Logic Design

Synchronous Sequential Circuits

Introduction

- Combinational circuits: value of each output depends only on the values of inputs
- Sequential Circuits: values of outputs depend on inputs and past behavior of the circuit
- In most cases a clock is used to control the operation of a sequential circuit
- These circuits are called synchronous sequential circuits

- Synchronous sequential circuits are realized using combinational logic an done or more flip-flops
- State: the value of outputs of flip-flops
- Under the control of clock signal, flip-flop outputs change their state as determined by the combinational logic

Figure 8.1. The general form of a sequential circuit.

- To ensure that only one transition from one state to another takes place during one clock cycle, flip-flops are edgetriggered
- Outputs are generated by another combinational circuit and are function of present state of the flip-flops and the inputs
- Outputs do not necessarily have to depend directly on the inputs
- Moore type: the output depends only on the state of the circuit
- Mealy type: outputs depend on both the sate and the inputs
- Sequential circuits are also called finite state machines (FSM)

- Design a circuit that:
 - Has one input (w) and one output (z)
 - All changes occur on the positive edge of the clock
 - Output z is equal to 1 if during the two immediately preceding clock cycles the input w was equal to 1. Otherwise z is equal to 0.

Clockcycle: w:	t_0	t_1	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t9	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
z:	0	0	0	0	0	1	0	0	1	1	0

Figure 8.2. Sequences of input and output signals.

- First step in designing a FSM: determine how many states are needed and which transitions are possible from one state to another
- No set procedure for this task
- A good way is select a starting state (a state that the circuit enters when the power is turned on or a reset signal is applied
- Starting state A
- As long as w is 0, the circuit should remain in A
- When w becomes 1, the machine should move to a different state (B)

State Diagram

Figure 8.3. State diagram of a simple sequential circuit.

State Table

Present	Next	state	Output
state	w = 0	w = 1	z
A	A	В	0
В	A	C	0
C	A	C	1

Figure 8.4. State table for the sequential circuit in Figure 8.3.

- When implemented in logic circuits, each state is represented by a particular valuation (combination) of state variables
- Each state variable may be implemented in the form of a flipflop
- Since there are three states in this example, two state variables are sufficient: y₁ and y₂

Figure 8.5. A general sequential circuit with input w, output z, and two state flip-flops.

- We need to design a combinational circuit with inputs w, y1 and y2 such that for all valuations of these signals Y1 and Y2 will cause the machine to move to the next state
- We create a truth table by assigning specific valuation of variables y1 and y2 to each state

	Present	Next s	Next state						
	state	w = 0	Output						
	<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z					
A	00	00	01	0					
В	01	00	10	0					
С	10	00	10	1					
	11	dd	dd	d					

McMaste University Figure 8.6. State-assigned table for the sequential circuit in Figure 8.4. Cor

- Choice of flip-flop:
- Most straightforward choice is to use D flip-flops because the values of Y1 and Y2 are simply clocked into the flip-flops to become the new values of y1 and y2

$$y_2y_1$$
00 01 11 10
0 0 0 d 0
1 0 1 d 1

$$Y_1 = w\overline{y}_1\overline{y}_2$$

$$Y_1 = w\bar{y}_1\bar{y}_2$$

$$Y_2 = wy_1 \bar{y}_2 + w\bar{y}_1 y_2$$

$$Y_2 = wy_1 + wy_2$$

= $w(y_1 + y_2)$

$$y_2$$
 0
 0
 0
 0
 0
 0

$$z = \overline{y}_1 y_2$$

$$z = y_2$$

Figure 8.8. Final implementation of the sequential circuit derived in Figure 8.7.

University

Figure 8.9. Timing diagram for the circuit in Figure 8.8.

- Digital systems often contain a set of registers to store data
- Each register is connected to a common set of n wires, used to transfer data into and out of registers
- This common set of wires is called a bus
- In addition to registers other types of circuits would be connected to the bus
- It is essential to ensure that only one circuit block attempts to place data onto the bus wires at any given tome
- A control circuit is used to ensure that only one of the tri-state buffers enables is asserted at a given time

Figure 7.55. A digital system with k registers.

