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Abstract—This work compares theoretically the perfor-
mance of several representative practical multiple description
(MD) frameworks with L ≥ 3 symmetric descriptions. The
first scenario is the classic unequal erasure protection (UEP)
scheme using a successively refinable code (SRC) and Reed-
Solomon codes. The second scenario is an improvement upon
UEP by applying domain partitioning and permuted Reed-
Solomon codes. The third scenario uses a finer partitioning
and erasure correction via repetition codes. Additionally, the
MD lattice vector quantizer and another recent MD scheme
are considered in the comparison.

The aforementioned MD schemes are compared in terms of
the expected squared error asymptotically achievable as the
rate R of a description approaches ∞, assuming independent
description losses. Our analysis reveals that the improvement
of the second scenario upon the first one when R → ∞ can
reach up to 1.68 dB, but it approaches 0 as the description
loss rate p goes to 0 and L approaches ∞. Additionally,
we find that the first two schemes outperform the third one
with an unbounded gain when R → ∞, as p → 0 or L →
∞. Further, we show that the first three scenarios achieve
unbounded improvements over the other two as R → ∞ and
p → 0.

On the other hand, we point out that some of the
results of our asymptotic analysis rely on strong assumptions
and therefore an experimental validation is needed before
applying them to practical situations.

Index Terms—Multiple description coding, asymptotical
analysis, high resolution assumption.

I. INTRODUCTION

The central idea in multiple description (MD) coding
is to produce several descriptions of a source such that
from each description the source can be reconstructed to
a certain fidelity, while any subset of descriptions can be
jointly decoded improving the quality of the reconstruc-
tion. As the number of jointly decoded descriptions grad-
ually increases the quality of the reconstruction improves
consistently.

Research on MD code design has received consistent
attention over the past two decades due to increasing
potential for applications in modern communication sys-
tems. Some of the practical designs developed over the
years for two descriptions were based on scalar [1]–[5],
vector [6], or lattice vector quantizers (MDLVQ) [7], on
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correlated transforms [8], [9], on domain partitioning [10]–
[13], on low density generator matrix codes (LDGM) [14],
etc. We would like to point out that by practical designs
we understand constructive and computationally tractable
schemes as opposed to nonconstructive approaches that are
routinely used to derive information theoretical limits.

In this work we are interested in MD schemes with
L ≥ 3 symmetric descriptions, where ”symmetric” means
that all descriptions have the same rate and the quality of
the reconstruction is a function of the number of jointly
decoded descriptions. Extensions of the aforementioned
approaches from L = 2 to L ≥ 3 exist, but they are gen-
erally marked by restrictions. For instance, in the case of
MD scalar quantizers, the generalization to more than two
descriptions requires developing good index assignments
for the general case. This problem was tackled in [15] for
the special case when only the side distortions (achieved
for individual descriptions) and the central distortion
(achieved when all descriptions are jointly decoded) are
of interest. On the other hand, in [16] the optimal index
assignment problem was solved for another particular case,
namely when all component quantizers have convex bins.
Finally, a multi-stage index assignment is proposed in [17],
but with an explicit construction only for the case of three
descriptions.

The existing MDLVQ framework for L ≥ 3 was
introduced in [18] and further investigated in [19]–[21].
The MDLVQ consists of a lattice vector quantizer (termed
central quantizer) and an index assignment which maps
each central lattice point to an L-tuple of points from
a sublattice. When all descriptions are available at the
decoder the central lattice point is used as the reconstruc-
tion. When only a subset of descriptions is available, the
reconstruction is the arithmetic average of the sublattice
points corresponding to the received descriptions. Notice
that this framework has only one degree of freedom, while
L−1 degrees of freedom are desired as pointed out in [17].

Very recently the use of LDGM codebooks in conjunc-
tion with message passing algorithms was proposed for
approaching in practice known achievable points of the
MD rate-distortion region. The MD scheme of [14] is
designed for L = 2 and finite alphabet sources, targeting
the Zhang-Berger region of [22], while the MD scheme
of [23] is developed for a general L, but for the special
case when the decoder can receive either only one or all
descriptions. Additionally, the framework is designed for
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the case of a Gaussian source with squared error distortion,
relying on specifics of the solution to the MD problem
in this situation. The extension of this approach to more
general cases is currently under research.

Another MD system for L symmetric descriptions,
which was extensively investigated in the context of ro-
bust image/video transmission over packet lossy chan-
nels/networks1, is based on forward error correction (FEC)
[24]–[26]. It uses a a successively refinable source code
(SRC) and unequal erasure protection via maximum sep-
arable distance codes, such as Reed-Solomon (RS) codes.
The output of the SRC is first divided into consecutive
segments (layers) of non-decreasing lengths. Then each
segment is protected using an RS code of fixed total
length L. Finally, the L descriptions are formed across
the channel codewords. This framework is also known as
priority encoded transmission (PET) [27], or simply as the
unequal error protection (UEP) scheme. This technique
has attracted a lot of attention in multimedia stream-
ing research where scalable image and video coders are
widely available, such as SPIHT [28], EBCOT [29], 3D
SPIHT [30], or H.264 SVC [31]. The problem of optimal
redundancy allocation in rate-distortion (RD) sense has
been thoroughly researched as well [24]–[26], [32]–[37].
Furthermore, it was shown in [38] that the individual
description rate needed to achieve an L-tuple of distor-
tions, where each distortion corresponds to a number of
decoded descriptions, is only higher by a constant amount
than the theoretical optimum, result which, along with
the simplicity of the scheme, encourages its widespread
application.

