Logic Design

Synchronous Sequential Circuits

Introduction

- Combinational circuits: value of each output depends only on the values of inputs
- Sequential Circuits: values of outputs depend on inputs and past behavior of the circuit
- In most cases a clock is used to control the operation of a sequential circuit
- These circuits are called synchronous sequential circuits

University 四

- Synchronous sequential circuits are realized using combinational logic an done or more flip-flops
- State: the value of outputs of flip-flops
- Under the control of clock signal, flip-flop outputs change their state as determined by the combinational logic

Figure 8.1. The general form of a sequential circuit.
Copyright S. Shirani

- To ensure that only one transition from one state to another takes place during one clock cycle, flip-flops are edgetriggered
- Outputs are generated by another combinational circuit and are function of present state of the flip-flops and the inputs
- Outputs do not necessarily have to depend directly on the inputs
- Moore type: the output depends only on the state of the circuit
- Mealy type: outputs depend on both the sate and the inputs
- Sequential circuits are also called finite state machines (FSM)

Copyright S. Shirani

Design Example

- Design a circuit that:
- Has one input (w) and one output (z)
- All changes occur on the positive edge of the clock
- Output z is equal to 1 if during the two immediately preceding clock cycles the input w was equal to 1 . Otherwise z is equal to 0 .

Clockcycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
$w:$	0	1	0	1	1	0	1	1	1	0	1
$z:$	0	0	0	0	0	1	0	0	1	1	0

Figure 8.2. Sequences of input and output signals.

Design Example

- First step in designing a FSM: determine how many states are needed and which transitions are possible from one state to another
- No set procedure for this task
- A good way is select a starting state (a state that the circuit enters when the power is turned on or a reset signal is applied
- Starting state A
- As long as w is 0 , the circuit should remain in A
- When w becomes 1 , the machine should move to a different state (B)

Copyright S. Shirani

State Diagram

Figure 8.3. State diagram of a simple sequential circuit.

State Table

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

Figure 8.4. State table for the sequential circuit in Figure 8.3.

Design Example

- When implemented in logic circuits, each state is represented by a particular valuation (combination) of state variables
- Each state variable may be implemented in the form of a flipflop
- Since there are three states in this example, two state variables are sufficient: y_{1} and y_{2}

Design Example

Figure 8.5. A general sequential circuit with input w, output z, and two state flip-flops.

Design Example

- We need to design a combinational circuit with inputs w, yl and y2 such that for all valuations of these signalsY1 and Y2 will cause the machine to move to the next state
- We create a truth table by assigning specific valuation of variables y1 and y2 to each state

Present state $y_{2} y_{1}$	Next state		Output z
	$w=0$	$w=1$	
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

Design Example

- Choice of flip-flop:
- Most straightforward choice is to use D flip-flops because the values of Y1 and Y2 are simply clocked into the flip-flops to become the new values of y 1 and y 2

Design Example

Ignoring don't cares
$Y_{1}=w \bar{y}_{1} \bar{y}_{2}$
$Y_{2}=w y_{1} \bar{y}_{2}+w \bar{y}_{1} y_{2}$
$z=\bar{y}_{1} y_{2}$

Using don't cares
$Y_{1}=w \bar{y}_{1} \bar{y}_{2}$

$$
\begin{aligned}
Y_{2} & =w y_{1}+w y_{2} \\
& =w\left(y_{1}+y_{2}\right)
\end{aligned}
$$

$z=y_{2}$

Figure 8.7. Derivation of logic expressions for the sequential circuit in Figure 8.6.

Design Example

Figure 8.8. Final implementation of the sequential circuit derived

Design Example

Figure 8.9. Timing diagram for the circuit in Figure 8.8.

Bus controller

- Digital systems often contain a set of registers to store data
- Each register is connected to a common set of n wires, used to transfer data into and out of registers
- This common set of wires is called a bus
- In addition to registers other types of circuits would be connected to the bus
- It is essential to ensure that only one circuit block attempts to place data onto the bus wires at any given tome
- A control circuit is used to ensure that only one of the tri-state buffers enables is asserted at a given time

Copyright S. Shirani

Bus Controller

Figure 7.55. A digital system with k registers.
Copyright S. Shirani

Bus controller

Figure 7.56. Details for connecting registers to a bus.

