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CAD tools 
•  A CAD system has tools for performing the following tasks: 

–  Design entry 
–  Initial synthesis 
–  Functional simulation 
–  Logic synthesis and optimization 
–  Physical design 
–  Timing simulation 
–  Chip configuration 
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CAD tools 

•  The starting point in the process of designing a digital circuit 
is the conception of what the circuit is supposed to do and the 
formulation of its general structure.  

•  This step is done manually. The rest is done by CAD tools. 
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CAD tools 
•  Design entry: a description of the circuit being designed 

should be entered into CAD system 
•  Different ways of doing this: 

–  Truth tables 
–  Schematic capture 
–  Hardware description languages 

•  Initial synthesis: produces a network of logic gates 
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CAD tools 
•  Functional simulation: is used to verify the functionality of 

the circuit based on input provided by the designer 
•  This simulation is performed before any optimization and 

propagation delays are ignored. 
•  Goal: validate the basic operations of the circuit 
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CAD tools 
•  Logic synthesis and optimization: produces an equivalent but 

better circuit  
•  The measure of what makes one circuit better depends on the 

needs of a design project and the technology chosen for 
implementation 
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CAD tools 
•  Physical design (layout synthesis): how to implement the 

circuit in the target technology 
•  This step consists of placement and routing 
•  Placement: where in the target device each logic function in 

the optimized circuit will be realized 
•  Routing: which  wires in the chip are to be used to realize the 

required interconnections 



Copyright S. Shirani 10 

CAD tools 
•  Timing simulation: determines the propagation delays that are 

expected in the implemented circuit 
•  Timing simulation: ensures that the implemented circuit meets 

the required performance 
•  Some of timing errors can be corrected by using the synthesis 

tool 
•  If the logic synthesis tool cannot resolve the timing problem, 

it is necessary to return to the beginning of the design flow to 
consider other alternatives 

•  Final step: configure the target chip to implement the circuit 
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Introduction to VHDL 
•  VHDL is a language used to express complex digital systems 

concepts for documentation, simulation, verification and 
synthesis.  

•  VHDL is a language widely used to model and design digital 
hardware. 

•  Design tools translate a design described in VHDL into actual 
working system in various target technologies very fast and 
reliable. 

•  VHDL is supported by numerous CAD tools and 
programmable logic vendors. 

•  VHDL was first standardized in 1987 in IEEE 1076-1987 
•  An enhanced version was released in 1993 
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Introduction 
•  Advantages of using VHDL for design: 
1.  Shorter design time and reduced time to market 
2.  Reusability of already designed units 
3.  Fast exploration of design alternatives 
4.  Independence of the target implementation technology 
5.  Automated synthesis 
6.  Easy transportability to other design tools 
7.  Parallelization of the design process using a team work 

approach 
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Introduction 
•  VHDL consists of several parts organized as follows: 
1.  Actual VHDL language specified by IEEE 
2.  Some additional data type declarations in the standard 

package called IEEE standard 1164 
3.  A WORK library reserved for user’s designs 
4.  Vendor packages with vendor libraries 
5.  User packages and libraries  
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VHDL design 
•  Two built-in libraries are WORK and STD  
•  VHDL source design units are complied into WORK library 
•  The ieee library is a storage place for IEEE standard design 

units  
•  User can create other libraries 
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VHDL design (Library) 
•  To use a library it should be declared (made accessible to the 

design): 
–  Exp: library ieee 

•  WORK library is implicitly accessible in all designs and does 
not need to be declared 

•  Complied units in a library can be accessed via a use 
statement 

•  Syntax:  
–  use library_name.package_name.item_name 
–  use library_name.item_name 

•  Exp: use ieee.std_logic_1164.all 
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VHDL design (Package) 
•  Next level of hierarchy within a library is a package. 
•  Package is created to store common data types, constants and 

complied designs that will be used in more than one design 
(reusability)  

•  A package is used for: 
–  Type and subtype declaration 
–  Constant declaration 
–  Function and procedure declaration  
–  File declaration  
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Entity & Architecture 
•  A VHDL design is a paring of an entity declaration and an 

architecture body. 
•  Entity declaration: describes the design I/O and my include 

parameters used to customize an entity 
•  Architecture body: describes the function of a design 
•  Each I/O signal in an entity declaration is referred to as a port 
•  A port is a data object 
•  Like other data objects it can be assigned values and used in 

expressions 
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Entity & Architecture 
•  Each port must have a name, a direction (mode) and a data 

type. 
•  Mode: describes the direction in which data is transferred 

through a port 
•  Example:  port (a, b : in bit_vector(3 downto 0); 
                              equals: out bit); 
•  Mode can be one of 4 values: in, out, inout, or buffer 
•  In: data flows only into the entity. The driver of the port is 

external (e.g., clock input) 
•  Out: data flows only from its source (inside the entity) to the 

port 
•  Note: out does not allow feedback 
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Entity & Architecture 
•  Buffer: for internal feedback (to use a port also as a driver 

within the architecture) 
•  Buffer is used for ports that must be readable inside the entity, 

such as the counter outputs (the present state of a counter 
must be used to determine its next stage 

•  Inout: allows data to flow into or out of the entity. It also 
allows for internal feedback 

•  Mode inout can replace any of the other modes 
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Entity & Architecture 
•  In addition to specifying modes for ports, you must declare 

data types for ports 
•  The most important data types in VHDL are Boolean, bit, 

bit_vector, and integer 
•  The most useful types provided by the IEEE std_logic_1164 

package is std_logic and array of this type. 
•  For simulation and synthesis software to process these types, 

their declaration must be made visible to the entity by way of 
library and use clauses 
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entity eqcomp4 is 
 port (a, b : in bit_vector(3 downto 0); 
 equals: out bit); 

end eqcomp4; 
architecture dataflow of eqcomp4 is 
begin 
 equals <=‘1’ when (a=b) else ‘0’; 
end dataflow; 
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VHDL design (Entity) 
•  Design entity defines a new component name, its input/output 

connections and describes parameterized values. 
•  Entity represents the I/O interface (external connections) of a 

component. 