Figure 7.56. Details for connecting registers to a bus.

- An example: consider a system that has three registers, R1, R2 and R3. We want to swap the content of R1 and R2
- Steps:
 - Copy R2 to R3
 - Copy R1 to R2
 - Transfer R3 to R1

- Content of R2 is loaded into R3 using R2out=1, R3in=1
- Content of R1 is transferred into R2 using R1out=1, R2in=1
- Content of R3 is transferred into R1 using R3out=1, R1in=1
- We will indicate the completion of the task by setting a signal Done=1

Present	Next state			Outputs									
state	w = 0	w = 1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done				
A	A	В	0	0	0	0	0	0	0				
В	С	C	0	0	1	0	0	1	0				
C	D	D	1	0	0	1	0	0	0				
D	A	A	0	1	0	0	1	0	1				

	Present state	Next $w = 0$	state $w = 1$	Outputs						
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	10	10	0	0	1	0	0	1	0
C	10	11	1 1	1	0	0	1	0	0	0
D	11	00	0.0	0	1	0	0	1	0	1

$$Y_1 = w\bar{y}_1 + \bar{y}_1y_2$$

$$Y_2 = y_1 \bar{y}_2 + \bar{y}_1 y_2$$

$$R1_{out} = R2_{in} = \bar{y}_1 y_2$$

$$R1_{in} = R3_{out} = Done = y_1y_2$$

$$R2_{out} = R3_{in} = y_1\bar{y}_2$$

- Some state assignment might be better than the others
- It is often impossible to find the best state assignment for a large circuit
- Exhaustive search is not practical because the number of available state assignments is huge

- Y1=D1=w
- Y2=D2=wy1
- z=y2

	Present	Next	Next state						
	state	w = 0	w = 1	Output					
	y 2 y 1	Y_2Y_1	Y_2Y_1	Z					
A	00	00	01	0					
B	01	00	11	0					
\mathbf{C}	11	00	11	1					
	10	dd	dd	d					

• We now consider a different state assignment for the bus controller example

	Presen	l Nex	tstate				Outou	+0		
	state	w = 0	w = 1				Outpu	LS		
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
Α	00	00	01	0	0	0	0	0	0	0
В	01	11	11	0	0	1	0	0	1	0
С	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

$$Y_1 = \overline{wy_2} + y_1 \overline{y_2}$$

$$Y_2 = y_1$$

Figure 8.19. Derivation of next-state expressions for the sequential circuit in Figure 8.18.

- One possibility is to use as many state variables as there are states
- For each state all but one of the state variables are equal to 0
- This approach is known as one-hot coding

- Y1=w'
- Y2=wy₁Y3=wy₁

 \mathbf{A}

B

Present	Next	state	
state	w = 0	w = 1	Output
<i>y</i> 3 <i>y</i> 2 <i>y</i> 1	$Y_3 Y_2 Y_1$	$Y_3 Y_2 Y_1$	z
001	001	010	0
010	001	100	0
100	001	100	1

	Present state	$\begin{aligned} & \text{Next} \\ & w = 0 \end{aligned}$	state $w = 1$	0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0						
	$y_4y_3y_2y_1$	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
	0 001	0001	0010	0	0	0	0	0	0	0
	0 010	0100	0100	0	0	1	0	0	1	0
۱.	0 100	1000	1000	1	0	0	1	0	0	0
۱ (1 000	0001	0001	0	1	0	0	1	0	1

D

$$Y_1 = w'y_1 + y_4$$
$$Y_2 = wy_1$$
$$Y_3 = y_2$$

$$R1_{out} = R2_{in} = y_3$$

$$R1_{in} = R3_{out} = Done = y_4$$

$$R2_{out} = R3_{in} = y_2$$

Mealy State Model

- Mealy state machine: output values are generated based on both the state and the inputs
- Example: design a sequential circuit that the output z is equal to 1 in the same clock cycle when the second occurrence of w (input) is detected

Clock cycle: w:	t_0	t_1	t_2	t ₃	t ₄	t_5	t_6	t ₇	t_8	t9	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
z:	0	0	0	0	1	0	0	1	1	0	0

Figure 8.23. State diagram of an FSM that realizes the task in Figure 8.22.

