
Multimedia Communications

Vector Quantization

Copyright S. Shirani

Vector Quantization

•  By grouping source outputs together and encoding them we can
extract the source structure and obtain efficient compression.

•  Source outputs are grouped into blocks or vectors of length L.
•  At the encoder and decoder there is a set of M, L-dimensional

vectors called the code-book.
•  Vectors in the code-book are called code vectors (levels) or

output points.
•  Each code vector is assigned a binary index.

Copyright S. Shirani

Vector Quantization

•  Encoder: the input vector is compared to each of the code
vectors to find the closest one.

•  The binary index of the selected code vector is sent to decoder.
•  Decoder has exactly the same codebook and can retrieve the

code vector given the binary index.
•  If the output of the VQ codebook is fixed-rate coded, then the

rate is r = (Log2 M)/L bit per sample.
•  Distortion measure: mean squared error

•  An important problem in VQ is the design of the code-book

Copyright S. Shirani

Vector Quantization

Copyright S. Shirani

•  Example: 2-D Quantizer
–  A map of the city that is divided into school districts.
–  Each school in its district represents the code vector.
–  Input: Location of child’s residence.
–  Output: Rule by which each child is assigned to a school.

•  Theorem: Given a signal vector (or data vector), no other
coding technique exists that can outperform VQ [Shannon].

Vector Quantization

Copyright S. Shirani

•  Exploit structure in the source samples
•  More flexibility in terms of design

Vector Quantization: Advantages

Copyright S. Shirani

1.  Initialize Codebook (reconstruction vectors)
2.  Find quantization regions
3.  Using the pdf compute the distortion Dk.

4.  If ((Dk – Dk-1)/ Dk < ε, stop otherwise continue
5.  Increment k find new reconstruction vectors (centroid of

regions) and go to step (2)

•  Using the pdf is not practical. Most often training sets are
used instead of pdf.

LBG Design Algorithm

�

D(k) = X −Yi
(k) 2 fx (X)dX

Vi
k

∫
i=1

M

∑

�

Yi
(k+1) =

XfX (X)dX
Vi
k
∫
fX (X)dX

Vi
k
∫

Vi
(k) = {X :d(X,Yi) < d(X,Yj)∀j ≠ i}

Copyright S. Shirani

•  The practical algorithm is very similar to k-means (used in
pattern recognition)

1.  Initial set of reconstruction values set of
training vectors

2.  Assign each of the training vectors to one of the
reconstruction vectors

3.  Compute average distortion Dk between training vectors
and their representative reconstruction vector

4.  If (Dk – Dk-1)/ Dk <ε , stop otherwise continue
5.  k=k+1. Find new reconstruction values (average of the

elements of each quantization region)

LBG Design Algorithm

Copyright S. Shirani

•  Initial Codebook: The performance of the LBG algorithm
depends heavily on the initial codebook.

•  Splitting technique:
–  start with a single reconstruction vector (average of training set)
–  Obtain the initial code book of a two level VQ by including the output

point of the one level VQ and a second vector which is obtained by
adding a fixed perturbation vector to first vector

–  Use LBG algorithm to obtain the two level VQ
–  The initial four-level codebook consists of the two codebook vectors

from the final codebook of two level VQ and two others obtained by
adding the perturbation to the two codebook vectors.

LBG Design Algorithm

Copyright S. Shirani

LBG Design Algorithm
•  Random selection (Hilbert)

–  Select the initial vectors randomly from the training set

•  Pairwise Nearest Neighbor (PNN) method
–  Start with the set of training vectors
–  At each stage combine the two closest vectors into a single vector

(their mean)
–  Continue until you get the required number of initial vectors

•  Set the initial codebook to the set of reconstruction levels of
scalar quantizer

Copyright S. Shirani

Empty cell problem
•  Sometimes no input vector gets assigned to an initial output

vector (code vector)
•  This is a problem because in order to update an output point,

we need to take the average of the input vectors assigned to
that output (inside the cell of that output)

•  There is a danger that we will end up with an output that is
never used

•  A common approach is to remove an output point that has no
inputs associated with it and replace it with a point from the
quantization region with most training points.

Copyright S. Shirani

•  Motivation (complexity): Let L be the dimension of the VQ.
If R is the bit rate, then L2RL scalars need to be stored. Also,
L2RL scalar distortion calculations are required.