A 

B 

C 
ANDGATE 

entity andgate is  
 port (a,b : in bit; 
 c: out bit); 

end andgate 
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VHDL design (Entity) 
•  Syntax for an entity declaration: 

entity entity_name is  
[generic (list-of-generics-and-their-types);] 
[port (list-of-interface-port-names-and-their-types);] 
end [entity] entity-name; 

•  Generic list: allows additional information to pass into an 
entity 

•  Useful for parameterization of the design 
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VHDL design (Architecture) 

•  An architecture specifies the behavior, interconnections and 
components of an entity. 

•  Architecture defines the function of an entity 
•  It specifies the relationship between inputs and outputs. 
•  VHDL architectures are categorized in style as: 

1.  Behavior  
2.  Dataflow 
3.  Structural  

•  A design can use any or all of these styles.  
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VHDL design (Architecture) 

•  Behavior: the behavior of the entity is expressed using 
sequentially executed procedural code (very similar to 
programming languages like C) 

•  Sometimes called high-level description 
•  Rather than specifying the structure of a circuit, you specify a 

set of statements that when executed in sequence model the 
behavior of the entity.  

•  Uses process statement and sequential statements (the 
ordering of statements inside process is important) 
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VHDL design (Architecture) 

•  Dataflow: specifies the functionality of the entity (the flow of 
information) without explicitly specifying its structure 

•  It specifies how data will be transferred from signal to signal 
and input to output without the use of sequential statements.  

•  No use of process or sequential statements  
•  Structural: an entity is modeled as a set of components 

connected by signals 
•  Components are instantiated and connected together  
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-- a four bit equality comparator  
library ieee; 
use iee.std_logic_1164.all; 
entity eqcomp4 is 

 port (a, b : in std_logic_vector(3 downto 0); 
  equals: out std_logic); 

end eqcomp4; 
architecture behav of eqcomp4 is 
begin 

 comp: process (a, b); 
 begin 
  if a=b then 
   equals <= ‘1’; 
  else 
   equals<=‘0’; 
  end if; 
 end process comp; 

end behav; 
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library ieee; 
use iee.std_logic_1164.all; 
entity eqcomp4 is 

 port (a, b : in std_logic_vector(3 downto 0); 
 equals: out std_logic); 

end eqcomp4; 

architecture dataflow of eqcomp4 is 
begin 
 equals <=‘1’ when (a=b) else ‘0’; 
end dataflow; 
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library ieee; 
use iee.std_logic_1164.all; 
entity eqcomp4 is 

 port (a, b : in std_logic_vector(3 downto 0); 
 equals: out std_logic); 

end eqcomp4; 

architecture bool of eqcomp4 is 
begin 
 equals <=  not(a(0) xor b(0))  

   and not(a(1) xor b(1))  
   and not(a(2) xor b(2))  
   and not(a(3) xor b(3)) ; 

end bool; 
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VHDL 
•  VHDL does not assume any precedence of operation and 

therefore parentheses are necessary in VHDL expressions. 
•  <= is the signal assignment operator in VHDL  
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f  

g  

x  3  
x  1  

x  2  

x  4  
Logic circuit for four-input function 
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Figure 2.30    VHDL code for a four-input function 

Whenever there is an event on x1, x2, x3, the 
expression on the right side is evaluated and the value 
appears on f and/or g.  
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Example   
•  The signal assignments in the previous example are 

concurrent statements.  
•  Concurrent statements are order independent.  
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VHDL 
•  A very useful data type defined in VHDL: STD_LOGIC 
•  STD_LOGIC can have a number of legal values: 0, 1, z, - 
•  To use STD_LOGIC type the VHDL code must have these 

two lines: 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 

•  The first line declares that the code will use ieee library 
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Figure 5.23    VHDL code for the full-adder 

LIBRARY ieee ; 
USE ieee.std_logic_1164.all ; 

ENTITY fulladd IS 
 PORT (  Cin, x, y  : IN   STD_LOGIC ; 
  s, Cout  : OUT   STD_LOGIC ) ; 

END fulladd ; 

ARCHITECTURE LogicFunc OF fulladd IS 
BEGIN 

 s <= x XOR y XOR Cin ; 
 Cout <= (x AND y) OR (Cin AND x) OR (Cin AND y) ; 

END LogicFunc ; 
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VHDL 
•  Now if we want to create a 4-bit adder we can use the 1-bit 

adder already designed as a sub-circuit.  
•  This is an important feature of VHDL which makes the reuse 

of entities possible. 
•  components: design entities used in other designs 
•  Before an entity can be used in another design it has to be 

declared  
•  A component declaration defines an interface for instantiating 

a component.  
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VHDL 
•  A component declaration may be  

1.  in a package: the package is made accessible by use statement 
2.  might be declared in an architecture declarative region using 

component statement 

•  Every time a component is used it has to be instantiated 
•  Every instantiation has a name. 
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Figure 5.24    VHDL code for a four-bit adder 

LIBRARY ieee ; 
USE ieee.std_logic_1164.all ; 

ENTITY adder4 IS 
 PORT (  Cin    : IN  STD_LOGIC ; 
   x3, x2, x1, x0  : IN  STD_LOGIC ; 
   y3, y2, y1, y0  : IN  STD_LOGIC ; 
   s3, s2, s1, s0  : OUT  STD_LOGIC ; 
   Cout    : OUT  STD_LOGIC ) ; 

END adder4 ; 

