
Logic Design

Number Representation and Arithmetic
Circuits

Copyright S. Shirani

Number representation
•  Numbers that are positive only are called unsigned and

numbers that can be positive or negative are called signed
•  Numbers could be integer or real
•  Simplest: unsigned integer
•  A decimal integer:

Copyright S. Shirani

Number representation
•  Binary numbers:

€

B = bn−1bn−2 ...b1b0
V (B) = bn−1 × 2

n−1 + bn−2 × 2
n−2 + ..+ b1 × 2

1 + b0 × 2
0

Copyright S. Shirani

Number representation
•  In a binary number the right-most bit is called the least-

significant bit (LSB) and the left-most bit is called the most
significant bit (MSB)

•  A group of 4 bits is called a nibble
•  A group of 8 bits is called a byte

Copyright S. Shirani

Number representation
•  Conversion from decimal to binary: successively divide by 2
•  In each step the remainder is the next binary digit
•  The process continue until the quotient becomes zero

Copyright S. Shirani

Number representation

Copyright S. Shirani

Number representation
•  The most common bases in addition to decimal are:

•  base 2 (binary) { 0, 1 }

•  base 8 (octal) { 0, 1, … 7}

•  base 16 (hexadecimal) { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, F }

•  Reason for using octal and hexadecimal systems: useful
shorthand notation for binary numbers

Copyright S. Shirani

Number representation
•  One octal digit represents three bits
•  Conversion from binary to octal: starting from the LSB

replace every group of three digits with their corresponding
octal digit

•  Conversion from binary to hexadecimal: starting from the
LSB replace every group of four digits with their
corresponding hexadecimal digit

•  Conversion from octal to binary: substitute each octal digit by
corresponding three bits

•  Conversion from hexadecimal to binary: substitute each hex
digit by four bits

Copyright S. Shirani

Addition of Unsigned Numbers

Copyright S. Shirani

Addition of Unsigned Numbers

Copyright S. Shirani

Copyright S. Shirani

Decomposed Full Adder

Copyright S. Shirani

Ripple Carry Adder

Copyright S. Shirani

Ripple Carry Adder
•  When operands X and Y are applied as inputs to the adder, it

takes some time before its si and ci+1 are valid

•  If this delay is Δt the complete sum will be valid after a delay
of nΔt

•  Because of the way the carry signal “ripple” through the full-
adder, this circuit is called a ripple-carry adder

Copyright S. Shirani

Example

Copyright S. Shirani

Example

x 1 x 0 y 8 y 0 y 7 x 8
s 0 s 8

c 8

0 0

a 7 A :

P 9 P 8 P 0 P 3 A = :
(b) Efficient design

a 0

Copyright S. Shirani

Signed Numbers
•  One of the bits (usually the left-most bit) is reserved for the

sign of the number.
•  Usually a 1 indicates negative and 0 indicates positive.

Copyright S. Shirani

Signed Numbers
•  Extending the 'natural' binary representation of positive

integers to negative integers can be done in at least 3 different
schemes: sign-magnitude, one's complement and two's
complement.

•  Sign-and-magnitude: The most significant bit (MSB) is
reserved to the sign, 0 is positive, 1 is negative. All other bits
are used to store the magnitude in the natural representation.

•  Addition and subtraction are complicated.
•  There are two representations for zero!

Copyright S. Shirani

Signed Numbers
•  One’s complement Positive integers are like in the natural

representation, negative numbers are obtained by
complementing each bit of the corresponding positive number
(i.e. the absolute value).

•  There are two representations for zero! Bitwise addition of N
and -N gives -0.

•  Positive integers still have MSB = 0, and negative integers
have MSB=1.

•  1’s complement of an n-bit negative number K is obtained by
subtracting its equivalent positive number P from 2n-1

•  K1=(2n-1)-P

Copyright S. Shirani

Signed Numbers
•  Two's complement Like one's complement, but negative

numbers are having 1 added after complementation.
•  Bitwise addition of N and -N gives 0 if you ignore the carry

out of the MSB.
•  Positive integers still have MSB = 0, and negative integers

have MSB=1. Only one representation for zero!
•  2’s complement of an n-bit negative number K is obtained by

subtracting its equivalent positive number P from 2n
•  K2=2n-P

Copyright S. Shirani

Signed Numbers
•  Relationship between 2’s complement and 1’s complement
•  K2=K1+1
•  A simple way of finding the 2’s complement is to find 1’s

complement and add 1
•  Rule for finding 2’s complement:

–  Given signed number B=bn-1bn-2…b1b0

–  2’s complement: K=kn-1kn-2…k1k0

–  Examine bits of B from right to left, copy all bits of B that are 0 and
the first bit that is 1, then complement the rest of the bits

