Multimedia Communications

Speech Compression

Introduction

- No matter what language is being spoken, speech is generated using machinery that is not very different from person to person
- This machinery has to obey physical laws that substantially limit the behavior of the outputs
- Speech can be analyzed in terms of a model and model can be extracted and transmitted to the receiver
- At the receiver the speech is synthesized using the model

Introduction

- Speech is produced by forcing air first through an elastic opening, the vocal cords, laryngeal, oral, nasal and pharynx passages and finally through mouth and nasal cavity
- First sound is generated and is modulated into speech as it traverses through the vocal tract
- In order to generate a fragment of speech we have to generate a sequence of excitation signals and the corresponding sequence of vocal tract approximation

Introduction

- Many speech compression schemes:
 - Channel vocoder
 - Linear predictive coder (LPC)
 - Code excited linear prediction (CELP)
 - Sinusoidal coders
 - Mixed excitation linear prediction (MELP)

- Each segment of input speech is analyzed using a bank of band-pass filters called the analysis filters
- Energy at the output of each filter is estimated at fixed time intervals and transmitted to the receiver
- A decision is made as to whether the speech in that segment is voiced or unvoiced
- Voiced sound tend to have a pseudo-periodic structure
- The period of the fundamental harmonic is called the pitch period
- Transmitter also forms an estimate of the pitch period which is transmitted to the receiver

- Unvoiced sounds tend to have a noise like structure
- At the receiver, the vocal tract filter is implemented by a bank of band-pass filters (identical to the filters at transmitter)
- The input to the filters is noise source (for unvoiced segments) or periodic pulse (for voiced)

- Variations of vocoder: formant vocoder, voice excited vocoder
- Vocal tract is a tube of non-uniform cross section that resonates at a number of different frequencies known as formants
- Formant vocoder transmits an estimate of the formant values (usually 4) and an estimate of the bandwidth of each formant
- At the receiver the excitation signal is passed through tunable filters tuned to the formant frequency and bandwidth

- In voice excited channel vocoder, the voice is first filtered using a narrow-band low-pass filter
- Output of the filter is sampled and transmitted to the receiver
- At the receiver, the low-pass signal is passed through a nonlinearity to generate higher order harmonics that together with the low pass signal are used as the excitation signal
- Voice excitation removes the problem of pitch extraction and declaring every segment voiced or unvoiced

Linear Predictive Coder (LPC-10)

• Instead of the vocal tract being modeled by a bank of filters, in LPC, it is modeled as a single linear filter:

$$y[n] = \sum_{i=1}^{M} b_i y[n-i] + Ge[n]$$

- The input to the vocal tract filter is either the output of a random noise generator or a periodic pulse generator
- At the transmitter a segment of speech is analyzed to make a decision on voiced/unvoiced, the pitch period and the parameters of the vocal tract filter
- In LPC-10 input speech is sampled at 8000 samples per second which is broken into 180 sample segments
- Rate: 2.4 kbps

LPC-10

Copyright S. Shirani

Multi-pulse linear predictive coding (MP-LPC)

- One of the most important factors in generating natural sounding speech is the excitation signal
- Human ear is especially sensitive to pitch errors
- Using a single pulse per pitch period leads to a buzzy twang
- Multi-pulse linear predictive coding (MP-LPC): several pulses were used during each segment
- Spacing of these pulses is determined by evaluating a number of patterns from a codebook of patterns

MP-LPC

- Each entry in codebook is an excitation sequence that consists of a few nonzero values separated by zeros
- Codebook entry generating minimum average weighted error is declared the best match.
- Index of the best match is sent to the receiver.

Regular pulse excitation (RPE) coding

- RPE is a modification of MP-LPC
- Instead of using excitation vectors in which the nonzero values are separated by an arbitrary number of zero values, the nonzero values occur at regularly spaced intervals.
- A variation of RPE called regular pulse excitation with long term prediction (RPE-LTP) was adopted as a standard for digital cellular phones by GSM.