ARCHITECTURE Structure OF adder4 IS 
 SIGNAL c1, c2, c3 : STD_LOGIC ; 
 COMPONENT fulladd 
  PORT (  Cin, x, y  : IN  STD_LOGIC ; 
    s, Cout  : OUT  STD_LOGIC ) ; 
 END COMPONENT ; 

BEGIN 
 stage0: fulladd PORT MAP ( Cin, x0, y0, s0, c1 ) ; 
 stage1: fulladd PORT MAP ( c1, x1, y1, s1, c2 ) ; 
 stage2: fulladd PORT MAP ( c2, x2, y2, s2, c3 ) ; 
 stage3: fulladd PORT MAP (  
  Cin => c3, Cout => Cout, x => x3, y => y3, s => s3  ) ; 

END Structure ; 
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Data types  
•  Now that we have multibit signals we are able to represents 

numbers. 
•  Are we able to perform arithmetic operations on the numbers 

in VHDL? 
•  Another package named std_logic_arith defines types for this 
•  Two predefined types in this package: SIGNED and 

UNSINGED 
•  SIGNED and UNSIGNED are the same as  

STD_LOGIC_VECTOR 
•  SIGNED represents signed integer data in two’s complement 

form 
•  UNSIGNED represents unsigned integer data in the form of 

an array of std_logic 
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Arithmetic operations 

std_logic_arith 

SIGNED UNSINGED 

std_logic_signed 

STD_LOGIC_VECTOR 

std_logic_unsigned 

STD_LOGIC_VECTOR 
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Figure 5.30    Use of the arithmetic package 

LIBRARY ieee ; 
USE ieee.std_logic_1164.all ; 
USE ieee.std_logic_arith.all ; 

ENTITY adder16 IS 
 PORT (  Cin  : IN  STD_LOGIC ; 
  X, Y  : IN  SIGNED(15 DOWNTO 0) ; 
  S  : OUT  SIGNED(15 DOWNTO 0) ; 
  Cout, Overflow  : OUT  STD_LOGIC ) ; 

END adder16 ; 

ARCHITECTURE Behavior OF adder16 IS     
 SIGNAL Sum : SIGNED(16 DOWNTO 0) ; 

BEGIN 
 Sum <= ('0' & X) + Y + Cin ; 
 S <= Sum(15 DOWNTO 0) ; 
 Cout <= Sum(16) ; 
 Overflow <= Sum(16) XOR X(15) XOR Y(15) XOR Sum(15) ; 

END Behavior ; 
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Selective signal assignment  
•  Selected signal assignment is used to assign one of multiple 

values to a signal, based on some criteria. 
•  The WITH-SELECT-WHEN structure can be used for this 

purpose.  
•  Syntax:  with selection_signal select  
                signal_name <= value_a when value1_of_selection_signal, 
                                           value_b when value2_of_selection_signal, 

    value_c when value3_of_selection_signal; 

•  All values of selection_signal must be listed in the when 
clause 

•  We can use the word OTHERS to cover some of the values 
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Figure 6.27    VHDL code for a 2-to-1 multiplexer 

LIBRARY ieee ; 
USE ieee.std_logic_1164.all ; 

ENTITY mux2to1 IS 
 PORT (  w0, w1, s  : IN  STD_LOGIC ; 
   f   : OUT  STD_LOGIC ) ; 

END mux2to1 ; 

ARCHITECTURE Behavior OF mux2to1 IS   
BEGIN 

 WITH s SELECT 
  f <= w0 WHEN '0', 
   w1 WHEN OTHERS ; 

END Behavior ; 
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Conditional signal assignment  
•  Conditional signal assignment is used to assign one of 

multiple values to a signal, based on some criteria. 
•  The WHEN   ELSE structure can be used for this purpose.  
•  Syntax:  
                 signal_name <= value_a when condition1 else 
                                           value_b when condition2 else 

    value_c when condition3 else 
                                           value_d; 
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Figure 6.34   VHDL code for a four-bit comparator 

LIBRARY ieee ; 
USE ieee.std_logic_1164.all ; 
USE ieee.std_logic_unsigned.all ; 

ENTITY compare IS 
 PORT (  A, B  : IN  STD_LOGIC_VECTOR(3 DOWNTO 0) ; 
  AeqB, AgtB, AltB  : OUT  STD_LOGIC ) ; 

END compare ; 

ARCHITECTURE Behavior OF compare IS  
BEGIN 

 AeqB <= '1' WHEN A = B ELSE '0' ; 
 AgtB <= '1' WHEN A > B ELSE '0' ; 
 AltB <= '1' WHEN A < B ELSE '0' ; 

END Behavior ; 
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Concurrent statements  
•  Assignment statements, selected assignment statements and 

conditional assignment statements are called concurrent 
statements because the order in which they appear in VHDL 
code does not affect the meaning of the code 

•  Concurrent statements are executed in parallel.  
•  Each concurrent statement is a different hardware element 

operating in parallel.  
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Sequential statements 

•  Sequential statements: ordering of statements may affect the 
meaning of the code 

•  Sequential statements should be placed inside process 
statement. 



