
Logic Design 

Number Representation and Arithmetic 
Circuits 
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Number representation 
•  Numbers that are positive only are called unsigned and 

numbers that can be positive or negative are called signed 
•  Numbers could be integer or real 
•  Simplest: unsigned integer 
•  A decimal integer: 
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Number representation 
•  Binary numbers: 

€ 

B = bn−1bn−2 ...b1b0
V (B) = bn−1 × 2

n−1 + bn−2 × 2
n−2 + ..+ b1 × 2

1 + b0 × 2
0
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Number representation 
•  In a binary number the right-most bit is called the least-

significant bit (LSB) and the left-most bit is called the most 
significant bit (MSB) 

•  A group of 4 bits is called a nibble 
•  A group of 8 bits is called a byte 
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Number representation 
•  Conversion from decimal to binary: successively divide by 2 
•  In each step the remainder is the next binary digit 
•  The process continue until the quotient becomes zero 
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Number representation 
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Number representation 
•  The most common bases in addition to decimal are: 

•  base 2  (binary)  { 0, 1 }  

•  base 8  (octal)  { 0, 1, … 7}  

•  base 16  (hexadecimal) { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 
C, D, E, F } 

•  Reason for using octal and hexadecimal systems: useful 
shorthand notation for binary numbers 
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Number representation 
•  One octal digit represents three bits 
•  Conversion from binary to octal: starting from the LSB 

replace every group of three digits with their corresponding 
octal digit  

•  Conversion from binary to hexadecimal: starting from the 
LSB replace every group of four digits with their 
corresponding hexadecimal digit  

•  Conversion from octal to binary: substitute each octal digit by 
corresponding three bits 

•  Conversion from hexadecimal to binary: substitute each hex 
digit by four bits 
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Addition of Unsigned Numbers 
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Addition of Unsigned Numbers 
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Decomposed Full Adder 
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Ripple Carry Adder 
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Ripple Carry Adder 
•  When operands X and Y are applied as inputs to the adder, it 

takes some time before its si and ci+1 are valid 

•  If this delay is Δt the complete sum will be valid after a delay 
of nΔt 

•  Because of the way the carry signal “ripple” through the full-
adder, this circuit is called a ripple-carry adder 
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Example 
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Example 

x  1  x  0  y  8  y  0  y  7  x  8  
s  0  s  8  

c  8  

0  0  

a  7  A  :  

P  9  P  8  P  0  P  3  A  =  :  
(b) Efficient design 

a  0  
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Signed Numbers 
•  One of the bits (usually the left-most bit) is reserved for the 

sign of the number. 
•  Usually a 1 indicates negative and 0 indicates positive. 



Copyright S. Shirani 

Signed Numbers 
•  Extending the 'natural' binary representation of positive 

integers to negative integers can be done in at least 3 different 
schemes:  sign-magnitude, one's complement and two's 
complement.  

•  Sign-and-magnitude: The most significant bit (MSB) is 
reserved to the sign, 0 is positive, 1 is negative. All other bits 
are used to store the magnitude in the natural representation.  

•  Addition and subtraction are complicated.  
•  There are two representations for zero!  
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Signed Numbers 
•  One’s complement Positive integers are like in the natural 

representation, negative numbers are obtained by 
complementing each bit of the corresponding positive number 
(i.e. the absolute value).   

•  There are two representations for zero!  Bitwise addition of N 
and  -N gives -0.   

•  Positive integers still have MSB = 0, and negative integers 
have MSB=1.  

•  1’s complement of an n-bit negative number K is obtained by 
subtracting its equivalent positive number P from 2n-1 

•  K1=(2n-1)-P 
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Signed Numbers 
•  Two's complement Like one's complement, but negative 

numbers are having 1 added after complementation.  
•  Bitwise addition of N and  -N gives 0 if you ignore the carry 

out of the MSB.  
•  Positive integers still have MSB = 0, and negative integers 

have MSB=1. Only one representation for zero!  
•  2’s complement of an n-bit negative number K is obtained by 

subtracting its equivalent positive number P from 2n 
•  K2=2n-P 
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Signed Numbers 
•  Relationship between 2’s complement and 1’s complement 
•  K2=K1+1 
•  A simple way of finding the 2’s complement is to find 1’s 

complement and add 1 
•  Rule for finding 2’s complement:  

–  Given signed number B=bn-1bn-2…b1b0 

–  2’s complement: K=kn-1kn-2…k1k0 

–  Examine bits of B from right to left, copy all bits of B that are 0 and 
the first bit that is 1, then complement the rest of the bits 
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2’s complement signed numbers 