Copyright S. Shirani

2’s complement signed numbers

B=bn-1bn-2…b1b0

Largest negative number: -2n-1

Largest positive number: 2n-1 -1

Copyright S. Shirani

1’s complement addition

+ +
1 1 0 0

1 0 1 0
0 0 1 0

0 1 1 1

0 1 0 1
0 0 1 0

+ +
0 1 1 1

1 0 1 0
1 1 0 1

0 0 1 0

0 1 0 1
1 1 0 1

1
1

0 0 1 1

1
1

1 0 0 0

2 + ()
5 - ()

3 - ()
+

5 – ()

7 – ()
+ 2 – ()

5 + ()
2 + ()
7 + ()

+

5 + ()

3 + ()
+ 2 – ()

Copyright S. Shirani

Addition and Subtraction
•  Addition of 1’s complement numbers might need a correction
•  Time needed to add two 1’s complement numbers may be

twice as long as time needed to add two unsigned numbers

Copyright S. Shirani

2’s complement addition

+ +
1 1 0 1

1 0 1 1
0 0 1 0

0 1 1 1

0 1 0 1
0 0 1 0

+ +
1 0 0 1

1 0 1 1
1 1 1 0

0 0 1 1

0 1 0 1
1 1 1 0

1 1

ignore ignore

5 + ()
2 + ()
7 + ()

+

5 + ()

3 + ()
+ 2 – ()

2 + ()
5 – ()

3 – ()
+

5 – ()

7 – ()
+ 2 – ()

Copyright S. Shirani

2’s complement subtraction
–

0 1 0 1
0 0 1 0

5 + ()
2 + ()
3 + ()

–
1

ignore

+
0 0 1 1

0 1 0 1
1 1 1 0

–
1 0 1 1
0 0 1 0 –

1

ignore

+
1 0 0 1

1 0 1 1
1 1 1 0

–
0 1 0 1
1 1 1 0

5 + ()

7 + ()
– +

0 1 1 1

0 1 0 1
0 0 1 0

5 – ()

7 – ()
2 + ()

2 – ()

–
1 0 1 1
1 1 1 0 – +

1 1 0 1

1 0 1 1
0 0 1 0 2 – ()

5 – ()

3 – ()

Copyright S. Shirani

Adder and Subtractor Unit

Copyright S. Shirani

Radix-complement schemes
•  Complements – general theory

•  The r’s complement of an n-digit number N in base r is:
 Kr= rn - N for N ≠ 0
 (0 for N=0)
•  The (r-1)’s complement, Kr-1 is defined as:
 Kr= (rn-1) - N

•  The concept of subtracting a number by adding its radix-
complement is general

Copyright S. Shirani

Arithmetic Overflow
•  If n bits are used to represent signed numbers, result must be

in the range –2n-1 to 2n-1-1
•  If the result does not fit in this range, we say that arithmetic

overflow has happened
•  We should be able to detect overflow
•  The key to determining the overflow is carry-out from MSB

position and carry-out from the sign bit
•  If they are the same no overflow has happened.

Copyright S. Shirani

Arithmetic Overflow

+ +
1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7 + ()
2 + ()
9 + ()

+

+ +
0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7 + ()

5 + ()
+ 2 – ()

1 1

c 4 0 =
c 3 1 =

c 4 0 =
c 3 0 =

c 4 1 =
c 3 1 =

c 4 1 =
c 3 0 =

2 + ()
7 – ()

5 – ()
+

7 – ()

9 – ()
+ 2 – ()

Copyright S. Shirani

Performance Issue
•  Speed of any circuit is limited by the longest delay along the

paths through the circuit
•  This is called the critical path delay
•  Critical path for the ripple adder is from input y, through the

XOR gate and through the carry circuit of each stage.

Copyright S. Shirani

Fast Adders

Copyright S. Shirani

Fast Adders

Copyright S. Shirani

Fast Adders

Copyright S. Shirani

Fast Adders

Copyright S. Shirani

Fast Adders
•  In an n-bit carry-look ahead adder the final carry-out signal

would be produced after three gate delays
•  The total delay in an n-bit carry-look ahead adder is four gate

delays.
•  Complexity of an n-bit carry look ahead adder increases

rapidly as n becomes larger
•  We can use a hierarchical approach in designing large adders.

Copyright S. Shirani

Fast Adders

Copyright S. Shirani

Fast Adders
•  A faster circuit can be designed in which a second-level carry-

look-ahead is performed to produce quickly the carry signals
between blocks.

