

Introduction to Computer Organization

Large systems (e.g. a computer) are built in
a modular, hierarchical structure using the
basic methods of combinational and
sequential design.

Most systems can be viewed as consisting of
a datapath and a control unit .

Control
Unit Datapath

Data Inputs

Data Outputs

Control Inputs

Control Outputs

n

m

Status

Control

Datapath

Datapaths may be defined in terms of their
registers and the transfer of data among
these registers.

An elementary operation using one or more
registers that can take place in a single
clock pulse is called a microoperation.

Examples of microoperations:

• Transferring data between registers
• Clearing, shifting, incrementing,

decrementing or negating a register
• Arithmetically combining registers (e.g.

add, subtract …)
• Logically combining registers (e.g. AND,

OR, XOR)

A simple arithmetic unit

R2

Flags Reg R3 L

Carry

Overflow
Zero

Sign Sum

A B

Add/Sub F

C Z V S

clock

n

n

n

How does a computer execute programs?

A datapath is controlled by the input of a
control word that defines a microoperation.

Each microoperation is followed by a clock
pulse, to execute the microoperation.

A series of microoperations is called a
microprogram.

Microprograms are stored in on-chip ROM
called the "control ROM" and are fixed by
the chip designer.

A machine-language instruction for a
computer is defined by a microprogram
which may take from 1 to several
microoperations.

The sequence of events

C program compiled
↓

Assembly language program
 (for the target processor)

↓
binary codes (called opcodes or machine

code) representing each assembly language
instruction

↓
address in the control ROM containing the

microprogram for that instruction
↓

control word(s) applied to the datapath on
each clock pulse

Arithmetic Microoperations

Examples:

Add R1 ← R1 + R2
1's Comp R4 ← R4′
2's Comp R3 ← R3′ + 1
Subtract R1 ← R1 + R2′ + 1
Increment R5 ← R5 + 1
Decrement R5 ← R5 – 1

Simple instructions like ADD (+) need only
a single microoperation (1 clock pulse).

More complex instructions like MUL (*)
may use several clocks to execute a
microprogram that implements a multiply
algorithm.

Logical Microoperations

Examples:

AND R1 ← R1 ∧ R2
OR R4 ← R4 ∨ R27
NOT R3 ← R3′
XOR R1 ← R1 ⊕ R2

Shift Microoperations

Examples:

Shift left R3 ← shl R3
Shift right R4 ← shr R4
Rotate left R3 ← rol R3
Rotate right rotate R1 ← ror R1
Arithmetic shift left R3 ← asl R3
Arithmetic shift right R2 ← asrR2

Register Transfer Notation

The basic operation is designated:

Rd ← Rs

where Rs is the source and Rd is the
destination register.

Note that Rs remains unchanged.

A conditional transfer is the more usual
case:

if (Enb = 1) then R3 ← R4

or more concisely:

Enb: R3 ← R4

In the hardware, the transfer is assumed to
occur in response to a system clock pulse.

It is also assumed that the control input (eg.
Enb) is synchronized to the system clock:

Enb

clock
t t +1 t +2

R3R4 n

clock

Enb

Multiple microoperations may occur on the
same clock:

Enb: R3 ← R4, R1 ← R2

We can specify a portion of a register and
constant data. For example, set the MSB of
R3 to 0:

R3(7) ← 0

or, set the 4 MSBs of R3 to 1:

R3(7:4) ← 1

Arithmetic/Logic Unit (ALU)

V – overflow Z – zero
S – sign (sometimes written as N)
Cout – carry out (sometimes written as C)

The basis for the ALU design is a parallel
adder (G = X + Y + Cin). By designing logic
that operates on one or both of the data
inputs to the adder, a variety of functions
can be implemented.

A B
ALU

Cin

Fmfunction
select

n n

n
Z CoutSV

Function table for an ALU

Select
S1 S0

Input
Y

G = X + Y + Cin
 Cin = 0 Cin = 1

0 0 0's A (transfer) A + 1 (increment)
0 1 B A + B (add) A + B + 1
1 0 B′ A + B′ A + B′ + 1 (subtract)
1 1 1's A - 1 (decrement) A (transfer)

Logic Unit

The design of the logic functions should be
integrated with that of the arithmetic
function.