B=bn-1bn-2…b1b0 

Largest negative number: -2n-1 

Largest positive number: 2n-1 -1 
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1’s complement addition 

+ + 
1 1 0 0 

1 0 1 0 
0 0 1 0 

0 1 1 1 

0 1 0 1 
0 0 1 0 

+ + 
0 1 1 1 

1 0 1 0 
1 1 0 1 

0 0 1 0 

0 1 0 1 
1 1 0 1 

1 
1 

0 0 1 1 

1 
1 

1 0 0 0 

2 + ( ) 
5 - ( ) 

3 - ( ) 
+ 

5 – ( ) 

7 – ( ) 
+ 2 – ( ) 

5 + ( ) 
2 + ( ) 
7 + ( ) 

+ 

5 + ( ) 

3 + ( ) 
+ 2 – ( ) 
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Addition and Subtraction 
•  Addition of 1’s complement numbers might need a correction 
•  Time needed to add two 1’s complement numbers may be 

twice as long as time needed to add two unsigned numbers 
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2’s complement addition 

+ + 
1 1 0 1 

1 0 1 1 
0 0 1 0 

0 1 1 1 

0 1 0 1 
0 0 1 0 

+ + 
1 0 0 1 

1 0 1 1 
1 1 1 0 

0 0 1 1 

0 1 0 1 
1 1 1 0 

1 1 

ignore ignore 

5 + ( ) 
2 + ( ) 
7 + ( ) 

+ 

5 + ( ) 

3 + ( ) 
+ 2 – ( ) 

2 + ( ) 
5 – ( ) 

3 – ( ) 
+ 

5 – ( ) 

7 – ( ) 
+ 2 – ( ) 
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2’s complement subtraction 
– 

0 1 0 1 
0 0 1 0 

5 + ( ) 
2 + ( ) 
3 + ( ) 

– 
1 

ignore 

+ 
0 0 1 1 

0 1 0 1 
1 1 1 0 

– 
1 0 1 1 
0 0 1 0 – 

1 

ignore 

+ 
1 0 0 1 

1 0 1 1 
1 1 1 0 

– 
0 1 0 1 
1 1 1 0 

5 + ( ) 

7 + ( ) 
– + 

0 1 1 1 

0 1 0 1 
0 0 1 0 

5 – ( ) 

7 – ( ) 
2 + ( ) 

2 – ( ) 

– 
1 0 1 1 
1 1 1 0 – + 

1 1 0 1 

1 0 1 1 
0 0 1 0 2 – ( ) 

5 – ( ) 

3 – ( ) 
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Adder and Subtractor Unit 
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Radix-complement schemes 
•  Complements – general theory  

•  The r’s complement of an n-digit number N in base r is: 
     Kr= rn - N    for N ≠ 0 
        (0 for N=0) 
•  The (r-1)’s complement, Kr-1 is defined as: 
     Kr= (rn-1) - N   

•  The concept of subtracting a number by adding its radix-
complement is general 
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Arithmetic Overflow 
•  If n bits are used to represent signed numbers, result must be 

in the range –2n-1 to 2n-1-1 
•  If the result does not fit in this range, we say that arithmetic 

overflow has happened 
•  We should be able to detect overflow 
•  The key to determining the overflow is carry-out from MSB 

position and carry-out from the sign bit 
•  If they are the same no overflow has happened. 
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Arithmetic Overflow 

+ + 
1 0 1 1 

1 0 0 1 
0 0 1 0 

1 0 0 1 

0 1 1 1 
0 0 1 0 

7 + ( ) 
2 + ( ) 
9 + ( ) 

+ 

+ + 
0 1 1 1 

1 0 0 1 
1 1 1 0 

0 1 0 1 

0 1 1 1 
1 1 1 0 

7 + ( ) 

5 + ( ) 
+ 2 – ( ) 

1 1 

c 4 0 = 
c 3 1 = 

c 4 0 = 
c 3 0 = 

c 4 1 = 
c 3 1 = 

c 4 1 = 
c 3 0 = 

2 + ( ) 
7 – ( ) 

5 – ( ) 
+ 

7 – ( ) 

9 – ( ) 
+ 2 – ( ) 
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Performance Issue 
•  Speed of any circuit is limited by the longest delay along the 

paths through the circuit 
•  This is called the critical path delay 
•  Critical path for the ripple adder is from input y, through the 

XOR gate and through the carry circuit of each stage.  
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Fast Adders 
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Fast Adders 



Copyright S. Shirani 

Fast Adders 
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Fast Adders 
•  In an n-bit carry-look ahead adder the final carry-out signal 

would be produced after three gate delays 
•  The total delay in an n-bit carry-look ahead adder is four gate 

delays. 
•  Complexity of an n-bit carry look ahead adder increases 

rapidly as n becomes larger 
•  We can use a hierarchical approach in designing large adders. 
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Fast Adders 
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Fast Adders 
•  A faster circuit can be designed in which a second-level carry-

look-ahead is performed to produce quickly the carry signals 
between blocks. 