An improvement to the UEP scheme, termed MUEP
(which stands for Multi-stream UEP), was proposed in
[39] in the context of wavelet-based image coders. In
MUEP the set of wavelet coefficients is first partitioned
into L subsets and the SRC is applied separately to each
subset. Further, permuted RS codes of length L and non-
increasing strengths are applied across the descriptions.
As argued in [39], when the RD curves of the L SRC
streams are identical and, additionally, coincide with the
RD curve of the SRC applied to the whole set, the MUEP
scheme strictly outperforms UEP. On the other hand,
the magnitude of this improvement was only determined
empirically for several images at small bit rates (up to 0.5
bpp), using SPIHT as the SRC.

Another trend in MD coding relies on partitioning
in the transform domain. Such approaches have been
widely investigated for applications in image and video
transmission as well. In [10]–[13] schemes for L = 2
were designed, whereas [40]–[42] address the case of
L ≥ 3. The approach can be described as follows. In
order to produce L descriptions the set of transform
coefficients is partitioned into N subsets P1, · · · ,PN , for

1Notice that in the context of data transmission over packet lossy
channels, each packet can be regarded as a description.

some N ≥ L. Next, each subset is encoded at I different
rates R1 < R2 < · · · < RI , for some I ≥ 2, thus
producing I different bitstreams for each subset. Finally,
each description is formed by selecting one bitstream for
each subset and concatenating them. From the received
descriptions the decoder uses the highest resolution bit-
stream available for each subset Pn, 1 ≤ n ≤ N . Notice
that when the source coder used to encode each subset
Pn is an SRC, the bitstream encoding Pn at some rate Ri

is actually a prefix of the bitstream encoding Pn at any
higher rate Rj , j > i. Thus, the i-th layer output by the
source coder will appear in any description which contains
the Rj-rate bitstream, for any j ≥ i. Consequently, the
aforementioned MD scenarios can be regarded as FEC-
based MD schemes, where the FEC is performed using
repetition codes. Furthermore, for the MD frameworks
of [10]–[13], [40], [41]2, since I = 2, there are only
two layers. The base layer is protected via a length L
repetition code, which is also an (L, 1) RS code, while
the refinement layer has no channel protection. It follows
that when L = 2 such a scheme is equivalent to MUEP,
while when L ≥ 3 it is a particular case of MUEP with
R2 = R3 = · · · = RL. The approach of [42] however has
L − 1 degrees of freedom since I = L, but it is not a
particular case of MUEP because the number of subsets
is N = L! and the unequal erasure protection is achieved
by varying the length of the repetition codes. Finally, a
related framework is [43], which was developed as an
improvement to [40] using staggered scalar quantizers
instead of repetition codes.

II. CONTRIBUTION

While a multitude of practical MD schemes for L ≥ 3
symmetric descriptions have been proposed so far, a thor-
ough performance comparison between them is lacking.
As a notable example, the UEP scheme, which is one of
the first practical MD frameworks, is not directly compared
with most of the newer approaches. The aim of this work
is to address this shortcoming by performing an analytical
comparison of several representative MD schemes for
L ≥ 3 symmetric descriptions. For this purpose we select
UEP, MUEP, the MD system of [42], MDLVQ and the
scheme of [43]. We will alternatively refer to these five
MD frameworks as scenario 1, 2, 3, 4 and 5, respectively.
We point out that among these five schemes a direct
comparison was performed only between MUEP and UEP
(for several practical cases with description rate up to 0.5
bits per sample), and between scenario 5 and MDLVQ (for
L = 4 and description rate of 5 bits per sample).

In our analysis we use as a measure of performance the
expected distortion at the receiver, with the squared error
as the distortion measure, assuming that the description

2Notice that MD scheme in [41] has both symmetric and asymmetric
variants. In this work we refer exclusively to the symmetric (or balanced)
variant.
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losses are independent. To make the analysis theoretically
tractable we assume that the rate R of individual descrip-
tion grows to ∞ and, further, use the high resolution
quantization assumption to derive the expression of the
distortion. Additionally, we will assume that the SRC used
in UEP, MUEP and the MD system of [42] is based on
scalar quantization, assumption which is in accordance
with the practice in image and video coding. Finally,
the expected distortion for each scenario is minimized by
solving the related redundancy allocation problem with a
constraint on the rate of the individual description.

For scenarios 4 and 5 we will use the high rate analysis
available in the literature and will complement it with
the derivation of the analytical expression of the optimal
expected distortion. For scenarios 1, 2 and 3, deriving
the optimal expected distortion is more challenging since
the associated optimization problem has L − 1 variables
versus only one variable in scenarios 4 and 5. The problem
was addressed in the context of UEP without assuming a
particular expression of the operational RD function of
the SRC and without deriving an analytical expression
for the solution. In this work we are interested in the
analytical expression of the solution in order to facilitate
the analysis, to which aim we will exploit the convenient
exponential form of the operational RD function of the
SRC at high resolution. Inspired by previous work we
convert the optimization problem into a simpler problem
with fewer constraints, conversion which is based on the
construction of the lower convex hull of a certain curve,
which we will refer to as the alpha-beta curve. Based on
the convex hull of the alpha-beta curve we next derive the
analytical expression of the optimal expected distortion. To
have a complete analytical solution we need to have the
explicit expression of the convex hull as well. Therefore,
we proceed to investigate the convexity properties of the
alpha-beta curve for each scenario. For scenario 3 it turns
out that the curve is convex all the time, while for the
other two schemes we show that the curve is convex only
when the description loss rate p is sufficiently small. For
the remaining values of p (up to 1

2 ) we identify properties
of the curve which considerably simplify the convex hull
construction. These results will simplify the expression of
the optimal expected distortion for certain cases of interest
facilitating the theoretical analysis. The significance of
these results transcends this work because they establish
a basis for the theoretical comparison with other existing
MD schemes not covered here, or to be developed in the
future.

