NOR gates than to combine AND,OR, and NOT gates.
- NAND/NOR gates are typically faster at switching and cheaper to produce.

NAND and NOR networks

- NAND and NOR can be implemented by simpler electronic circuits than the AND and OR functions
- Can these gates be used in synthesis of logic circuits?

NAND and NOR networks

(a) $\overline{x_{1} x_{2}}=\bar{x}_{1}+\bar{x}_{2}$

(b) $\overline{x_{1}+x_{2}}=\bar{x}_{1} \bar{x}_{2}$

NAND and NOR networks

University
Copyright S. Shirani

NAND and NOR networks

Exclusive OR (XOR)

- The eXclusive OR (XOR) function is an important Boolean function used extensively in logic circuits.
- The XOR function maybe:
- implemented directly as an electronic circuit (truly a gate) or
- implemented by interconnecting other gate types (used as a convenient representation)
- The XOR function means: X OR Y, but NOT BOTH

XOR

- XOR gates assert their output when exactly one of the inputs is asserted, hence the name.
- The symbol for this operation is \oplus

$$
Y=A^{\prime} B+A B^{\prime}
$$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

- The eXclusive NOR function is the complement of the XOR function
- The symbol for this operation is \odot, i.e. $1 \odot 1=1$ and $1 \odot 0=0$.

$$
Y=A^{\prime} B^{\prime}+A B
$$

- Why is the XNOR function also known as the equivalence function?

XOR Implementations

- A SOP implementation

- A NAND implementation

XOR and XNOR

- Uses for the XOR and XNORs gate include:
- Adders/subtractors/multipliers
- Counters/incrementers/decrementers
- Parity generators/checkers

XOR

- XOR identities:

$$
\begin{aligned}
& X \oplus 0=X \\
& X \oplus X=0 \\
& X \oplus Y=Y \oplus X \\
& X \oplus 1=X^{\prime} \\
& X \oplus X^{\prime}=1
\end{aligned}
$$

Gates with more than two inputs

- A gate can be extended to have multiple inputs if the binary operation it represents is commutative and associative.
- AND and OR operations have these two properties
- NAND and NOR are not associative:

$$
\begin{aligned}
& (A \downarrow B) \downarrow C \neq A \downarrow(B \downarrow C) \\
& (A \uparrow B) \uparrow C \neq A \uparrow(B \uparrow C)
\end{aligned}
$$

Gates with more than two inputs

- We define multiple input NAND and NOR gates as follows:

$$
\begin{array}{r}
A \downarrow B \downarrow C=(A+B+C)^{\prime} \\
A \uparrow B \uparrow C=(A B C)^{\prime}
\end{array}
$$

Gates with more than two inputs

- XOR and XNOR are both commutative and associative
- Definition of XOR should be modified for more than two inputs
- For more than 2 inputs, XOR is called an odd function: it is equal to 1 if the input variables have an odd number of 1 's
- Similarly, for more than 2 inputs, XNOR is called an even function: it is equal to 1 if the input variables have an even number of 1's

Learning Objectives

- List the three basic logic operations
- Draw the truth table for the basic logic operations
- Build truth table for an arbitrary number of variables
- Draw schematic for basic logic gates
- Perform analysis on simple logic circuits
- Draw timing diagram for simple logic circuits