•  Instead of producing a carry-out signal from the most
significant bit of the block, each block produces generate and
propagate signals for the entire block

Copyright S. Shirani

Fast Adders

Copyright S. Shirani

Fast Adders

Copyright S. Shirani

Technology Considerations
•  So far we assumed gates with any number of inputs can be

used
•  Fan-in is limited to a small number
•  More gates should be used to implement the logic
•  Example: max fan-in is four

Copyright S. Shirani

•  Because fan-in limitation reduces the speed of carry-look-
ahead adder, some devices with low fan-in include dedicated
circuit for implementing fast adders

•  Example: FPGA

Copyright S. Shirani

Multiplication
•  A number is multiplied by 2k by shifting it left by k bit

positions
•  This is true both for unsigned and signed numbers
•  Shifting to the right by k bit, is equivalent to dividing by 2k

•  For unsigned numbers the empty bit positions are filled with
zero

•  For signed numbers, in order to preserve the sign, the empty
bit positions are filled with the sign bit

Copyright S. Shirani

•  B=011000=24
•  B/2=001100=12
•  B/4=000110=6

•  B=101000=-24
•  B/2=110100=-12
•  B/4=111010=-6

Copyright S. Shirani

Multiplication of unsigned numbers

Each multiplier bit is examined: if 1, a shifted version of
the multiplicand is added to form the partial product; if
zero nothing is added

Copyright S. Shirani

Multiplication of unsigned numbers

Copyright S. Shirani

Copyright S. Shirani

Copyright S. Shirani

Multiplication of Signed Numbers
•  If multiplier is positive essentially the same scheme as

unsigned numbers can be used
•  Since shifting the multiplicand to the left results in one of the

operands having n+1 bits, the addition has to be performed
using the second operand represented in n+1 bits

•  An n bit signed number is represented as an n+1 bit number
by replicating the sign bit

•  Replication of the sign bit is called sign extension

Copyright S. Shirani

Copyright S. Shirani

Copyright S. Shirani

Fixed point
•  A fixed point number consists of integer and fraction parts.
•  The position of radix point is fixed

€

B = bn−1bn−2b1b0.b−1b−2b−k

V (B) = bi × 2
i

i=−k

n−1

∑

Copyright S. Shirani

Floating point
•  Fixed point numbers: limited range
•  Floating point: numbers are represented by a mantissa and an

exponent: Mantissa x RExponent
•  Normalized: radix point is the right of fist nonzero digit
•  Example: 5.234 x 1043

•  For binary R=2
•  How mantissa and exponent are represented has been

standardized by IEEE
•  Single precision (32 bits) and double precision (64 bits)

Copyright S. Shirani

Sign

32 bits

23 bits of mantissa
excess-127
exponent

8-bit

52 bits of mantissa 11-bit excess-1023
exponent

64 bits

Sign

S M

S M

(a) Single precision

(c) Double precision

E

+

E

0 denotes
– 1 denotes

Copyright S. Shirani

•  Single precision
–  Exponent=E-127
–  Value=(+ or -)1.M x2E-127

•  Double precision
–  Exponent=E-1023
–  Value=(+ or -)1.M x2E-1023

Copyright S. Shirani

Binary coded decimal (BCD)
•  Each digit in a decimal number is represented by its binary

form
•  Since there are 10 digits we need 4 bits per digit

Copyright S. Shirani

BCD
•  BCD representation was used in some early computers
•  Drawback: complexity of circuits that perform arithmetic

operations
•  BCD addition:
•  X and Y two BCD digits (each four bits)
•  S=X+Y
•  If the addition is the same as the addition of 2

unsigned binary numbers
•  If X+Y > 9 the result requires two BDC digits and the four-

bit sum may be incorrect.

Copyright S. Shirani

Copyright S. Shirani

Copyright S. Shirani

ASCII code
•  ASCII code: the most popular code for representing

information in digital systems used for letters numbers and
some control characters.

•  Control characters: those needed in computer systems to
handle and transfer data, e.g., return character

•  ACII representation of numbers is not convenient for
arithmetic operations

•  It is best to covert ASCII numbers to binary for arithmetic
operations

Copyright S. Shirani

Copyright S. Shirani

ASCII code
•  ASCII uses 7-bit, natural size in computer systems in one-

byte (8-bits)
•  Two common ways on going to 8-bits

–  Set the eight bit to 0
–  Use the eight-bit to indicate the parity of the other bits

•  Even parity: the parity bit is given a value such that total
number of 1’s is even

•  Odd parity: the parity bit is given a value such that total
number of 1’s is odd

•  Even parity generator:
•  Parity checker:

