Logic Design

Chapter 2: Introduction to Logic Circuits

Introduction

- Logic circuits perform operation on digital signal
- Digital signal: signal values are restricted to a few discrete values
- Binary logic circuits: signals can have two values represented by 0 and 1.

(a) Two states of a switch

(b) Symbol for a switch

(a) Simple connection to a battery

(b) Using a ground connection as the return path

(a) The logical AND function (series connection)

(b) The logical OR function (parallel connection)

Logic Operations

- The *fundamental* logic operations are:
- AND F = X.Y
- OR F = X + Y
- NOT F = X' (complement)
- <u>Note:</u>
- X' and \overline{X} are used interchangeably!

Logic Operations

- Don't confuse the AND symbol (.) and OR symbol (+) with arithmetic multiplication and addition
- There are some differences:
- Example:
 - Arithmetic addition: 1+1=2
 - OR operation: 1+1=1
- Based on the context you should recognize if it is AND/OR or addition/multiplication
- One more thing: sometimes we drop the . symbol
- Example: a.b is the same as ab

Truth table

- The most basic representation of a logic function is a truth table.
- A truth table lists the output of the circuit for every possible input combination.
- There are 2ⁿ rows in a truth table for an n-variable function

	X	Y	XY	X + Y	$\mathbf{X}^{'}$
(0	0	0	0	1
	0	1	0	1	1
	1	0	0	1	0
r	1	1	1	1	0
1 Here					

Truth table:

University

Logic Gate

• Binary signals are manipulated using *logic gates*. These are electronic devices whose inputs and outputs are interpreted with only two values, representing logic 0 and logic 1.

Logic Gate

• The bubble on the inverter output denotes "inverting" behavior

Analysis and Synthesis of a Logic Network

- Combinations of gates form a logic circuit or logic network
- Analysis: For an existing network determine the function performed by the network
- Synthesis: Design a network that implements a desired function

(a) Network that implements $f = \bar{x}_1 + x_1 \cdot x_2$

<i>x</i> ₁	x_{2}	$f(x_1, x_2)$	Α	В]
0	0	1	1	0	
0	1	1	1	0	
1	0	0	0	0	
1	1	1	0	1	

(b) Truth table

- A variety of implementations are available for a logic function
- How to find the best implementation?

• To design logic circuits and describe their operation we use a mathematical tool called *Boolean algebra* (from English mathematician George Boole in 1800's) that operates on two-valued functions.

Axioms of Boolean algebra

- The <u>axioms</u> (or postulates) of a mathematical system are a minimal set of basic definitions that we assume to be true.
- The first three pairs of axioms state the formal definitions of the AND (logical multiplication) and OR (logical addition) operations:
 - $(1a) \ 0.0 = 0$ $(1b) \ 1+1 = 1$ $(2a) \ 1.1 = 1$ $(2b) \ 0+0 = 0$ $(3a) \ 0.1 = 1.0 = 0$ $(3b) \ 1+0 = 0+1 = 1$
- The next axioms embody the complement notation:
 (4a) If X=0, then X'=1
 (4b) If X=1, then X'=0

Theorems of Boolean algebra

- Theorems are statements, known to be true, that allow us to manipulate algebraic expressions to have simpler analysis or more efficient synthesis of the corresponding circuits.
- Theorems involving a single variable:
 - $(5a) X \cdot 0 = 0$ (5b) X+1 = 1(Null elements) $(6a) X \cdot 1 = X$ (6b) X+0 = X(Identities) $(7a) X \cdot X = X$ (7b) X+X = X(Idempotency) $(8a) X \cdot X' = 0$ (8b) X+X' = 1(Complements)(9) (X')' = X(Involution)
- These theorems can be proved to be true. Let us prove 6b:
 [X=0] 0+0=0 (true, according to 2b)
 [X=1] 1+0=1 (true, according to 3b)

Theorems of Boolean algebra

Theorems involving two or three variables: ٠ (10a) $X \cdot Y = Y \cdot X$ (10b) X + Y = Y + X (Commutativity) (11a) $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$ (11b) (X+Y)+Z = X+(Y+Z) (Associativity) (12a) $X \cdot Y + X \cdot Z = X \cdot (Y + Z)$ (12b) $(X + Y) \cdot (X + Z) = X + Y \cdot Z$ (Distributivity) (13a) $X+X\cdot Y = X$ (13b) $X\cdot(X+Y) = X$ (Absorption) (14a) $X \cdot Y + X \cdot Y' = X$ (14b) $(X + Y) \cdot (X + Y') = X$ (Combining) (15a) $(X_1 \cdot X_2)' = X_1' + X_2'$ (15b) $(X_1+X_2)' = X_1' \cdot X_2'$ DeMorgan's theorems (16a) $X+X'\cdot Y=X+Y$ (16b) $X\cdot(X'+Y)=X\cdot Y$ (simplification) (17a) $X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$ (Consensus) (17b) $(X+Y)\cdot(X'+Z)\cdot(Y+Z) = (X+Y)\cdot(X'+Z)$

Duality

- Theorems were presented in pairs.
- The b version of a theorem is obtained from the a version by swapping "0" and "1", and "." and "+".
- <u>Principle of Duality</u>: Any theorem or identity in Boolean algebra remains true if 0 and 1 are swapped and \cdot and + are swapped throughout.
- Duality is important because it doubles the usefulness of everything about Boolean algebra and manipulation of logic functions.

Consensus theorem

Consensus Theorem:

• XY +
$$\overline{X}Z$$
 + YZ = XY + $\overline{X}Z$
 \uparrow
redundant

Note: Y and Z are associated with X and \overline{X} , and appear together in the term that is eliminated.

Consensus theorem

• Using duality:

$$(x+y).(y+z).(x+z) = (x+y)(x+z)$$

$\mathbf{X} + 0 = \mathbf{X}$	$\mathbf{X} \cdot 1 = \mathbf{X}$	Identity
X + 1 = 1	$\mathbf{X} \cdot 0 = 0$	
$\mathbf{X} + \mathbf{X} = \mathbf{X}$	$\mathbf{X} \cdot \mathbf{X} = \mathbf{X}$	Idempotent Law
$\mathbf{X} + \mathbf{X'} = 1$	$\mathbf{X} \cdot \mathbf{X}' = 0$	Complement
$(\mathbf{X'})' = \mathbf{X}$		Involution Law
$\mathbf{X} + \mathbf{Y} = \mathbf{Y} + \mathbf{X}$	XY = YX	Commutativity
$\mathbf{X} + (\mathbf{Y} + \mathbf{Z}) = (\mathbf{X} + \mathbf{Y}) + \mathbf{Z}$	$\mathbf{X}(\mathbf{Y}\mathbf{Z}) = (\mathbf{X}\mathbf{Y})\mathbf{Z}$	Associativity
$\mathbf{X}(\mathbf{Y} + \mathbf{Z}) = \mathbf{X}\mathbf{Y} + \mathbf{X}\mathbf{Z}$	$\mathbf{X} + \mathbf{Y}\mathbf{Z} = (\mathbf{X} + \mathbf{Y})(\mathbf{X} + \mathbf{Z})$	Distributivity
$\mathbf{X} + \mathbf{X}\mathbf{Y} = \mathbf{X}$	$\mathbf{X}(\mathbf{X} + \mathbf{Y}) = \mathbf{X}$	Absorption Law
$\mathbf{X} + \mathbf{X}'\mathbf{Y} = \mathbf{X} + \mathbf{Y}$	$\mathbf{X}(\mathbf{X'} + \mathbf{Y}) = \mathbf{X}\mathbf{Y}$	Simplification
$(\mathbf{X} + \mathbf{Y})' = \mathbf{X}'\mathbf{Y}'$	$(\mathbf{X}\mathbf{Y})' = \mathbf{X}' + \mathbf{Y}'$	DeMorgan's Law
$ \begin{array}{l} \mathbf{X}\mathbf{Y} + \mathbf{X}'\mathbf{Z} + \mathbf{Y}\mathbf{Z} \\ = \mathbf{X}\mathbf{Y} + \mathbf{X}'\mathbf{Z} \end{array} $	$(\mathbf{X} + \mathbf{Y})(\mathbf{X'} + \mathbf{Z})(\mathbf{Y} + \mathbf{Z})$ = $(\mathbf{X} + \mathbf{Y})(\mathbf{X'} + \mathbf{Z})$	Consensus Theorem

- Differences between Boolean and ordinary algebra:
- Distributive law of + over . x+(y.z)=(x+y).(x+z) is not valid in ordinary algebra
- Boolean algebra does not have additive or multiplicative inverse so there is no subtraction or division operations

- Boolean algebra is used for manipulating logical functions when designing digital hardware.
- However, today most design is done using Computer-Aided Design (CAD) software that includes schematic capture, logic simplification and simulation.
- Other methods include truth tables, Venn diagrams and Karnaugh Maps.