Copyright S. Shirani 50 

Process 
[process_label:] process [(sensitivity_list)] [is] 
begin 
sequential_statements; these are 

wait_statement 
if_statement 
case_statement 

end process [process_label] 
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Process 
•  Sensitivity list: signals to which the process is sensitive 
•  Each time an event occurs on any of the signals in sensitivity 

list, the sequential statements within the process are executed 
in the order they appear 
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If statement 
•  An if statement selects a sequence of statements for execution 

based on the value of a condition 
•  Syntax: 

If condition1 then 
sequential_statements 

[elsif condition2 then 
sequential_statements] 

[else 
sequential_statements] 

end if 
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A 2-to-1 multiplexer specified using an if-then-else statement 

LIBRARY ieee ; 
USE ieee.std_logic_1164.all ; 

ENTITY mux2to1 IS 
 PORT (  w0, w1, s  : IN  STD_LOGIC ; 
   f   : OUT  STD_LOGIC ) ; 

END mux2to1 ; 

ARCHITECTURE Behavior OF mux2to1 IS   
BEGIN 

 PROCESS ( w0, w1, s ) 
 BEGIN 
  IF s = '0' THEN 
   f <= w0 ; 
  ELSE 
   f <= w1 ; 
  END IF ; 
 END PROCESS ; 

END Behavior ; 
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Case  
•  Syntax: 

case selection_signal is 
when value1_selection_signal => sequential_statements 
when value2_selection_signal => sequential_statements 
.. 
[when others => sequential_statements] 

end case 
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Figure 6.47    A BCD-to-7-segment decoder 

LIBRARY ieee ; 
USE ieee.std_logic_1164.all ; 
ENTITY seg7 IS 

 PORT (  bcd  : IN  STD_LOGIC_VECTOR(3 DOWNTO 0) ; 
   leds  : OUT  STD_LOGIC_VECTOR(1 TO 7) ) ; 

END seg7 ; 
ARCHITECTURE Behavior OF seg7 IS   
BEGIN 

 PROCESS ( bcd ) 
 BEGIN 
  CASE bcd IS  --    abcdefg 
   WHEN "0000"  => leds  <=  "1111110" ; 
   WHEN "0001"  => leds  <=  "0110000" ; 
   WHEN "0010"  => leds  <=  "1101101" ; 
   WHEN "0011"  => leds  <=  "1111001" ; 
   WHEN "0100"  => leds  <=  "0110011" ; 
   WHEN "0101"  => leds  <=  "1011011" ; 
   WHEN "0110"  => leds  <=  "1011111" ; 
   WHEN "0111"  => leds  <=  "1110000" ; 
   WHEN "1000"  => leds  <=   "1111111" ; 
   WHEN "1001"  => leds  <=   "1110011" ; 
   WHEN OTHERS  => leds  <=   "-------" ; 
  END CASE ; 
 END PROCESS ; 

END Behavior ; 

a 
b 

c 
d 

e 

f 
g 
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Combinational logic implementation 
•  Combinational logic circuits can be modeled in different 

ways: 
–  Using signal assignment statements (which include expressions with 

logic, arithmetic and relational operators) 
–  Using if and case statements 
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Logic operators 
•  Standard VHDL logical operators are defined for types bit, 

std_logic, Boolean and their arrays. 

Library ieee; 
Use ieee.std_logic_1164.all; 
Entity logic_operators_1 is 

 Port(a, b, c, d, : in std_logic; y: out std_logic); 
End logic_operators_1; 
Architecture arch1 of logic_operators_1 is 
Signal e:bit; 
Begin 

 y <=(a and b) or e; 
 e <= c or d; 

End arch1; 
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Conditional Logic 

•  Concurrent statements for creating conditional logic: 
–  Conditional signal assignment 
–  Selected signal assignment 

•  Sequential statements for creating conditional logic: 
–  If statement 
–  Case statement 
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Conditional Logic 

Library ieee; 
Use ieee.std_logic_1164.all; 

Entity condit_stmt is Port( 
                                   sel, b, c: in boolean;     
                                    y:  out boolean); 
End condit_stmt; 

Architecture concurrent of condit_stmt is  
Begin 
     y <=b when sel else c; 
End concurrent;  
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Conditional Logic 
•  The same function implemented using sequential statements 

Library ieee; 
Use ieee.std_logic_1164.all; 
Entity condit_stmt is Port( 

 sel, b, c: in boolean;  
 y: out boolean); 

End condit_stmt; 
Architecture sequential of condit_stmt is  
begin 
     Process(s,b,c) 
      begin 
         if sel then 
            y <=b; 
         else 
           y <=c; 
         end if; 
      end process; 
end sequential;  
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Three-state (tri-state) logic 
•  When data from multiple possible sources need to be 

directed to one or more destinations we usually use either 
multiplexers or three-state buffers. 

•  Output buffers are placed in a high impedance state so they 
do not drive a shared bus at the wrong time 

•  Bidirectional pins are placed in high impedance state so they 
are not driven by off-chip signals at the wrong time 

•  VHDL: Using the ‘Z’ (high impedance) which applies to the 
type std_logic 
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Three-state (tri-state) logic 
Library ieee; 
Use ieee.std_logic_1164.all; 
Entity tbuf4 is Port( 
         enable: in std_logic;  
         a: in std_logic_vector(0 to 3); 
         y: out std_logic_vector(0 to 3)); 
End tbuf4; 
Architecture arch1 of tbuf4 is  
Begin 
     Process(enable, a) 
     begin 
         if enable=‘1’ then 
            y<=a; 
         else 
           y<=‘Z’; 
         end if; 
     end process 
End arch1;  
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Three-state (tri-state) logic 

Library ieee; 
Use ieee.std_logic_1164.all; 
Entity tbuf4 is Port( 
         enable: in std_logic;  
         a: in std_logic_vector(0 to 3); 
         y: out std_logic_vector(0 to 3)); 
End tbuf4; 
Architecture arch2 of tbuf4 is  
Begin 
 y <=a when enable=‘1’ else ‘Z’; 
End arch2;  

The same function implemented using concurrent 
statements 
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Wait 
•  When a process has a sensitivity list it is always suspended 

after executing the last statement in the process 
•  Wait is an alternative way of suspending a process 
•  Syntax: 

wait on sensitivity_list 
wait until boolean_expression; 
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Figure 7.38    Code for a D flip-flop 

LIBRARY ieee ;  
USE ieee.std_logic_1164.all ;  

ENTITY flipflop IS  
 PORT (  D, Clock  : IN  STD_LOGIC ;  
   Q   : OUT  STD_LOGIC) ;  