Next we proceed to the asymptotical comparison of
the five scenarios. Numerical evaluation shows that the
gain in performance of the second scenario upon the first
one as R → ∞ may attain 1.68 dB (when L = 3
and p → 0), and remains higher than 0.9 dB for all
L ≤ 10 and p ≤ 0.1. Using a result from [38] it follows
that this gain remains bounded over all L, while our

theoretical analysis shows that it approaches 0 as p → 0
and L → ∞. We point out that some preliminary results
on the asymptotical comparison between UEP and MUEP
for a Gaussian memoryless source were first mentioned in
[44].

Regarding the relation between UEP/MUEP and the
third scheme, our analysis reveals that each of the first two
schemes outperforms the third one in the limit as R → ∞,
when p is sufficiently small or L is sufficiently large, and
that the gain goes to ∞ as p → 0 while L is fixed, or
as L → ∞ while p is fixed. The third scenario may also
be superior to each of the other two in certain cases, for
instance, when L = 3, R = 1 and p ≤ 0.35. However,
we show that if the performance of scenario 3 as R → ∞
is higher than that of the other two schemes for some
p ∈ (0, 1

2 ], then this could happen only for a finite range
of values of L and with a gain in performance that remains
upper bounded by a constant.

Finally, the analytical comparison of the three scenarios
based on SRC with the MDLVQ framework and with
the MD scheme of [43] shows that the former three
schemes outperform the latter two when R → ∞ and p is
sufficiently small, and that the difference in performance
becomes unbounded as p approaches 0. This result could
be attributed to the fact that each of the former three
scenarios has L − 1 degrees of freedom, while each of
the latter two schemes has only one degree of freedom.
Additionally, we prove that for R → ∞ and p small
enough scenario 5 is always better than MDLVQ for all
L ≥ 4, conclusion which agrees with the numerical results
reported in [43] for L = 4 and R = 5.

The paper is structured as follows. The next section
describes in detail the three MD scenarios based on SRC.
Section III discusses the general formulation of the RD
optimization problem covering the first three scenarios and
its analytical solution given in terms of the lower convex
hull of the so-called alpha-beta curve associated to the
problem. The following section addresses the RD opti-
mization problem for the case of independent description
losses. The convexity properties of the alpha-beta curve
are investigated for each scheme. The results are used in
Section V, respectively VI, to compare the asymptotical
performance between the three scenarios, respectively ver-
sus MDLVQ and the scheme of [43]. Finally, Section VII
concludes the paper.

III. THE THREE MD SCENARIOS BASED ON SRC

In this section we describe the first three MD scenarios
analyzed in this work. We start by specifying the common
aspects of the three schemes and clarifying the notations.

We assume that a linear orthonormal transform was first
applied to the signal, for instance an orthonormal wavelet
transform in the case of images, with the purpose of
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decorrelating the signal3. Therefore, the signal distortion
equals the distortion of the transform coefficients. We con-
sider an SRC which operates on the transform coefficients
and denote by Do(R) the corresponding operational RD
function, where R is measured in bits per sample and the
distortion in squared difference per sample. In scenarios
2 and 3 the set of transform coefficients is divided into
subsets of equal size and the same SRC is separately
applied on each subset. We assume that the operational
RD function of the SRC on each subset coincides with
the operational RD function on the whole set4.

For all three scenarios the bitstream output by the SRC
is divided into L consecutive segments called layers. We
denote by Rk the rate of the prefix formed of the first k
layers, 1 ≤ k ≤ L, and by R the L-tuple (R1, · · · , RL).
By convention, R0 = 0. A distinctive feature of the SRC
is that if the decoder has all layers 1 through k, but
does not have layer k + 1, then the first k layers can be
decoded while any available layers beyond the (k + 1)-th
are useless.

Additionally, let Di(R, k) denote the average distortion
when only k descriptions are received in the case of
scenario i, i = 1, 2, 3, and rate L-tuple R, where the
average is computed assuming that each subset of k
descriptions is equally likely. Finally, Ri(R) denotes the
rate of a single description for scenario i and rate tuple
R.

A. Scenario 1 (UEP)

In scenario 1 the whole set of transform coefficients is
subjected to the SRC, and the output bitstream is divided
into L layers. Next, for each k, 1 ≤ k ≤ L, the k-th layer is
partitioned into groups of k consecutive symbols (a symbol
is a group of a fixed number of bits) which are further
encoded by a strict systematic (L, k) Reed Solomon (RS)
code. We use the term ”strict systematic code” in order to
enforce the fact that the information symbols are placed
at the beginning of the channel codeword. Such a code
ensures that the k information symbols can be recovered
from any k channel symbols available at the decoder. The
L descriptions are formed across the channel codewords,
such that for each j, the j-th description contains the j-th
symbol of each channel codeword. Figure 1(a) illustrates
this MD scheme for L = 3.

UEP ensures that when only k, 1 ≤ k < L, descriptions
are available at the decoder, the first k layers of the source
bitstream can be completely recovered. The missing source
symbols from layers k+1 to L will prevent the decoding of

3In the case of a memoryless source the transform is the identity
mapping.

4If the transform coefficients are the outputs of a memoryless source,
this assumption holds asymptotically as the number of samples goes to
infinity. However, in practical situations, encoding separately the subsets
might incur some loss in performance versus the case when they are
encoded together.

(a) (b)

Fig. 1. Illustration of UEP (a) and MUEP (b) schemes for L = 3.
Each column forms a description. The shaded rectangles represent source
symbols and the white rectangles redundancy symbols. The portion
marked as ”Layer i” represents the (3, i) RS codewords, i = 1, 2, 3.

any available symbols from these layers. Therefore, only
the first k layers can be decoded leading to D1(R, k) =
Do(Rk), for 1 ≤ k ≤ L. Additionally, note that R1(R) =∑L

i=1
Ri−Ri−1

i =
∑L−1

i=1
1

i(i+1)Ri +
RL

L .