Bus controller

- An example: consider a system that has three registers, R1, R2 andR3. We want to swap the content of R1 and R2
- Steps:
- Copy R2 to R3
- Copy R1 to R2
- Transfer R3 to R1

Bus controller

- Content of R2 is loaded into R3 using R2out=1, R3in=1
- Content of R1 is transferred into R2 using R1out=1, R2in=1
- Content of R3 is transferred into R1 using R3out=1, R1in=1
- We will indicate the completion of the task by setting a signal Done=1

Bus controller

Copyright S. Shirani

Bus controller

Present state	Next state		Outputs						
	$w=0$	$w=1$	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$	$R 2_{\text {in }}$	$R 3_{\text {out }}$	$R 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

Bus controller

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0 \quad w=1$								
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$	$R 2_{\text {in }}$	$R 3_{\text {out }}$	$R 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

Bus controller

$w^{y_{2} y_{1}}$

$$
Y_{1}=w \bar{y}_{1}+\bar{y}_{1} y_{2}
$$

$$
Y_{2}=y_{1} \bar{y}_{2}+\bar{y}_{1} y_{2}
$$

Bus controller

$$
\begin{aligned}
& R 1_{o u t}=R 2_{\text {in }}=\bar{y}_{1} y_{2} \\
& R 1_{\text {in }}=R 3_{\text {out }}=\text { Done }=y_{1} y_{2} \\
& R 2_{\text {out }}=R 3_{\text {in }}=y_{1} \bar{y}_{2}
\end{aligned}
$$

Bus controller

State Assignment Problem

- Some state assignment might be better than the others
- It is often impossible to find the best state assignment for a large circuit
- Exhaustive search is not practical because the number of available state assignments is huge

Copyright S. Shirani

State Assignment Problem

- $\mathrm{Y} 1=\mathrm{D} 1=\mathrm{w}$
- $\mathrm{Y} 2=\mathrm{D} 2=\mathrm{wy} 1$
- $\mathrm{z}=\mathrm{y} 2$

Present state	Next state		
	$w=0$	$w=1$	Output
$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01
B	01	00	11
C	11	00	11
10	$d d$	$d d$	1

State Assignment Problem

State Assignment Problem

- We now consider a different state assignment for the bus controller example

	Presen state $y_{2} y_{1}$	$w=0 \quad w=1$		Outputs						
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 22_{\text {out }}$	$R 2_{\text {in }}$	$R 3_{\text {out }}$	$R 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	,	0	0	1	0	1

Copyright S. Shirani

State Assignment Problem

$$
Y_{1}=w \bar{y}_{2}+y_{1} \bar{y}_{2}
$$

$$
Y_{2}=y_{1}
$$

Figure 8.19. Derivation of next-state expressions for the sequential circuit in Figure 8.18.

One-hot coding

- One possibility is to use as many state variables as there are states
- For each state all but one of the state variables are equal to 0
- This approach is known as one-hot coding

One-hot coding

- $\mathrm{Y} 1=\mathrm{w}$ '
- Y2=wy
- $\mathrm{Y} 3=\mathrm{wy}_{1}{ }^{\prime}$
- $\mathrm{z}=\mathrm{y}_{3}$

	$\begin{gathered} \text { Present } \\ \text { state } \\ y_{3} y_{2} y_{1} \end{gathered}$	Nextstate		$\begin{gathered} \text { Output } \\ z \end{gathered}$
		$w=0$	$w=1$	
		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	
A	001	001	010	0
B	010	001	100	0
C	100	001	100	1

One-hot coding

	$\begin{aligned} & \text { Present } \\ & \text { state } \\ & y_{4} y_{3} y_{2} y_{1} \end{aligned}$	Nextstate		Outputs						
		$w=0 \quad w=1$								
		$Y_{4} Y_{3} Y_{2} Y_{1} \quad Y_{4} Y_{3} Y_{2} Y_{1}$		$R 1_{\text {o }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$	$R 2_{\text {in }}$	$R 3_{\text {out }}$	$R 3_{\text {in }}$ Done	
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

One-hot coding

$$
\begin{array}{r}
Y_{1}=w^{\prime} y_{1}+y_{4} \\
Y_{2}=w y_{1} \\
Y_{3}=y_{2} \\
R 1_{\text {out }}=R 2_{i n}=y_{3} \\
R 1_{\text {in }}=R 3_{\text {out }}=D o n e=y_{4} \\
R 2_{\text {out }}=R 3_{\text {in }}=y_{2}
\end{array}
$$

Mealy State Model

- Mealy state machine: output values are generated based on both the state and the inputs
- Example: design a sequential circuit that the output z is equal to 1 in the same clock cycle when the second occurrence of w (input) is detected

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
$w:$	0	1	0	1	1	0	1	1	1	0	1
$z:$	0	0	0	0	1	0	0	1	1	0	0

Mealy State Model

Figure 8.23. State diagram of an FSM that realizes the task in Figure 8.22.

Mealy State Model

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	A	B	0	0
B	A	B	0	1

Figure 8.24. State table for the FSM in Figure 8.23.