END flipflop ; 

ARCHITECTURE Behavior OF flipflop IS     
BEGIN 

 PROCESS ( Clock )  
 BEGIN  
  IF Clock'EVENT AND Clock = '1' THEN  
   Q <= D ;  
  END IF ;  
 END PROCESS ;  

END Behavior ;  
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Figure 7.39    Code for a D flip-flop using WAIT UNTIL 

LIBRARY ieee;  
USE ieee.std_logic_1164.all;  

ENTITY flipflop IS  
  PORT (  D, Clock  : IN  STD_LOGIC ;  
   Q  : OUT  STD_LOGIC ) ;  

END flipflop ;  

ARCHITECTURE Behavior OF flipflop IS     
BEGIN 

 PROCESS 
 BEGIN 
  WAIT UNTIL Clock'EVENT AND Clock = '1' ; 
  Q <= D ;  
 END PROCESS ;  

END Behavior ;  
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Sequential Logic Synthesis 
•  Sequential logic elements: latch, flip-flop, register, counter 
•  Behavior of sequential logic elements can be described using a process 

statement 
•  The sequential nature of process statements make them idea for the 

description of circuits that have memory and must save their state over 
time 

•  The design of sequential logic uses one or more of the following rules: 
1.  A process that does not include all entity inputs in the sensitivity list 

(otherwise the combinational circuit will be inferred) 
2.  Use incompletely specified if-then-elsif logic to imply that one or more 

signals must hold their values under certain conditions 
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Basic Sequential Logic 

•  Two most basic types of synchronous elements: 
1.  D-type latch 
2.  D-type flip-flop 

•  D-type latch: a level sensitive memory element that passes 
the input (D) to output (Q) when enabled (ENA=1) and hold 
the value of the output when disabled (ENA=0) 

•  D-type flip-flop: an edge-triggered memory element that 
transfers the input (D) to output (Q) when an active edge 
transition occurs on its clock. The output value is held until 
the next active clock edge 

•  Active clock edge: transition of clock from 0 to 1 
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Basic Sequential Logic 
•  Conditional specification is the most common method in 

describing behavior of basic memory elements 
•  This relies on an if statement and assigning a value in only 

one condition 
•  Example: a D latch 
process(enable) 
begin 
   if enable=‘1’ then 
       q <=d; 
  end if; 
end process 
•  If we had assigned values in both conditions the behavior 

would be a multiplexer 
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Basic Sequential Logic 
•  Exp: Edge triggered flip-flop 
process(clk) 
begin 
   if (clk and clk’event) then 
       q <=d; 
   end if; 
End process 

•  The second method is to use a wait statement 
wait until clk and clk’event 
q <=d; 
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Basic Sequential Logic 
•  Latches can have additional inputs such as preset and clear. 
•  Preset and clear inputs to the latch are always asynchronous. 
•  Exp: a latch with active high preset and clear 
Library ieee; 
Use ieee.std_logic_1164.all; 
Entity latch is 
    Port(enable, clear, preset, d : in std_logic;  q:out std_logic); 
End latch; 
Architecture arch2 of latch is  
Begin 
 process(enable, preset, clear) 
   begin 
   if (clear = ‘1’) then 
      q <=‘0’; 
   elsif (preset=‘1’) 
      q <=‘1’; 
   elsif (enable=‘1’) 
      q <=d; 
   end if;  
  End process; 
End arch2;  
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Basic Sequential Logic 
•  Registers can be implemented using if statement or wait statement 
•  They can have any combination of clear, preset and enable 
•  Exp: register with edge-triggered clock and asynchronous load 

Library ieee; 
Use ieee.std_logic_1164.all; 
Entity reg is 
Port(load, clk, d, data : in std_logic; q:out std_logic); 
End reg; 
Architecture arch1 of reg is  
Begin 
 process(load, clk) 
 begin 
 if (load = ‘1’) then 
   q <=data; 
 elsif clk’event and clk=‘1‘ 
   q <=d; 
 end if; 
end process 
End arch1;  
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Basic Sequential Logic  
•  Counters can be implemented with if and wait statements 
•  Exp: an 4-bit, synchronous load, up-down counter 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 

entity counter is port (clk, clr, load, up, down: in std_logic; data: in std_logic_vector(3 downto 0); count: out 
std_logic_vector(3 downto 0)); 

end counter; 

architecture count4 of counter is  
 signal cnt: std_logic_vector(3 downto 0); 

begin 
 process (clr, clk) 
 begin 
  if clr=‘1’ then cnt<=‘0000’; 
  elsif clk’event and clk=‘1’ then 
   if load=‘1’ then cnt<=data 
   elsif up=‘1’ then 
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4-bit up-down counter 
   if cnt=‘1111’ then cnt <=‘0000’; 
   else cnt<=cnt+1; 
   endif 
  elsif down=‘1’ then 
   if cnt=‘0000’then cnt<=‘1111’; 
   else cnt<=cnt-1; 
   end if 
  else   

                   cnt<=cnt; 
  end if; 
 end if; 
 count<=cnt; 
 end process; 

end count4; 
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Finite-State Machine 
•  Finite State Machines (FSMs) represent an important part of 

design of almost any complex digital system.  
•  FSMs are used to sequence specific operations, control other 

logic circuits, and provide synchronization of different parts 
of more complex circuits. 

•  FSM is a circuit that is designed to sequence through specific 
patterns of states in a predetermined manner.  