Conceptually, they can be viewed as
separate units that are combined with an
additional selection line.

Shift Unit

Block symbol:

Note: the shift unit is a combinational
circuit in the datapath and does not require
a clock pulse.

Why? Because the same combinational
logic can be re-used by multiple source/
destination registers

HF
Shift Unit

mfunction
select

n

A

n

A Simple Example

F (m=1) Output H

0 shl (A)
1 shr (A)

Multiplying by other than powers
of 2 can be achieved in multiple
microoperations. For example:

R4 ← shl (R5), R6 ← R5 + R4

loads R6 with 3 x R5.

Another More Complex Example

F (m=3) Output H

0 0 0 A
0 0 1 shl (A)
0 1 0 shr (A)
0 1 1 rol (A)
1 0 0 ror (A)
1 0 1 asr (A)
1 1 0 rlc (A)
1 1 1 rrc (A)

rlc(A) – rotate left with carry
rrc(A) – rotate right with carry

Note: mnemonics vary from one processor
(microcontroller) to another!

Barrel Shift Unit

A barrel shift unit is a combinational
circuit that rotates the input bits by the
number of bit positions specified by the
input function lines.

Note that a left barrel shift unit can
generate all right rotations. In general in a
n-bit barrel shift unit, m positions of left
rotation is the same as n - m bits of right
rotation.

Design of Datapath

The design of the datapath determines the
fundamental “architecture” or
“organization” of the computer.

The datapath contains the processor data
register set and defines the functions that
may be performed on these registers.

It also has an interface to external data
memory.

The microoperation performed at each
clock pulse is specified by a control word:

M
B

M
D

R
WDA AA BA FS
012345678910111213141516

Control Word

8 x n
Register File

MUX B

Function Unit

Address Out
Data Out

A B

F

1 0

MUX D

Constant
Input

Data In

writeD address

A address B address

D data

A data B data

Function
Select FS

Status
(VCSZ)

RWDA

AA BA

MB

MD
10

4

5

3

3 3

A Bus B Bus D Bus

Function Unit

FS Operation
00000 F = A (transfer)
00001 F = A + 1 (increment)
00010 F = A + B (add)
00011 F = A + B + 1

(add & increment)
00100 F = A + B′ = A – B – 1

(subtract & decrement)
00101 F = A + B′ + 1 = A – B (subtract)
00110 F = A - 1 (decrement)
00111 F = A (transfer)
01000 F = A ∧ B (AND)
01010 F = A ∨ B (OR)
01100 F = A ⊕ B (XOR)
01110 F = A′ (NOT)
10000 F = shr A (shift right)
10001 F = shl A (shift left)

Register Addresses

AA, BA or DA Register
0 0 0 R0
0 0 1 R1
0 1 0 R2
0 1 1 R3
1 0 0 R4
1 0 1 R5
1 1 0 R6
1 1 1 R7

Examples of Microoperations:

Microoperation Control Word (17 bits)
 DA AA BA MB FS MD RW

R1 ← R2 – R3
R4 ← shl R6
R5 ← data in
R7 ← R7 + 5

Pipelined Datapath

The performance or “throughput”
of the datapath may be improved using the
concept of “pipelining.”

A pipeline organization is created by
inserting registers in the datapath to hold
intermediate results.

Two pipeline registers may be used to
divide the datapath into three sections:

Operand fetch (OF)
Execute (EX)

Write-back (WB)

The pipeline registers are clocked
simultaneously.

Pipeline Example

Consider a series of 7 consecutive
microoperations operating in a three-stage
pipeline:

OF
OF

OF
OF

OF
OF

OF

EX
EX

EX
EX

EX
EX

EX

WB
WB

WB
WB

WB
WB

WB

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7

clock pulse #

microoperations #

 TI C2XX DSP

TI 'C40 DSP