Mealy State Model

Present state	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
y	Y	Y	z	z
A	0	0	1	0
B	1	0	1	0

Figure 8.25. State-assigned table for the FSM in Figure 8.24.

Copyright S. Shirani

Mealy State Model

(a) Circuit

(b) Timing diagram

Figure 8.26. Implementation of FSM in Figure 8.25.

Mealy State Model

Figure 8.28. State diagram for Example 8.4.
Copyright S. Shirani

Serial Adder

- If speed is not of great importance, a cost-effective option is to use a serial adder
- Serial adder: bits are added a pair at a time (in one clock cycle)
- $A=a n-1 a n-2 \ldots a 0, B=b n-1 b n-2 \ldots b 0$

Figure 8.39. Block diagram for the serial adder.

Serial Adder

- G: state that the carry-in is 0
- H: state that the carry-in is1

Figure 8.40. State diagram for the serial adder FSM.

Serial Adder

Present state	Next state				Output s				
	$a b=00$	01	10	11	00	01	10	11	
G	G	G	G	H	0	1	1	0	
H	G	H	H	H	1	0	0	1	

Figure 8.41. State table for the serial adder FSM.

Serial Adder

Present state	Next state			Output				
	$a b=00$	01	10	11	00	01	10	11
		Y		s				
0	0	0	0	1	0	1	1	0
1	0	1	1	1	1	0	0	1

Figure 8.42. State-assigned table for Figure 8.41.

$$
\begin{aligned}
& Y=a b+a y+b y \\
& s=a \oplus b \oplus c
\end{aligned}
$$

Serial Adder

Figure 8.43. Circuit for the adder FSM in Figure 8.39.

Copyright S. Shirani

Moore-type serial adder

- Since in both states G and H, it is possible to generate two outputs depending on the input, a Moore-type FSM will need more than two states
- G0 and G1: carry is 0 sum is 0 or 1
- H0 andH1: carry is 1 sum is 0 or 1

Moore-type serial adder

Figure 8.44. State diagram for the Moore-type serial adder FSM.

Moore-type serial adder

Present state	Nextstate				Output
	$a b=00$	01	10	11	
G_{0}	G_{0}	G_{1}	G_{1}	H_{0}	0
G_{1}	G_{0}	G_{1}	G_{1}	H_{0}	1
H_{0}	G_{1}	H_{0}	H_{0}	H_{1}	0
H_{1}	G_{1}	H_{0}	H_{0}	H_{1}	1

Figure 8.45. State table for the Moore-type serial adder FSM.

Moore-type serial adder

Present state $y_{2} y_{1}$	Nextstate				
	$a b=00$	01	10	11	
	$Y_{2} Y_{1}$				
00	00	01	01	10	0
01	00	01	0	1	10
10	01	10	10	11	0
11	01	10	10	11	1

Figure 8.46. State-assigned table for Figure 8.45.

$$
\begin{aligned}
& Y_{2}=a b+a y_{2}+b y_{2} \\
& Y_{1}=a \oplus b \oplus c \\
& s=y_{1}
\end{aligned}
$$

Moore-type serial adder

Figure 8.47. Circuit for the Moore-type serial adder FSM.

Counter design using sequential circuits

- Counting sequence: $0,1,2,3,4,5,6,7,0,1, .$.
- Input signal w: if $\mathrm{w}=1$ count is incremented, if $\mathrm{w}=0$ count is frozen

Figure 8.60. State diagram for the counter.
Copyright S. Shirani

State table

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	B	C	1
C	C	D	2
D	D	E	3
E	E	F	4
F	F	G	5
G	G	H	6
H	H	A	7

Figure 8.61. State table for the counter.

Present state $y_{2} y_{1} y_{0}$	Next state			
		$w=0$	$w=1$	Count
	$Y_{2} Y_{1} Y_{0}$	$Y_{2} Y_{1} Y_{0}$		
A	000	000	001	000
B	001	001	010	001
C	010	010	011	010
D	011	011	100	011
E	100	100	101	100
F	101	101	110	101
G	110	110	111	110
H	111	111	000	111

Figure 8.62. State-assigned table for the counter.

Copyright S. Shirani

Implementation using D flip-flop

Figure 8.63. Karnaugh maps for D flip-flops for the counter.
Copyright S. Shirani

$$
\begin{aligned}
& D_{0}=Y_{0}=w^{\prime} y_{0}+w y_{0}^{\prime} \\
& D_{1}=Y_{1}=w^{\prime} y_{1}+y_{1} y_{0}^{\prime}+w y_{0} y_{1}^{\prime} \\
& D_{2}=Y_{2}=w^{\prime} y_{2}+y_{2} y_{0}^{\prime}+y_{2} y_{1}^{\prime}+w y_{0} y_{1} y_{2}^{\prime}
\end{aligned}
$$

Figure 8.64. Circuit diagram for the counter implemented with D flip-flops.