Present	Next	state	Outj	out z
state	w = 0	w = 1	w = 0	w = 1
A	A	В	0	0
В	A	В	0	1

Figure 8.24. State table for the FSM in Figure 8.23.

	Present	Next	state	Out	put
	state	w = 0	w = 1	w = 0	w = 1
	у	Y	Y	Z	Z
Α	0	0	1	0	0
В	1	0	1	0	1

Figure 8.25. State-assigned table for the FSM in Figure 8.24.

(a) Circuit

Figure 8.26. Implementation of FSM in Figure 8.25.

Figure 8.28. State diagram for Example 8.4.

- If speed is not of great importance, a cost-effective option is to use a serial adder
- Serial adder: bits are added a pair at a time (in one clock cycle)
- A=an-1an-2...a0, B=bn-1bn-2...b0

Figure 8.39. Block diagram for the serial adder.

- G: state that the carry-in is 0
- H: state that the carry-in is1

Figure 8.40. State diagram for the serial adder FSM.

Present	N	Next state				Out	put s	
state	ab=00	01	10	11	00	01	10	11
G	G	G	G	Н	0	1	1	0
Н	G	Н	Н	Н	1	0	0	1

Figure 8.41. State table for the serial adder FSM.

Present	N	ext st	ate			Ou	tput	
state	ab=00	01	10	11	00	01	10	11
y		Y					S	
0	0	0	0	1	0	1	1	0
1	0	1	1	1	1	0	0	1

Figure 8.42. State-assigned table for Figure 8.41.

$$Y = ab + ay + by$$
$$s = a \oplus b \oplus c$$

Figure 8.43. Circuit for the adder FSM in Figure 8.39.

- Since in both states G and H, it is possible to generate two outputs depending on the input, a Moore-type FSM will need more than two states
- G0 and G1: carry is 0 sum is 0 or 1
- H0 andH1: carry is 1 sum is 0 or 1

Figure 8.44. State diagram for the Moore-type serial adder FSM.

Present	N	lextsta	ite		Output
state	ab=00	01	10	11	S
G_0	G_0	G_1	G_1	H_0	0
G_1	G_0	G_1	G_1	H_0	1
H_0	G_1	H_0	H_0	H_1	0
H_1	G_1	H_0	H_0	H_1	1

Figure 8.45. State table for the Moore-type serial adder FSM.

Present	N	Vextst	ate		
state	ab=00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1		$Y_2 Y$	1		S
00	0 0	01	0 1	10	0
01	0.0	01	0 1	10	1
10	0 1	10	10	11	0
11	0 1	10	10	11	1

Figure 8.46. State-assigned table for Figure 8.45.

$$Y_2 = ab + ay_2 + by_2$$

$$Y_1 = a \oplus b \oplus c$$

$$s = y_1$$

Figure 8.47. Circuit for the Moore-type serial adder FSM.

Counter design using sequential circuits

- Counting sequence: 0,1,2,3,4,5,6,7,0,1,...
- Input signal w: if w=1 count is incremented, if w=0 count is frozen

Figure 8.60. State diagram for the counter.

State table

Present	Next	Output	
state	w = 0	w = 1	1
A	A	В	0
В	В	C	1
C	C	D	2
D	D	E	3
E	Е	F	4
F	F	G	5
G	G	Н	6
Н	Н	A	7

	Present	Next		
	state	w = 0	w = 1	Count
	<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$Y_2 Y_1 Y_0$	$Y_2 Y_1 Y_0$	Z2Z1Z0
A	000	000	001	000
В	001	001	010	001
C	010	010	011	010
D	011	011	100	011
E	100	100	101	100
F	101	101	110	101
G	110	110	111	110
Н	111	111	000	111

Figure 8.61. State table for the counter.

Figure 8.62. State-assigned table for the counter.