Venn Diagram

- A graphical tool that can be used for Boolean algebra
- A binary variable s is represented by a contour
- Area within the contour corresponds to s=1
- Area outside the contour corresponds to s=0
- Two variables are represented by two overlapping circles

Venn Diagram

Figure 2.13. Verification of the distributive property x (y+z) = x y + x z

Precedence of operations

- In the absence of parentheses, operations in a logic expression must be performed in the order: NOT, AND, OR
- Example:

$$f = x_1 \cdot x_2 + \bar{x}_1 \bar{x}_2$$

Synthesis using AND, OR and NOT

- One way of designing a logic circuit that implements a truth table is to create a product term that has a value of 1 for each valuation for which the output function has to be 1.
- Then we take the logical sum of these product terms to realize f

x_1	x_2	$f(x_1, x_2)$
$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$\begin{array}{c}1\\1\\0\\1\end{array}$

$$f(x_1, x_2) = \overline{x_1} \overline{x_2} + \overline{x_1} x_2 + x_1 x_2$$

$$f = \overline{x_1} + x_2$$

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	

Minterm, Maxterm

- <u>Minterm</u>
- A product term in which all variables of a function appear exactly once, uncomplemented or complemented.
- <u>Maxterm</u>
- A sum term in which all variables of a function appear exactly once, uncomplemented or complemented.

Minterm, Maxterm

For a Boolean function of n variables, there are 2ⁿ minterms:

 $m_0 ... m_{2}^{n} -1$

and 2ⁿ maxterms:

 $M_0 .. M_{2^{n-1}}$

Note that: $M_i = \overline{m_i}$

Minterm, Maxterm

Row No.	АВС	Minterms	Maxterms
0	000	$A'B'C'=m_0$	$A + B + C = M_0$
1	001	$A' B' C = m_1$	$A + B + C' = M_1$
2	010	$A'BC' = m_2$	$A + B' + C = M_2$
3	011	$A'BC = m_3$	$A + B' + C' = M_3$
4	100	$AB'C' = m_4$	$A'+B+C=M_4$
5	101	$AB'C = m_s$	$A'+B+C''=M_5$
6	110	$ABC' = m_6$	$A'+B'+C=M_6$
7	1 1 1	$ABC = m_7$	$A'\!+B'\!+C'\!=M_7$

 $M_i = m'_i$

Canonical Sum of Products Form

• A Boolean function f(x1,x2,x3) can be expressed algebraically as a logical *sum of minterms*:

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	0 0 0	0 0 1	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	0 1 0
2 3 4	0 0 1	1 1 0	$\begin{array}{c} 0\\ 1\\ 0\\ 1\end{array}$	
$5 \\ 6 \\ 7$	1 1 1	$egin{array}{c} 0 \ 1 \ 1 \end{array}$	$egin{array}{c} 1 \\ 0 \\ 1 \end{array}$	$ \begin{array}{c} 1\\ 1\\ 0\end{array} $

Canonical Sum of Products Form

• f can be expressed as sum of product terms (SOP)

$$f(x1, x2, x3) = \sum (m1, m4, m5, m6)$$
$$f(x1, x2, x3) = \sum m(1, 4, 5, 6)$$

Canonical Product of Sums Form

• The *complement* of f(x1,x2,x3) can be formed as the logical sum of all minterms not used in f(x1,x2,x3):

$$\bar{f}(x1, x2, x3) = m0 + m2 + m3 + m7$$

$$f = \overline{m0 + m2 + m3 + m7}$$

$$f = \overline{m0.m2.m3.m7}$$

$$f = M0.M2.M3.M7$$

This is called the product of sum presentation of f

Conversion Between the Canonical Forms

- It is easy to convert from one canonical form to other one, simply use the DeMorgan's theorem.
- Example:

$$F(A,B,C) = \sum (1,4,5,6,7)$$

$$F'(A,B,C) = \sum (0,2,3)$$

$$F(A,B,C) = (m0 + m2 + m3)' = m'_0m'_2m'_3 = M_0M_2M_3$$

$$F(A,B,C) = \prod (0,2,3)$$

Cost of a Logic Circuit

- Cost of a logic circuit: total number of gates plus total number of inputs to all gates in the circuit
- The canonical SOP and POS implementations described before are not necessarily minimum cost
- We can simplify them to obtain minimum-cost SOP and POS circuits

Reducing Cost

- How can we simplify a logic function?
- There are systematic approached for doing this (e.g., Karnaugh map) that we will learn later
- The other way is to use theorems and properties of Boolean algebra and do algebraic manipulations.
- Do an example on the board.