Copyright S. Shirani

Implementation using JK flip-flop

- For a JK flip-flop:
- If state $=0$, to remains in $0 \mathrm{~J}=0, \mathrm{~K}=\mathrm{d}$
- If state $=0$, to change to $1 \mathrm{~J}=1, \mathrm{~K}=\mathrm{d}$
- If state $=1$, to remains in $1 \mathrm{~J}=\mathrm{d}, \mathrm{K}=0$
- If state $=1$, to remains in $0 \mathrm{~J}=\mathrm{d}, \mathrm{K}=1$

J	K	$Q(t+1)$
0	0	$Q(t)$
0	1	0
1	0	1
1	1	$\bar{Q}(t)$

(b) Truth table

(c) Graphical symbol

	Present state $y_{2} y_{1} y_{0}$	Flip-flop inputs								$\begin{aligned} & \text { Count } \\ & z_{2} z_{1} z_{0} \end{aligned}$
		$w=0$				$w=1$				
		$Y_{2} Y_{1} Y_{0}$	$\mathrm{J}_{2} \mathrm{~K}_{2}$	$J_{1} K_{1}$	$J_{0} K_{0}$	$Y_{2} Y_{1} Y_{0}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{0} K_{0}$	
A	000	000	0d	0d	0d	001	0d	0d	1 d	000
B	001	001	0d	0d	d0	010	0d	1 d	d1	001
C	010	010	0d	d0	0d	011	0d	d0	1 d	010
D	011	011	0d	d0	d0	100	1 d	d1	d1	011
E	100	100	d0	0d	0d	101	d0	0d	1 d	100
F	101	101	d0	0d	d0	110	d0	1 d	d1	101
G	110	110	d0	d0	0d	111	d0	d0	1 d	110
H	111	111	d0	d0	d0	000	d1	d1	d1	111

Figure 8.65. Excitation table for the counter with JK flip-flops.

Figure 8.66. Karnaugh maps for JK flip-flops in the counter.

Figure 8.67. Circuit diagram using JK flip-flops.

Copyright S. Shirani

Figure 8.68. Factored-form implementation of the counter.

Analysis of Synchronous Sequential Circuits

- Outputs of flip-flops represent the current state
- Inputs of flip-flops determine the next state
- We can build the state transition table
- Then we build state diagram

Example1

Figure 8.80. Circuit for Example 8.8.

Example 1

$$
\begin{aligned}
& Y_{1}=w y_{2}+w y_{1}^{\prime} \\
& Y_{2}=w y_{1}+w y_{2} \\
& z=y_{2} y_{1}
\end{aligned}
$$

Present state	Next State		Output
	$\mathrm{y}_{2} \mathrm{y}_{1}$	$\mathrm{~W}=0$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
00	0	0	10
0	0	0	
10	00	11	0
11	00	11	1

(a) State-assigned table

Present state	Next state		Output $\mathrm{W}=0$
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

(b) State table

Figure 8.81. Tables for the circuit in Example 8.80.
Copyright S. Shirani

Example 2

Figure 8.82. Circuit for Example 8.9.

Example 2

$$
\begin{aligned}
& J_{1}=w \\
& K_{1}=w^{\prime}+y_{2} \\
& J_{2}=w y_{1} \\
& K_{2}=w^{\prime} \\
& z=y_{2} y_{1}
\end{aligned}
$$

Present state	Flip-flop inputs				Output
	$w=0$		$w=1$	z	
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

Figure 8.83. The excitation table for the circuit in Figure 8.82.

Example 2

Present state	Next State		Output
	$\mathrm{~W}=0$	$\mathrm{~W}=1$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
000	00	01	0
0	1	00	10
10	00	11	0
11	00	11	1

(a) State-assigned table

Present state	Next state		Output Z
	$\mathrm{W}=0$	$\mathrm{~W}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

(b) State table

Example 3

Example 3

$$
\begin{aligned}
& D_{1}=w\left(y_{2}+y_{1}^{\prime}\right) \\
& T_{2}=w y_{1} y_{2}^{\prime}+w^{\prime} y_{2} \\
& z=y_{2} y_{1}
\end{aligned}
$$

Present state	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Example 3

Present state	Next State		Output
	$\mathrm{~W}=0$	$\mathrm{~W}=1$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

(a) State-assigned table

Present state	Next state		Output $\mathrm{W}=0$ $\mathrm{~W}=1$

(b) State table