B. Scenario 2 (MUEP)

In scenario 2 [39] the set of transform coefficients is
split into L subsets of equal size and each subset is sepa-
rately encoded using the SRC. This way L independently
decodable and progressively refinable source streams are
produced. Each such stream is divided into L layers, layer
k having bit rate Rk−Rk−1, 1 ≤ k ≤ L. Further, for each
k, the source symbols belonging to the k-th layer (from all
streams) are partitioned into groups of k, such that any two
symbols in a group come from different streams. An algo-
rithm to generate such a grouping is given in [39]5. Each
such group is encoded by an (L, k) permuted systematic
RS code. We use the term ”permuted systematic code”
in order to emphasize that the information symbols are
not necessarily placed at the beginning of the codeword,
but can be positioned anywhere in the codeword. More
specifically, the RS channel codeword encoding a group
of source symbols si1 , si2 , · · · sik , where sij belongs to
sub-stream ij , will have its ij-th channel symbol equal
to sij , 1 ≤ j ≤ k. The descriptions are next formed
across the channel codewords, such that for each ℓ, the
ℓ-th description contains the ℓ-th symbol of each channel
codeword, 1 ≤ ℓ ≤ L. Figure 1(b) depicts this MD
scenario for L = 3.

To summarize, each description i, 1 ≤ i ≤ L, contains
the source symbols of stream i from all L layers and some
additional RS redundancy symbols. When only k < L
descriptions are received at the decoder, the first k layers
from the missing descriptions will also be recovered. Then
the subsets encoded by the received descriptions will be

5This algorithm uses the assumption that the total number of source
symbols in layer k is a multiple of k.
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reconstructed with distortion Do(RL), while the subsets
encoded by the missing descriptions will be reconstructed
with distortion Do(Rk). In conclusion,

D2(R, k) =
L− k

L
Do(Rk) +

k

L
Do(RL), (1)

for all 1 ≤ k ≤ L. Finally, it is easy to see that R2(R) =
R1(R), while D2(R, k) ≤ D1(R, k) for all 1 ≤ k ≤ L,
with strict inequality if Do(Rk) > Do(RL).

C. Scenario 3

In scenario 3 [42] the set of transform coefficients is
partitioned into N = L! subsets P1, · · · ,PN , of equal
cardinality. Each subset is separately encoded using the
SRC and the output is divided into L layers such that the
bit rate of layer k to be Rk − Rk−1, 1 ≤ k ≤ L. To
each subset Pn a a permutation πn : {1, 2, · · · , L} →
{1, 2, · · · , L}, is assigned in an one-to-one manner. Then
description m is formed by concatenating the bitstream
of rate Rπn(m) encoding subset Pn, for all 1 ≤ n ≤ L!,
1 ≤ m ≤ L.

According to [42], one has

D3(R, k) =

L∑
j=k

N(k, j)

L!
Do(Rj), (2)

where

N(k, j) =

{
0, if 1 ≤ j < k

k(j−1)!(L−k)!
(j−k)! , if k ≤ j ≤ L

. (3)

Finally, R3(R) = 1
L

∑L
k=1 Rk.

D. Relation between scenario 3 and scenarios 1 and 2

It can be easily seen that the description rate and the
expected distortion are identical for scenarios 2 and 3 when
L = 2 or when L ≥ 3 and only layer L is nonempty, i.e.,
R1 = · · · = RL−1 = 0. On the other hand, the relation
between the performances of scenario 3 and the other two
for L ≥ 3 and general R is not trivial. In particular,
the fact that scenario 2 uses RS codes, while scenario 3
uses repetition codes, suggests that the second scenario
has better performance when the number k of received
descriptions is sufficiently high. A natural question is then:
can scenario 2 ever beat scenario 3? As we will see in
section VI the answer is positive. An example when this
happens is when L = 3, the rate of each description is 1,
and the probability of description loss is higher than 0.35.
We believe that this is due to the fact that scenario 3 may
exhibit an advantage over scenario 2 when the number of
received descriptions k is small. This possible advantage
may come from the fact that D3(R, k) is a weighted sum
of distortions Do(Rj) at all resolutions Rj higher than
Rk, rather than at only two resolutions Rk and RL as in
the case of scenario 2.

To be more specific, let R and R′ denote the L-tuple of
rates for scenario 2, respectively 3. Let us also assume that
R2(R) = R3(R

′) and that RL = R′
L so that D2(R, L) =

D3(R
′, L). Then one has

L−1∑
i=1

1

i(i+ 1)
Ri =

1

L

L−1∑
i=1

R′
i. (4)

Let k0 denote the integer such that k0(k0 + 1) ≤ L <
(k0 + 1)(k0 + 2). Then 1

i(i+1) >
1
L for 1 ≤ i < k0, while

1
i(i+1) <

1
L for k0+1 ≤ i ≤ L−1. These relations together

with (4) imply that there are tuples R and R′ such that
Ri > R′

i for k0 + 1 ≤ i ≤ L, and Ri < R′
i for 1 ≤

i < k0. The fact that the rates Ri for high resolutions are
larger for scenario 2 may lead to D2(R, k) < D3(R

′, k)
for large k. On the other hand, as k becomes smaller,
and, in particular, smaller than k0, the term L−k

L Do(Rk)
from the expression of D2(R, k) in (1) may become larger
than the sum

∑L−1
j=k

N(k,j)
L! Do(R

′
j) from the expression

of D3(R
′, k) from (2). Then there is the possibility that

D3(R
′, k) < D2(R, k).