Reducing Cost

- The simplified version of SOP is called minimal SOP
- The simplified version of POS is called minimal POS
- We cannot in general predict whether the minimal SOP expression or minimal POS expression will result in the lowest cost.
- It is often useful to check both expressions to see which gives the best result.

Other Logic Operations

- NAND,
- NOR,
- XOR,
- XNOR

NAND

• NAND: a combination of an AND gate followed by an inverter.

А	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

- Symbol for NAND is \uparrow
- NAND gates have several interesting properties:

 $A \uparrow A = A'$ $(A \uparrow B)' = AB$ $(A' \uparrow B') = A + B$

NAND

- These three properties show that a NAND gate with both of its inputs driven by the same signal is equivalent to a NOT gate
- A NAND gate whose output is complemented is equivalent to an AND gate, and a NAND gate with complemented inputs acts as an OR gate.
- Therefore, we can use a NAND gate to implement all three of the *elementary operators* (AND,OR,NOT).
- Therefore, ANY Boolean function can be constructed using only NAND gates.

NAND

NOR

• NOR: a combination of an OR gate followed by an inverter.

А	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

• NOR gates also have several interesting properties:

$$A \downarrow A = A'$$
$$(A \downarrow B)' = A + B$$
$$A' \downarrow B' = AB$$

NOR

- Just like the NAND gate, any logic function can be implemented using just NOR gates.
- Both NAND and NOR gates are very valuable as any design can be realized using either one.
- It is easier to build an IC chip using all NAND or NOR gates than to combine AND,OR, and NOT gates.
- NAND/NOR gates are typically faster at switching and cheaper to produce.

- NAND and NOR can be implemented by simpler electronic circuits than the AND and OR functions
- Can these gates be used in synthesis of logic circuits?

(a) $\overline{x_1 x_2} = \overline{x_1 + x_2}$

Exclusive OR (XOR)

- The eXclusive OR (XOR) function is an important Boolean function used extensively in logic circuits.
- The XOR function maybe:
 - implemented directly as an electronic circuit (truly a gate) or
 - implemented by interconnecting other gate types (used as a convenient representation)
- The XOR function means: X OR Y, but NOT BOTH

XOR

- XOR gates assert their output when exactly one of the inputs is asserted, hence the name.
- The symbol for this operation is \oplus

Y = A'B + AB'

А	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

- The eXclusive NOR function is the complement of the XOR function
- The symbol for this operation is \bigcirc , i.e. $1 \bigcirc 1 = 1$ and $1 \oslash 0 = 0$.

А	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Y = A'B' + AB

• Why is the XNOR function also known as the *equivalence* function?

XOR Implementations

• A SOP implementation

• A NAND implementation

XOR and XNOR

- Uses for the XOR and XNORs gate include:
 - Adders/subtractors/multipliers
 - Counters/incrementers/decrementers
 - Parity generators/checkers

XOR

• XOR identities:

 $X \oplus 0 = X$ $X \oplus X = 0$ $X \oplus Y = Y \oplus X$ $X \oplus 1 = X'$ $X \oplus X' = 1$

Gates with more than two inputs

- A gate can be extended to have multiple inputs if the binary operation it represents is commutative and associative.
- AND and OR operations have these two properties
- NAND and NOR are not associative:

 $(A \downarrow B) \downarrow C \neq A \downarrow (B \downarrow C)$ $(A \uparrow B) \uparrow C \neq A \uparrow (B \uparrow C)$

Gates with more than two inputs

• We define multiple input NAND and NOR gates as follows:

 $A \downarrow B \downarrow C = (A + B + C)'$ $A \uparrow B \uparrow C = (ABC)'$

Gates with more than two inputs

- XOR and XNOR are both commutative and associative
- Definition of XOR should be modified for more than two inputs
- For more than 2 inputs, XOR is called an *odd function*: it is equal to 1 if the input variables have an odd number of 1's
- Similarly, for more than 2 inputs, XNOR is called an *even function*: it is equal to 1 if the input variables have an even number of 1's

Learning Objectives

- List the three basic logic operations
- Draw the truth table for the basic logic operations
- Build truth table for an arbitrary number of variables
- Draw schematic for basic logic gates
- Perform analysis on simple logic circuits
- Draw timing diagram for simple logic circuits