Implementation using D flip-flop

Figure 8.63. Karnaugh maps for D flip-flops for the counter.

$$D_0 = Y_0 = w'y_0 + wy'_0$$

$$D_1 = Y_1 = w'y_1 + y_1y'_0 + wy_0y'_1$$

$$D_2 = Y_2 = w'y_2 + y_2y'_0 + y_2y'_1 + wy_0y_1y'_2$$

Figure 8.64. Circuit diagram for the counter implemented with D flip-flops.

Implementation using JK flip-flop

- For a JK flip-flop:
 - If state=0, to remains in 0 J=0, K=d
 - If state=0, to change to 1 J=1, K=d
 - If state=1, to remains in 1 J=d, K=0
 - If state=1, to remains in 0 J=d, K=1

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\overline{Q}(t)$

(b) Truth table

(c) Graphical symbol

	Present state		Flip-flop inputs $w = 0 w = 1$						Count	
	<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$Y_2 Y_1 Y_0$	J_2K_2	J_1K_1	J_0K_0	$Y_2 Y_1 Y_0$	J_2K_2	J_1K_1	J_0K_0	Z2Z1Z0
Α	000	000	0d	0d	0d	001	0d	0d	1d	000
В	001	001	0d	0d	d0	010	0d	1d	d1	001
C	010	010	0d	d0	0d	011	0d	d0	1d	010
D	011	011	0d	d0	d0	100	1d	d1	d1	011
Е	100	100	d0	0d	0d	101	d0	0d	1d	100
F	101	101	d0	0d	d0	110	d0	1d	d1	101
G	110	110	d0	d0	0d	111	d0	d0	1d	110
Н	111	111	d0	d0	d0	000	d1	d1	d1	111

Figure 8.65. Excitation table for the counter with JK flip-flops.

Figure 8.66. Karnaugh maps for JK flip-flops in the counter.

Figure 8.67. Circuit diagram using JK flip-flops.

Figure 8.68. Factored-form implementation of the counter.

Analysis of Synchronous Sequential Circuits

- Outputs of flip-flops represent the current state
- Inputs of flip-flops determine the next state
- We can build the state transition table
- Then we build state diagram

Figure 8.80. Circuit for Example 8.8.

$$Y_1 = wy_2 + wy'_1$$

 $Y_2 = wy_1 + wy_2$
 $z = y_2y_1$

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0.0	0 0	01	0
0.1	0 0	10	0
1 0	0 0	11	0
11	0.0	11	1

Present	Next	Output	
state	w = 0	w = 1	Z
A	A	В	0
В	A	C	0
C	A	D	0
D	A	D	1

(a) State-assigned table

(b) State table

Figure 8.81. Tables for the circuit in Example 8.80.

Figure 8.82. Circuit for Example 8.9.

$$J_1 = w$$

$$K_1 = w' + y_2$$

$$J_2 = wy_1$$

$$K_2 = w'$$

$$z = y_2y_1$$

Present	Flip-flop inputs				
state	w = 0		w = 1		Output
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	z
00	01	0 1	0 0	1 1	0
01	01	0.1	1 0	1 1	0
10	01	0.1	0.0	1 0	0
11	01	0 1	10	10	1

Figure 8.83. The excitation table for the circuit in Figure 8.82.

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0.0	0 0	01	0
0.1	0.0	10	0
1 0	0.0	11	0
1 1	0 0	11	1

Present	Next	Output	
state	w = 0	w = 1	Z
A	Α	В	0
В	Α	C	0
C	A	D	0
D	A	D	1

(a) State-assigned table

(b) State table

$$D_1 = w(y_2 + y_1')$$

$$T_2 = wy_1y_2' + w'y_2$$

$$z = y_2y_1$$

Present	Flip-flo		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	0 0	01	0
0.1	0.0	10	0
1 0	1 0	01	0
1 1	1 0	01	1

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0.0	0.0	01	0
0.1	0.0	10	0
1 0	0.0	11	0
1 1	0.0	11	1

Present	Next	Output	
state	w = 0	w = 1	z
A	Α	В	0
В	Α	C	0
C	A	D	0
D	A	D	1

(a) State-assigned table

(b) State table