IV. DERIVATION OF OPTIMAL EXPECTED DISTORTION
FOR SCENARIOS 1, 2 AND 3

This section addresses the problem of optimizing the
expected distortion for given channel loss statistics for sce-
narios 1-3. We will assume that the transform coefficients
can be modeled as the output of a memoryless source
with a smooth probability density function (pdf) ρ(x). We
will, further, assume that the SRC applied to the transform
coefficients is a successively refinable (or multiresolution)
scalar quantizer followed by an entropy coder applied to
each layer [5], [45]. Additionally, we will use the high
resolution quantization assumption in order to make the
analysis tractable. According to this assumption, since the
pdf is smooth, when the quantizer rate is sufficiently high
the pdf is approximately uniform over each quantization
bin. Based on this assumption it was shown in [46] that the
optimal entropy constrained single resolution scalar quan-
tizer at sufficiently high rate R, is a uniform quantizer with
step size δ(R) = 2h−R, where h = −

∫
R ρ(x) log2 ρ(x)dx,

and its distortion is approximately equal to 1
122

2(h−R). Let
us denote by Qu(R) this quantizer. Notice that, given an
increasing sequence of rates R1 ≤ R2 ≤ · · · ≤ RL, such
that 2Rk+1−Rk is an integer for every 1 ≤ k ≤ L− 1, the
encoder partitions of quantizers Qu(R1), · · · , Qu(RL) are
embedded, therefore these quantizers form a successively
refinable scalar quantizer. Based on the aforementioned
considerations we make the assumption that

Do(Rk) = τ2−2Rk , for 1 ≤ k ≤ L, where τ = 1
122

2h.

Additionally, for scenarios 2 and 3, which involve parti-
tioning of the set of transform coefficients into N subsets
P1, · · · ,PN , we assume the following simple partitioning
rule. For every i ≥ 1, the i-th transform coefficient is
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included in subset Pi(modN), where i(modN) denotes the
remainder of the integer division of i by N . Then, as
the number of samples grows to ∞, the operational RD
function of the SRC on each subset becomes identical to
Do(·), therefore we will assume their equality.

To measure the performance of each MD code we
employ the expected distortion of the source reconstruction
at the decoder conditioned on the fact that at least one
description is received6 and we will refer to this quantity
simply as the expected distortion in the sequel. Finally,
we will denote by U(k) the conditional probability that
only k descriptions are available at the decoder given
that at least one is received, for 1 ≤ k ≤ L. Then
the expected distortion for scenario i and rate tuple R
is EDi(R) =

∑L
k=1 U(k)Di(R, k), i = 1, 2, 3. The

associated optimization problem of minimizing EDi(R)
under the constraint Ri(R) ≤ R, for some fixed R > 0,
has the following general formulation covering all three
scenarios.
Problem P.

minimizeR τ
L∑

k=1

β(k)2−2Rk

subject to 0 ≤ R1 ≤ R2 ≤ · · · ≤ RL (5)
L∑

k=1

α(k)Rk = R,

where the coefficients α(k), β(k) are strictly positive for
all k, 1 ≤ k ≤ L.

For scenarios 1 and 2 one has α(k) = 1
k(k+1) , for 1 ≤

k ≤ L− 1, and α(L) = 1
L , while for scenario 3, one has

α(k) = 1
L for 1 ≤ k ≤ L. Furthermore, β(k) = U(k)

for scenario 1, β(k) = V (k) for scenario 2 and β(k) =
W (k) for scenario 3, for all 1 ≤ k ≤ L, where V (k) ,
U(k)L−k

L , for 1 ≤ k ≤ L−1, V (L) ,
∑L

k=1
k
LU(k), and

W (j) , 1
L!

∑j
k=1 N(k, j)U(k), for 1 ≤ j ≤ L. We will

refer to Problem P specialized to scenario i as problem
P(i).

We would like to mention that in practical situations the
RD optimization problem of interest additionally contains
combinatorial constraints since the symbols used in the
MD scheme cannot be broken down into fractional por-
tions. The problem of RD optimization for scenario 1 (in-
cluding combinatorial constraints) was considered in prior
work [24]–[26], [32]–[37], mostly assuming a general
function Do(R). A globally optimal solution algorithm
for the most general formulation is given in [32] and a
significantly faster solution in [34]. The remaining works
mainly use the convexity assumption of the RD curve to
obtain efficient globally optimal [33], [34], [37], or sub-
optimal solution algorithms. For the latter case, some of

6We use this conditional expected distortion instead of the expected
distortion over all possibilities, in order to simplify the performance
analysis.

these works use the continuous relaxation of the problem
by removing the combinatorial constraints [24], [25], [36].

In this work we discard the combinatorial constraints
and assume that each Rk may take any positive value.
The special form of the operational RD function along
with the specifics of the packet loss scenario considered
will allow us to derive the analytic problem solution for
certain cases, which is one of the contributions of this
work. Our approach to solve problem P is inspired by [25],
which relies on converting the problem into a simpler one
without the constraints (5).

The crucial step for simplifying the problem is the
construction of the lower convex hull of the alpha-beta
curve which we define next. Consider the set P of planar
points Pk, 0 ≤ k ≤ L, with coordinates (xk, yk), where
x0 = y0 = 0, xk = xk−1 + α(k), and yk = yk−1 + β(k)
for 1 ≤ k ≤ L. The alpha-beta curve associated to
problem P is define as the union of line segments Pk−1Pk

for 1 ≤ k ≤ L. We are particularly interested in the
lower convex hull of this curve. Therefore, let Pji with
0 ≤ i ≤ M ≤ L, and 0 = j0 < j1 < j2 < · · · < jM = L,
be the extreme points of the set P situated on its lower
convex hull. In other words, the lower convex hull of the
alpha-beta curve consists of the union of line segments
Pji−1Pji for 1 ≤ i ≤ M .