•  Sequence of states through which an FSM passes depends on 
the current state of the FSM and the input  

•  A state is represented by the binary value held on the current 
state register  

•  FSM is clocked from a free running clock source 
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Finite-State Machine 
•  FSM contains three main parts: 
1.  Current state register: holds the current state of FSM (the 

current state should be represented in binary form) 
2.  Next state logic: a combinational logic used to generate the 

transition to the next state from the current state 
–  The next state is a function of current state and inputs to FSM 
–  A feedback mechanism is necessary in FSM 

3.  Output logic: a combinational circuit used to generate output 
signals from the FSM. 
•  Outputs are a function of the current state and possibly FSM’s input 
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Finite-State Machine 

Next State Logic 
(combinational)  

Current State 
Register 

Output Logic 
(combinational)  

clk 

input 
output 
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Finite-State Machine 
•  If the output is a function of only the current state: Moore 

FSM 
•  If the output depends on the input and state: Mealy FSM 
•  Behavior of an FSM is usually described either in the form of 

a state transition table or a state transition diagram. 
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Finite-State Machine 
•  To describe a FSM, an enumeration type for states, and a 

process statement for the state register and the next-state logic 
can be used.  

•  Example: 

s0 s1 

Input=1 

Input=0 

reset 
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Finite-State Machine 
Library ieee; 
Use ieee.std_logic_1164.all; 
Entity sm is 
  Port(clk, reset, input : in std_logic; output: out std_logic); 
End sm; 
Architecture arch of state_machine is 
  Type state_type is (s0, s1);  
  Signal state: state_type; 
Begin 
  Process(clk, reset) 
  Begin 
    If reset=‘1’ then state <=s0; 
    Elsif (clk’event and clk=‘1’) then 
    Case state is  
       When s0 =>  
           state <= s1; 
       When s1 => 
            If input=‘0’ then state <=s1; 
            Else state <=s0; 
            End if; 
     End case; 
    End if; 
  End process; 
Output <=‘1’ when state=s1 else ‘0’; 
End arch; 
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Finite-State Machine 
•  An important issue when designing FSMs is state encoding: 

assignment of binary numbers to states.  
•  For small designs or those in which there are not too tight 

constraints in terms of resources, the common way is to let the 
synthesis tool encode the state automatically.  

•  For bigger designs a kind of manual intervention is necessary 
•  Sequential state encoding: increasing binary numbers are 

assigned to the states  
–  Exp: s0=“00”, s1=“01”, s2=“10”, 

•  Gray code or Johnson state encoding are other options. 
•  One-hot encoding: each state is assigned its own flip-flop, in 

each state only one flip-flop can have value ‘1’. 



Copyright S. Shirani 83 

Finite-State Machine 
•  One-hot encoding is not optimal in terms of number of flip-

flops, but used very often by FPLD synthesis tools. 
•  Reasons:  

–  FPLDs have a high number of flip-flops available,  
–  A large number of flip-flops used for state representation leads to a 

simpler next state logic. 
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Moore Machines 
•  Moore state machine: outputs are a function of current state 

only 

Next State Logic 
(combinational) 

Current State 
Register 

Output Logic 
(combinational)  

clk 

a 
b 

c 

d 
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Moore Machines (pseudo code) 
Entity system is  
   Port (clk: std_logic; a: some_type; d: out some_type); 
End system 
Architecture moore1 of system is 
  Signal b,c: some_type; 
begin 
Next_state: process (a,c) 
   begin 
     b <=next_state_logic(a,c); 
   end process next_state; 
State_reg: process(clk) 
  begin 
    if  (clk’event and clk=‘1’) then  
    c<=b; 
  end process state_reg; 
System_output: process(c) 
  begin 
     d<=output_logic(c) 
  end process system_output 
end moore1 
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Mealy Machines 
•  Mealy state machine: outputs are a function of current state 

and system inputs both 

Next State Logic 
(combinational) 

Current State 
Register 

Output Logic 
(combinational)  

clk 

a 
b 

c 

d 
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Mealy Machines (pseudo code) 
Entity system is  
  Port (clk: std_logic; a: some_type; d: out some_type); 
End system 
Architecture mealy1 of system is 
  Signal b,c: some_type; 
begin 
next_state: process (a,c) 
   begin 
     b <=next_state_logic(a,c); 
   end process next_state; 
system_output: process(a,c) 
  begin 
     d<=output_logic(a,c) 
  end process system_output 
state_reg: process (clk) 
  begin 
    if  (clk’event and clk=‘1’) then  
    c<=b; 
  end process state_reg; 
end mealy1 
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Integer types 
•  Integer type: a type whose set of values fall within a specified 

integer range 
•  Exp:  

–  Type index is integer range 0 to 15 
–  Type word_length is range 31 downto 0; 

•  Values belonging to an integer type are called integer literals 
•  The underscore character can be used freely in writing integer 

literals and has no impact on the value of a literal 
•  Exp: 98_71_28  is the same as 987128 
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Type conversion 
•  to_stdlogicvector(bit_vector): converts a bit vector to a 

standard logic vector 
•  example: to_stdlogicvector(X”FFFF”) 
•  conv_std_logic_vector(integer, bits): converts an integer to a 

standard logic vector 
•  example: conv_std_logic_vector(7,4) generates “0111” 
•  conv_integer(std_logic_vector): converts a standard logic 

vector to an integer 
•  example: conv_integer(“0111”) produces 7  
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Altera’s VHDL (Quartus) 
Package Library Content 

maxplus2 altera Quartus primitives and macrofunctions 

std_logic_1164 ieee Standard for VHDL modeling and the std_logic and 
std_logic_vector types 

std_logic_arith ieee Singed and unsigned types, arithmetic and comparison 
functions for use with singed and unsigned types and 
the conversion functions conv_integer conv_singed, 
conv_unsigned 

std_logic_signed ieee Functions to use std_logic_vector types as if they are 
singed types  

std_logic_unsigned ieee Functions to use std_logic_vector types as if they are 
unsinged types 

lpm_components lpm LPM megafunctions supported by VHDL. 
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Library of commonly used circuits 
•  Primitives: basic functional blocks used in circuit design  
•  Macrofunctions: collection of high-level building blocks that 

can be used in logic designs 
•  Macrofunction usual names have the prefix a_ due to the fact 

that VHDL does not support names that begin with digits. 