•  Instead of producing a carry-out signal from the most 
significant bit of the block, each block produces generate and 
propagate signals for the entire block 
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Fast Adders 
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Fast Adders 
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Technology Considerations 
•  So far we assumed gates with any number of inputs can be 

used 
•  Fan-in is limited to a small number 
•  More gates should be used to implement the logic 
•  Example: max fan-in is four 
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•  Because fan-in limitation reduces the speed of carry-look-
ahead adder, some devices with low fan-in include dedicated 
circuit for implementing fast adders  

•  Example: FPGA 
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Multiplication 
•  A number is multiplied by 2k by shifting it left  by k bit 

positions 
•  This is true both for unsigned and signed numbers 
•  Shifting to the right by k bit, is equivalent to dividing by 2k 

•  For unsigned numbers the empty bit positions are filled with 
zero 

•  For signed numbers, in order to preserve the sign, the empty 
bit positions are filled with the sign bit 
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•  B=011000=24 
•  B/2=001100=12 
•  B/4=000110=6 

•  B=101000=-24 
•  B/2=110100=-12 
•  B/4=111010=-6 
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Multiplication of unsigned numbers 

Each multiplier bit is examined: if 1, a shifted version of 
the multiplicand is added to form the partial product; if 
zero nothing is added 
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Multiplication of unsigned numbers 
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Multiplication of Signed Numbers 
•  If multiplier is positive essentially the same scheme as 

unsigned numbers can be used 
•  Since shifting the multiplicand to the left results in one of the 

operands having n+1 bits, the addition has to be performed 
using the second operand represented in n+1 bits 

•  An n bit signed number is represented as an n+1 bit number 
by replicating the sign bit 

•  Replication of the sign bit is called sign extension 
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Fixed point 
•  A fixed point number consists of integer and fraction parts. 
•  The position of radix point is fixed  

€ 

B = bn−1bn−2 ....b1b0.b−1b−2 ....b−k

V (B) = bi × 2
i

i=−k

n−1

∑
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Floating point 
•  Fixed point numbers: limited range 
•  Floating point: numbers are represented by a mantissa and an 

exponent:      Mantissa x RExponent  
•  Normalized: radix point is the right of fist nonzero digit 
•  Example: 5.234 x 1043 

•  For binary R=2 
•  How mantissa and exponent are represented has been 

standardized by IEEE 
•  Single precision (32 bits) and double precision (64 bits) 



Copyright S. Shirani 

Sign 

32 bits  

23 bits of mantissa  
excess-127 
exponent 

8-bit  

52 bits of mantissa  11-bit excess-1023 
exponent 

64 bits  

Sign 

S  M  

S  M  

(a) Single precision 

(c) Double precision 

E  

+  

E  

0 denotes  
–  1 denotes  
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•  Single precision 
–  Exponent=E-127 
–  Value=(+ or -)1.M x2E-127 

•  Double precision 
–  Exponent=E-1023 
–  Value=(+ or -)1.M x2E-1023 
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Binary coded decimal (BCD)  
•  Each digit in a decimal number is represented by its binary 

form 
•  Since there are 10 digits we need 4 bits per digit 
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BCD 
•  BCD representation was used in some early computers 
•  Drawback: complexity of circuits that perform arithmetic 

operations 
•  BCD addition: 
•  X and Y two BCD digits (each four bits) 
•  S=X+Y 
•  If                         the addition is the same as the addition of 2 

unsigned binary numbers 
•  If  X+Y > 9 the result requires two BDC digits and the four-

bit sum may be incorrect.  
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ASCII code 
•  ASCII code: the most popular code for representing 

information in digital systems used for letters numbers and 
some control characters. 

•  Control characters: those needed in computer systems to 
handle and transfer data, e.g., return character 

•  ACII representation of numbers is not convenient for 
arithmetic operations 

•  It is best to covert ASCII numbers to binary for arithmetic 
operations 
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ASCII code 
•  ASCII uses 7-bit, natural size in computer systems in one-

byte (8-bits) 
•  Two common ways on going to 8-bits 

–  Set the eight bit to 0 
–  Use the eight-bit to indicate the parity of the other bits 

•  Even parity: the parity bit is given a value such that total 
number of 1’s is even   

•  Odd parity: the parity bit is given a value such that total 
number of 1’s is odd 

•  Even parity generator: 
•  Parity checker:     