•  Solution: introduce some form of structure in the codebook
and/or quantization process

•  Substantial reduction in complexity (non-exponential
dependence on dimension-rate product RL)

•  Disadvantage: Inevitable loss in rate-distortion performance

Structured Vector Quantization

Copyright S. Shirani

Tree-structured vector quantization
•  Divide the set of output points to two groups, g0 and g1.
•  Assign to each group a test vector such that output points in

each group are closer to test vector assigned to that group than
the test vector assigned to the other group (v0 and v1)

•  When we get an input vector we compare it with v0 and v1.
•  Depending on the outcome the input vector is compared to the

output points associated with the test vector and the other half
is discarded.

•  This process can be continued by dividing g0 into g00 and
g01 and assigning test vectors v00 and v01 to each.

Copyright S. Shirani

•  Tree Structured VQ (TSVQ)

Tree Structured VQ (TSVQ)

Root

1

1

1

1

1

1

0

0

0

0

0

0 y1

y2

y4 y3

y5 y6

y0

Copyright S. Shirani

•  The number of comparisons will be 2log M instead of M.
•  Penalties:

1.  Possible increase in distortion
2.  TSVQ requires approx. twice the memory required by conventional

VQ.

•  How to design TSVQ?
–  Impose the structure after the VQ is designed
–  Design the VQ in the framework of the tree structure

Tree Structured VQ (TSVQ)

Copyright S. Shirani

Tree Structured VQ (TSVQ)
•  Obtain the average of all the training vectors, perturb it to

obtain a second vector, and use these vectors to form a two-
level VQ.

•  Call the vectors v0 and v1 and the group of training set vectors
that would be quantized to each as g0 and g1.

•  Perturb v0 and v1 to get the initial vectors for a four-level VQ.
•  Use g0 to design a two-level VQ and g1 to design the another

two-level VQ.
•  Label the vectors v00, v01, v10, v11.
•  Split g0 using v00 and v01 into two groups g00, g01.
•  Split g1 using v10 and v11 into two groups g10, g11.

Copyright S. Shirani

•  The codewords have a regular pattern

Lattice VQ

y3

Copyright S. Shirani

•  Highly structured VQ (reduction in computation and
memory)

•  A VQ whose codebook consists of a subset of a lattice
•  Simplest form: Cubic lattice
•  If the source probability is confined to a bounded

space, the lattice codebook should be confined to the
same space.

•  A one-dimensional cubic lattice is a uniform quantizer.

Lattice VQ

Copyright S. Shirani

Definition: A Lattice in a k-dimensional space is the collection
of all vectors of the form:

where the mi’s are arbitrary integers and the ui’s form a
linearly independent set of n<=k vectors.

Lattice VQ

Copyright S. Shirani

Gain-shape VQ
•  In some applications the dynamic range of the input is quite

large.
•  To represent the various vectors from the source, we need a

very large codebook
•  This requirement can be reduced by normalizing the source

output vectors, then quantizing the normalized vector and the
normalization factor separately

•  Variations due to dynamic range is represented by the
normalization factor (gain)

•  This technique is called gain-shape VQ.

Copyright S. Shirani

•  Pyramid VQ:
–  First find the value
–  This value (called gain) is quantized and transmitted to the

receiver
–  The input is normailized by gain (called shape) and quantized

using a single hyper-pyramid
–  Quantization of shape consists of finding the output point on the

hyper-pyramid closest to the shape and finding a binary codeword
for it.

Pyramid VQ

y3

Copyright S. Shirani

Multistage VQ
•  Multistage VQ: reduces both encoding complexity and the

memory requirement for VQ
•  Input is quantized in several stages

+ + +

I1 I2 I3

Copyright S. Shirani

Multistage VQ

+

•  If the size of codebook of the nth stage is Ln, then the
effective size of the overall codebook is L1xL2x…xLk.

•  We need to store only L1+L2+…+Lk vectors.
•  For same rate, performance of this method is lower than LBG.

Copyright S. Shirani

Classified VQ
•  We can sometimes divide the source output into separate

classes with different properties
•  A separate VQ is designed for each class
•  The encoder transmits both the label for the codebook and the

label for the vector in the codebook