Copyright S. Shirani 93 

Primitives 

Primitive Primitive Name 

Buffer Carry, Cascade, Exp, Global, Lcell, Soft, 
Tri 

Flip-Flop & latch dff, dffe, jkff, KJFFF, SRFF, SRFFE, TFF, 
TFFE, latch 

Input and outputs INOUT, IN, OUT 

Logic AND, NOR, BAND, NOT, BNAND, OR, 
BNOR, XOR,….. 

•  Primitives:  
–  Basic building blocks  
–  Package: altera_primitives_components 
–  Library: altera 
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Macrofunctions 
•  Macrofunctions:  

–  Collection of high-level building blocks that can be used in logic 
designs 

–  All input ports have default signal values, so the designer can simply 
leave unused inputs unconnected 

–  Macrofunction usual names have the prefix a_ due to the fact that 
VHDL does not support names that begin with digits. 
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Macrofunctions 
Macrofunction  Name Description  

Adder a_8fadd 
a_7480 
a_74283 

8 bit full adder 
Gated full adder 
4 bit full adder with fast carry 

Arithmetic logic unit a_74181 
a_74182 

Arithmetic logic unit 
Look ahead carry generator  

Application specific ntsc NTSC video control signal generator  

Buffer a_74240 
a_74241 

Octal inverting 3-state buffer 
Octal 3-state buffer 

Comparator a_8mcomp 
a_7485 
a_74688 

8-bit magnitude comparator 
4-bit magnitude comparator 
8-bit identity comparator 

Converter a_74184 BCD-to-binary converter 



Copyright S. Shirani 96 

Macrofunctions 
Macrofunction  Name Description  

Counter Gray4 
a_7468 
a_7493 
a_74191 
a_74669 

Gray code counter 
Dual decade counter 
4-bit binary counter 
4-bit up/down counter with asynch. load 
Synchr. 4-bit up/down counter 

Decoder a_16dmux 
a_7446 
a_74138 

4-to-16 decoder 
BCD-to-7 segment decoder 
3-to-8 decoder 

EDAC a_74630 16-bit parallel error detection and correction 
circuit 

Encoder a_74148 
a_74348 

8-to-3 encoder 
8-to-3 priority encoder with 3-state outputs 

Frequency divider a_7456 Frequency divider  
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Macrofunctions 
Macrofunction  Name Description  

Latch Inpltch 
a_7475 
a_74259 
a_74845 

Input latch 
4-bit bistable latch 
8 bit addressable latch with clear 
8 bit bus interface D latch with 3 state outputs 

Multiplier Mult4 
a_74261 

4-bit parallel multiplier 
2-bit parallel binary multiplier  

Multiplexer  a_21mux 
a_74151 
a_74157 
a_74356 

2-to-1 multiplexer 
8-to-1 multiplexer 
Quad 2-to-1 multiplexer  
8-to-1 data selector/multiplexer/register with 3 state outputs  

Parity generator/
checker 

a_74180 9-bit odd/even parity generator/checker 
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Macrofunctions 

Macrofunction  Name Description  

Register a_7470 
a_7473 
a_74171 
a_74173 
a-74396 

AND gated JK filp flop with preset and clear 
Dual JK flip-flop with clear 
Quad D flip-flop with clear 
4-bit D register 
Octal storage register 

Shift register Barrelst 
a_7491 
a_7495 
a_74198 
a_74674 

8-bit barrel shifter 
Serial-in serial out shift register 
4-bit parallel access shift register 
8 bit bidirectional shift register 
16-bit shift register 

Storage register  a_7498 4-bit data selector/storage register 
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Macrofunctions 

Macrofunction  Name Description  

SSI functions Inhb 
a_7400 
a_7421 
a_7432 
a_74386 

Inhibit gate 
NAND2 gate 
AND4 gate 
OR2 gate 
Quadruple XOR gate 

True/Complement  
I/O element 

a_7487 4-bit true/complement I/O element 
Quadruple complementary output elements  
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Macrofunctions 
Library ieee; 
Use ieee_std_logic_1164.all; 
Library altera; 
Use altera.maxplus2.all; 
Entity example is  

 Port(data, clock, clearn, presetn: in std_logic;  
       q_out: out std_logic;   

              a, b, c, gn: in std_logic;  
       d: in std_logic_vector(7 downto 0);  
       y, wn: out std_logic); 

End example 
Architecture arch of example is 
Begin 

 dff1: dff port map (d=>data, q=>q_out clk=>clock, clrn=>clearn, prn=>presetn); 
 mux: a_74151 port map(c,b,a,d, gn, y, wn); 

End arch; 
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Library of Parameterized Modules 
•  Library of Parameterized Modules (lpm) is a library of 

macrofunctions that is included in Quartus II 
•  Each module is parameterized: there are parameters and the 

module can be used in different ways. 
•  Modules in the library are technology independent. 
•  The modules can be included in a schematic entry mode or in 

VHDL code. 
•  Package: lpm_components 
•  Library: lpm 
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lpm modules 
Name Description  

Gates lpm_and 
lpm_inv 
lpm_bustri 
lpm_mux 
lpm_clshift 
lpm_or 
lpm_constant 
lpm_xor 
lpm_decode 
mux 
busmux   

Multi-bit and gate  
Multi-bit inverter   
Multi-bit three state buffer  
Multi-input multi-bit multiplexer 
Combinatorial logic shifter and barrel shifter 
Multi-bit or gate  
Constant generator 
Multi-bit xor gate  
Decoder 
Single input multi-bit multiplexer 
Two-input multi-bit multiplexer  