Now consider the following simpler problem derived
from problem P. We will refer to it as problem DP, and
we will use the notation DP(i) for its specialization to
scenario i.
Problem DP.

minimizeR′ τ
M∑
k=1

β′(k)2−2R′
k

subject to R′
k ≥ 0, 1 ≤ k ≤ M
M∑
k=1

α′(k)R′
k = R,

where

α′(k) =

jk∑
i=jk−1+1

α(i), β′(k) =

jk∑
i=jk−1+1

β(i),

for 1 ≤ k ≤ M , and R′ = (R′
1, · · · , R′

M ). Notice that the
alpha-beta curve associated to problem DP is actually the
lower convex hull of the alpha-beta curve of problem P,
therefore it is convex, i.e.,

β′(k)

α′(k)
≤ β′(k + 1)

α′(k + 1)
, 1 ≤ k ≤ M − 1. (6)

The following result, which follows directly from [25], es-
tablishes the connection between the solutions of problems
P and DP.

Proposition 1. Let R′
opt = (R′

k,opt)1≤k≤M denote an
optimal solution to problem DP. Then an optimal solution
Ropt = (Ri,opt)1≤i≤L to problem P can be obtained as
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follows

Rjk−1+1,opt = Rjk−1+2,opt = · · · = Rjk,opt = R′
k,opt.

for 1 ≤ k ≤ M . Furthermore, Problems P and DP have
the same value of the objective function at optimality.

In order to present the solution to problem DP we need
the following notations

S(j) ,
M∑
k=j

α′(k),

R(j) , 1

2

M∑
k=j+1

S(k) log2
β′(k)α′(k − 1)

α′(k)β′(k − 1)
, (7)

for any j, 1 ≤ j ≤ M , with the convention that∑a
k=b γ(k) = 0, for any b > a and γ(k). We also make

the convention that S(M + 1) = 0 and R(0) = ∞. As
we will see shortly, the values R(j) are thresholds for the
parameter R in problem DP, which determine the form
of the solution. Notice that R(M) = 0. Therefore, the
inequalities R(M) ≤ R < R(0) are always satisfied.
Furthermore, (6) implies that R(j) ≤ R(j − 1) for
2 ≤ j ≤ M . Finally, the next result, whose proof is
deferred to Appendix A, presents an explicit expression
of the solution of problem DP.

Proposition 2. Consider problem DP and let k0 be the
unique integer in the set {1, 2, · · · ,M}, satisfying

R(k0) ≤ R < R(k0 − 1).

Then the unique solution of problem DP is

R′
k,opt ={

0, 1 ≤ k ≤ k0 − 1
R−R(k0)
S(k0)

+ 1
2 log2

β′(k)α′(k0)
α′(k)β′(k0)

, k0 ≤ k ≤ M
,

(8)

and the minimum value of the objective function is

τ

(
k0−1∑
k=1

β′(k) + S(k0)
β′(k0)

α′(k0)
2

−2(R−R(k0))

S(k0)

)
. (9)

V. OPTIMAL EXPECTED DISTORTION FOR SCENARIOS
1, 2 AND 3 UNDER INDEPENDENT DESCRIPTION

LOSSES

In this section we address the RD optimization problem
for scenarios 1-3 assuming that the description losses are
independent. Clearly, the value of the optimal expected
distortion can be found by applying Proposition 2 once the
convex hull of the alpha-beta curve is computed for each
problem P(i), i = 1, 2, 3. In this section we investigate
the convexity properties of the alpha-beta curve for each
scenario. In particular, we determine when the alpha-beta
curve is convex and for the case when it is not convex we
reveal properties of the curve which allow for a simple

computation of the convex hull. The proofs of the results
are deferred to Appendix B.

Let us denote by p, 0 < p ≤ 1
2 , the probability that a

description is lost. Then for 1 ≤ k ≤ L, one has

U(k) =
1

1− pL

(
L

k

)
(1− p)kp(L−k). (10)

Proposition 3. Consider Problem P(1) with coefficients
satisfying (10), where 0 < p ≤ 1

2 and L ≥ 2. Then the
lower convex hull of the alpha-beta curve consists of the
segment lines PkPk+1, 0 ≤ k ≤ S−2 and PS−1PL where
S is the smallest integer from the set {1, 2, · · · , L} such
that

SU(S) >
L∑

k=S+1

U(k). (11)

Additionally, for problem DP(1) one has M = S and, for
1 ≤ j ≤ S − 1,

R(j) =
( S−1∑

k=j+1

1

2k

)
log2

1− p

p
+

1

2S
log2

∑L
k=S U(k)

(S − 1)U(S − 1)
+

S−1∑
k=j+1

1

2k
log2

(L− k + 1)(k + 1)

(k − 1)k
. (12)

Furthermore, the alpha-beta curve of problem P(1) is
convex, and hence S = L, if and only if p ≤ 1

L2−L+1 .

Let us turn our attention now to Scenario 2. Then
V (k) = 1

1−pL

(
L−1
k

)
(1 − p)kp(L−k) for 1 ≤ k ≤ L − 1,

and V (L) = 1−p
1−pL .