Code excited linear prediction (CELP)

- In CELP instead of having a codebook of pulse patterns we allow a variety of excitation signals
- Given a segment, encoder obtains the vocal tract filter
- Encoder then excites the vocal tract filter with the entries of the codebook
- Difference between original speech segment and the synthesized speech is fed to a perceptual weighting filter
- Codebook entry generating minimum average weighted error is declared to the best match
- Two examples will be reviewed: Federal Standard 1016 (FS 1016), and G.728

FS 1016

- Vocal tract filter: $y[n] = \sum_{i=1}^{10} b_i y[n-i] + \beta y[n-P] + Ge[n]$
- Input speech is sampled at 8000 samples per second and divided into 30 ms frames containing 240 samples.
- Each frame is divided into four subframes of length 7.5 ms.
- The coefficients b_i are obtained using the auto-correlation method
- Pitch period is calculated once every subframe
- FS 1016 uses two codebooks: stochastic and adaptive
- An excitation sequence is generated for each subframe by adding one scaled element from the stochastic codebook and one scaled element from the adaptive codebook.

FS 1016

- Scale factors and indices are selected to minimize the perceptual error between the input and synthesized speech
- Stochastic codebook contains 512 entries which are generated using a Gaussian random number generator
- Adaptive codebook consists of the excitation vectors from the previous frame
- FS 1016 provides excellent reproduction in both quiet and noisy environment at rates of 4.8 kbps and above

- Coding delay: the time between when a speech sample is encoded to when it is decoded if there was no transmission delay
- Coding delay consists of buffering delay (to store a segment), processing delay.
- Long delays are not acceptable in some applications.
- G728 is a CELP coder with a coder delay of 2 ms operating at 16 kbps (2 bits per sample).
- Reduce delay: reduce the segment size
- Segment size: 5 samples

- The algorithm obtains vocal tract filter parameters in a backward adaptive manner: vocal tract filter coefficients to be used to synthesize the current segment are obtained by analyzing the previous decoded segment
- G.728 algorithm does not use pitch filter instead it uses a 50th order vocal tract filter
- Since the vocal tract filter is completely determined in a backward adaptive manner, we have all 10 bits available to encode the excitation sequence
- 10 bits => 1024 excitation sequences => too many to analyze in 0.625 ms

- G.728 uses a product codebook: each excitation is represented by the product of a normalized sequence and a gain term
- 3 bits used to encode the gain using predictive encoding and 7 bits form the index to a codebook containing 127 sequences

Copyright S. Shirani

Sinusoidal Coders

- Main problem with the LPC coder: excitation signal
- CELP coder solves this problem using a codebook of excitation signals
- Sinusoidal coders solve this problem by using an excitation signal that is the sum of sine waves of arbitrary amplitudes, frequencies and phases.
- Since the vocal tract is a linear system, the synthesized speech (based on a sinusoidal excitation) will also be sinusoidal
- Sinusoidal coders directly estimate the parameters required to synthesize the speech at the decoder

Sinusoidal Coders

- Sinusoidal coders divide the input speech into frames and obtain the parameters of the speech separately for each frame
- Sinusoidal coder uses interpolation algorithms to smooth discontinuities at frame boundaries.

Sinusoidal coder

Copyright S. Shirani

Mixed excitation linear prediction (MELP)

- MELP is the new federal standard for speech coding at 2.4 kbps
- MELP uses LPC filter to model the vocal tract and a much more complex approach to the generation of the excitation signal
- Excitation signal is a multiband mixed excitation
- Mixed excitation contains both a filtered signal from a noise generator as well as a contribution depending on the input signal
- First step in constructing the excitation signal is pitch extraction

MELP

- Input is also subjected to a multiband voicing analysis using five filters with passband 0-500, 500-1000, 1000-2000, 2000-3000 and 3000-4000 Hz.
- The goal of the analysis is to obtain the voicing strength for each band used in the shaping filters

Copyright S. Shirani

MELP

Figure 17.1 The MELP model of speech production.

Copyright S. Shirani