Arithmetic 
Components 

lpm_compare 
lpm_abs 
lpm_counter 
lpm_add_sub 
lpm_divide 
lpm_mult 

Two-input multi-bit comparator  
Absolute value 
Multi-bit counter with various control options 
Multi-bit adder subtractor 
Parameterized Divider  
Multi-bit multiplier  
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lpm modules 
Name Description  

Memory altdpram* 
lpm_latch 
csfifo 
lpm_shiftreg 
dcfifo* 
lpm_ram_dp 
scfifo* 
lpm_ram_dq 
csdpram 
lpm_ram_io 
lpm_ff 
lpm_rom 
lpm_fifo 
lpm_dff* 
lpm_fifo_dc 
lpm_tff*   

Parameterized Dual-Port RAM 
Parameterized Latch 
Cycle shared first-in first-out buffer 
Parameterized Shift Register  
Parameterized Dual-Clock FIFO  
Parameterized Dual-Port RAM  
Parameterized Single-Clock FIFO 
Synchronous or Asynchronous RAM with a separate I/O ports   
Cycle shared dual port RAM 
Synchronous or Asynchronous RAM with a single I/O port 
Parameterized flip flop  
Synchronous or Asynchronous ROM 
Parameterized Single-Clock FIFO 
Parameterized D-Type flip flop and Shift Register 
Parameterized Dual-Clock FIFO  
Parameterized T-Type flip flop 

Other functions  clklock   
pll 
ntsc   

Parameterized Phase-Locked Loop 
Rising- and Falling-Edge Detector 
NTSC Video Control Signal Generator  
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Parameterized Modules 
•  An instance of a parameterized function is created with a 

component instantiation statement and a generic map. 
•  Generic map assigns values to the parameters. 
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Parameterized Modules 
Library ieee; 
Use ieee_std_logic_1164.all; 
Library lpm; 
Use lpm.lpm_components.all; 
Entity reg24lpm is  

 Port(d: in std_logic_vector(23 downto 0); clk: in in std_logic; 
               q: out std_logic_vector(23 downto 0)); 
End reg24lpm; 
Architecture arch of reg24lpm is 
Begin 

 reg12a: lpm_ff  
     generic map (lpm_width =>12) 
     port map(data =>d(11 downto 0), clock => clk, q => q(11 downto 0)); 

 reg12b: lpm_ff  
     generic map (lpm_width =>12) 
     port map(data =>d(23 downto 12), clock => clk, q => q(23 downto 0)); 
end arch; 
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VHDL Synthesis of Multiply & Divide 
•  The lpm_mult function can be used to synthesize integer multiplication 
•  The function lpm_divide is also available for integer division. 
•  Syntax  

COMPONENT lpm_mult 
   GENERIC (LPM_WIDTHA: POSITIVE; 
      LPM_WIDTHB: POSITIVE; 
      LPM_WIDTHS: POSITIVE; 
      LPM_WIDTHP: POSITIVE; 
      LPM_REPRESENTATION: STRING := "UNSIGNED"; 
      LPM_PIPELINE: INTEGER := 0; 
      LPM_TYPE: STRING := "L_MULT"; 
      LPM_HINT : STRING := "UNUSED"); 
   PORT (dataa: IN STD_LOGIC_VECTOR(LPM_WIDTHA-1 DOWNTO 0); 
      datab: IN STD_LOGIC_VECTOR(LPM_WIDTHB-1 DOWNTO 0); 
      aclr, clken, clock: IN STD_LOGIC := '0'; 
      sum: IN STD_LOGIC_VECTOR(LPM_WIDTHS-1 DOWNTO 0) := (OTHERS => '0'); 
      result: OUT STD_LOGIC_VECTOR(LPM_WIDTHP-1 DOWNTO 0)); 
END COMPONENT; 
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VHDL synthesis of memory 
•  The memory functions in LPM are lpm_ram_dq, 

lpm_ram_dp, lpm_ram_io, and lpm_rom. 
•  The memory can be set to an initial value using a file with 

extension .mif. 
•  lpm_ram_dq can implement asynchronous memory or 

memory with synchronous inputs and/or outputs.  
•  The lpm_ram_dq function uses EABs in FLEX 10K and 

Cyclone devices.  
•  The Quartus Compiler automatically implements suitable 

portions of this function in EABs.  
•  Small blocks of special purpose memory can be synthesized 

using registers. 
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VHDL synthesis of memory 
VHDL Component Declaration: 

COMPONENT lpm_ram_dq 
   GENERIC (LPM_WIDTH: POSITIVE; 
      LPM_TYPE: STRING := "L_RAM_DQ"; 
      LPM_WIDTHAD: POSITIVE; 
      LPM_NUMWORDS: POSITIVE; 
      LPM_FILE: STRING := "UNUSED"; 
      LPM_INDATA: STRING := "REGISTERED"; 
      LPM_ADDRESS_CONTROL: STRING := "REGISTERED"; 
      LPM_OUTDATA: STRING := "REGISTERED"; 
      LPM_HINT: STRING := "UNUSED"); 
   PORT (data: IN STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0); 
      address: IN STD_LOGIC_VECTOR(LPM_WIDTHAD-1 DOWNTO 0); 
      we: IN STD_LOGIC := '1'; 
      inclock: IN STD_LOGIC := '1'; 
      outclock: IN STD_LOGIC := '1'; 
      q: OUT STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0)); 
END COMPONENT; 
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VHDL synthesis of memory 

•  LPM_WIDTH   Width of data[] and q[] ports. 
•  LPM_WIDTHAD   Width of the address port.  
•  LPM_NUMWORDS   Number of words stored in memory.  
•  LPM_FILE    Name of the Memory Initialization 

File (.mif) or Hexadecimal (Intel-Format) File (.hex) containing 
ROM initialization data ("<filename>"), or "UNUSED". If omitted, 
contents default to all 0's. 
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