Proposition 4. Consider Problem P(2) when relations (10)
are satisfied, with 0 < p ≤ 1

2 and L ≥ 2. Then the alpha-
beta curve is convex if and only if p ≤ L

L2−2L+2 . In this
case one has M = L in problem DP(2) and, for 1 ≤ j ≤
L− 1,

R(j) =
( L∑

k=j+1

1

2k

)
log2

1− p

p
+

1

2L
log2

1

(L− 1)(1− p)L−1
+

L−1∑
k=j+1

1

2k
log2

(L− k)(k + 1)

(k − 1)k
. (13)

Additionally, when the alpha-beta curve is not convex its
lower convex hull consists of the segment lines PkPk+1,
for 0 ≤ k ≤ T − 2, PT−1PL−1 and PL−1PL,where T is
the smallest integer from the set {1, 2, · · · , L − 2} such
that

T (L− T − 1)

L
V (T ) >

L−1∑
k=T+1

V (k). (14)
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Now let us discuss Scenario 3. Using (10) and (3) one
obtains

W (j) =
1

L!

j∑
k=1

N(k, j)U(k)

=
(1− p)pL−j

1− pL

j∑
k=1

(
j − 1

k − 1

)
(1− p)k−1pj−1−(k−1)

=
(1− p)pL−j

1− pL
.

It follows that β(j)
α(j) = L(1−p)pL−j

1−pL and clearly β(j)
α(j) ≤

β(j+1)
α(j+1) , for 1 ≤ j ≤ L − 1, when 0 < p < 1 and L ≥ 2.
This result implies the convexity of the alpha-beta curve
of Problem P(3). Further, for problem DP(3), R(j) has a
simple form. These observations are stated in the following
result, whose proof is immediate.

Proposition 5. Assume that 0 < p < 1, L ≥ 2 and that
(10) is satisfied. Then the alpha-beta curve of Problem
P(3) is convex. Thus, one has M = L in problem DP(3),
and, for 1 ≤ j ≤ L− 1,

R(j) =
(L− j)(L− j + 1)

4L
log2

1

p
.

VI. ASYMPTOTICAL ANALYSIS OF PERFORMANCE OF
SCENARIOS 1, 2 AND 3

In this section we will use the results from Sections IV
and V to compare the expected distortions in scenarios
1,2,3 under asymptotical conditions. We will use the
notation Di(L,R, p) for the optimal expected distortion
for scenario i = 1, 2, 3, as a function of L,R and p,
assuming an independent description loss framework. For
each 1 ≤ i ̸= j ≤ 3, we will denote ∆i/j(L,R, p) =

10 log10
Dj(L,R,p)
Di(L,R,p) . Furthermore, Ri(L, p, j) will denote

the value of R(j) for problem DP(i), i = 1, 2, 3, as a
function of L and p and j.

Using Propositions 3-5 it can be easily established that
for all L ≥ 2 and i = 1, 2, 3, one has limp→0 Ri(L, p, L−
1) = ∞, while Ri(L, p, L) = 0. It follows that for fixed
R > 0 and L ≥ 2, as p becomes sufficiently small relations
Ri(L, p, L) < R < Ri(L, p, L − 1) are satisfied for all
i = 1, 2, 3, and, consequently, only the L-th layer is non-
empty in the optimal rate allocation. More precisely, the
inequality R < Ri(L, p, L − 1) holds for all i = 1, 2, 3,
when 0 < p < 1

L(L−1)22LR+1
. The relation between the

performances of the three schemes for this range of p
values is spelled out by the following result, following
directly from Propositions 2-5.

Corollary 1. For every L ≥ 2, R > 0 and 0 < p <
1

L(L−1)22LR+1
, one has

D1(L,R, p) = τ
(
1− pL − (1− p)L

1− pL
(1− 2−2RL)

)
,

D2(L,R, p) = D3(L,R, p) = τ
(
1− 1− p

1− pL
(1− 2−2RL)

)
.

This further implies that

lim
p→0

Di(L,R, p) = τ2−2RL, i = 1, 2, 3.

Remark 1. The above result confirms the expectation that
for fixed R and L, as p approaches 0, the redundancy in
the system approaches 0 for all three scenarios and their
performance becomes identical.

Next we analyze the performance of the three schemes
as R → ∞. The next corollary will be useful in the
analysis.

Corollary 2. For i = 1, 2, 3, L ≥ 2, R > Ri(L, p, 1) and
either a) 0 < p ≤ 1

2 if (i, L) ̸= (1, 2) or b) 0 < p ≤ 1
3 if

(i, L) = (1, 2), one has

Di(L,R, p) = τ
β(1)

α(1)
2−2(R−Ri(L,p,1)).

Additionally, for 0 < p ≤ 1
2 , j = 1, 3 and L ≥ 3, the

following holds

lim
R→∞

∆2/j(L,R, p) =

10

ln 10

(
a(j) + 2(Rj(L, p, 1)−R2(L, p, 1)) ln 2

)
. (15)

where a(1) = ln L
L−1 and a(3) = ln L

2(L−1) .

Proof. We only need to prove that β′(1)
α′(1) = β(1)

α(1) for i =
1, 2, and the conclusion follows according to Propositions
1, 2 and 5. For this we will show that S > 1 and T > 1.
It can be easily seen that U(1) ≤ U(2) and L−2

L V (1) ≤
V (2), which yield S > 1, respectively, T > 1. �

The following proposition, proved in Appendix C, quan-
tifies the gain of MUEP versus UEP.

Proposition 6. For L ≥ 3 denote

A(L) =
L−1∑
k=1

1

k
ln

L− k + 1

L− k
− lnL

L
.

Then the following statements hold.

6.a) For 0 < p ≤ 1
L2−L+1 and L ≥ 3, one has

lim
R→∞

∆2/1(L,R, p) =

10

ln 10

(
A(L) +

L− 1

L
ln(1− p)

)
. (16)

6.b) For L ≥ 3, the following relations hold

lim
p→0

lim
R→∞

∆2/1(L,R, p) =
10

ln 10
A(L), (17)

lim
L→∞

limp→0 limR→∞ ∆2/1(L,R, p)
lnL
L

= 1. (18)

6.c) There is some constant c > 0 such that
limR→∞ ∆2/1(L,R, p) ≤ c for all L ≥ 2 and
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0 < p ≤ 1
2 .
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Fig. 2. Asymptotical gain in performance of MUEP versus UEP as
R → ∞, for 3 ≤ L ≤ 10 and 0.005 ≤ p ≤ 0.1.

Remark 2. While (17) gives the exact expression of
limp→0 limR→∞ ∆2/1(L,R, p), relation (18) provides a
simpler approximation of this quantity as L → ∞. An
immediate consequence is that

lim
L→∞

lim
p→0

lim
R→∞

∆2/1(L,R, p) = 0.

Figure 2 plots the value of limR→∞ ∆2/1(L,R, p) for
p ∈ [0.005, 0.1], and 2 ≤ L ≤ 10, according to Propo-
sitions 1-4. We see that the highest improvement is 1.68
dB, achieved for L = 3 and p approaching 0, while the
lowest is 0.93 dB, achieved when L = 10 and p = 0.1.
We would like, however, to emphasize that the application
of these results to practical situations has to be done with
caution because they rely on a strong assumption which
may be difficult to satisfy in practice. In particular, it is
assumed that the operational RD function of the SRC for
each of the L subsets of transform coefficients of scenario
2, coincides with the operational RD function of the whole
set, assumption which holds when the size of each subset
is large enough. In practical situations the total number
of samples is limited and, as L grows, the size of each
subset decreases and the assumption becomes inaccurate.
The analysis of the impact of such inaccuracies on the
relation between scenarios 1 and 2 will be addressed in
our future work.

Let us compare now scenarios 2 and 3. From the
description of the two schemes it is clear that they have
identical performance for L = 2. However, it is not clear
how they compare when L ≥ 3. Figure 3 plots the value of
∆2/3(L,R, p) for L = 3 and R = 1 obtained by applying
Propositions 1,2, 4 and 5. The figure shows that scenario 2
is better for smaller values of p, but it is worse for larger
p. On the other hand, the improvement achieved in the
former case highly offsets the loss obtained in the latter
case. The two schemes also have identical performance

for values of p very close to 0. This corresponds to the
case identified in Corollary 1 when only the last layer is
nonempty. The following proposition, proved in Appendix
C, clarifies the relation for general L as R → ∞.
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Fig. 3. Value of ∆i/j(L,R, p) (denoted ”gapij” in the legend) versus
p, for L = 3, and R = 1, (i, j) = (2, 1), (2, 3), (3, 1).

Proposition 7. For any integer L ≥ 3 denote

H(L) =

L∑
k=1

1

k
,

ω(L) =
L−1∑
k=2

1

k
ln

(L− k)(k + 1)

(k − 1)k
+

L− 1

L
ln(L− 1)− ln

L

2
.

7.a) For all L ≥ 3 and 0 < p ≤ L
L2−2L+2 , one has

lim
R→∞

∆2/3(L,R, p) =

10

ln 10

((
H(L)− 2 +

1

L

)
ln

1

1− p
+

(L+ 1

2
−H(L)

)
ln

1

p
− ω(L)

)
. (19)

Furthermore, for any L ≥ 3, one has

lim
p→0

lim
R→∞

∆2/3(L,R, p) = ∞. (20)

7.b) For any L ≥ 3 and 0 < p ≤ 1
2 , the following

inequality is valid

lim
R→∞

∆2/3(L,R, p) ≥ 10

ln 10
σ(L), (21)

where

σ(L) ,
(L− 1

2
− L− 1

k1 + 1

)
ln 2 + ln

L

2(L− 1)
+

1

k1 + 1
ln

k1
(
L−1
k1

)
2

−
k1∑
k=2

1

k
ln

(L− k)(k + 1)

(k − 1)k
,
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and k1 = 1 if L = 3, and k1 = ⌊L
4 ⌋ otherwise.

Additionally, for all 0 < p ≤ 1
2 , we have

lim
L→∞

lim
R→∞

∆2/3(L,R, p) = ∞. (22)

7.c) There is some L0 > 3 such that for all L ≥ L0

and 0 < p ≤ 1
2 , one has limR→∞ ∆2/3(L,R, p) >

0. Moreover, there is some c0 > 0 such that
limR→∞ ∆3/2(L,R, p) ≤ c0 for all L ≥ 3 and
0 < p ≤ 1

2 .

Remark 3. a) It is worth discussing relation (20) in
contrast to the result of Corollary 1. Relation (20)
says that for every integer N > 0, there is some 0 <
ϵ(N) ≤ 1

2 , such that ∆2/3(R,L, p) > N for all 0 <
p < ϵ(N) and R > max{R2(L, p, 1), R3(L, p, 1)}.
This statement does not contradict the conclusion of
Corollary 1 that ∆2/3(R,L, p) = 0 when 0 < p <

1
L(L−1)22LR+1

because no matter how small p is, the
fact that R > max{R2(L, p, 1), R3(L, p, 1)} implies
that p > 1

L(L−1)22LR+1
.

b) Proposition 7 states that in the limit of R → ∞,
MUEP has superior performance than scenario 3
when p is sufficiently small or if L is sufficiently
large. Additionally, the gain of MUEP versus scenario
3 becomes unbounded for fixed L as p goes to 0,
or if p is fixed and L goes to ∞. In order to
illustrate how big the gap can be we plot in Fig. 4
the value of limR→∞ ∆2/3(L,R, p) as given in (19)
for p ∈ [0.005, 0.1] and 3 ≤ L ≤ 10.

c) It can be shown analytically that the looser lower
bound which is developed for σ(L) in the proof of
Proposition 7 is positive for all L ≥ 64. Further
numerical evaluation of σ(L) using MATLAB shows
that σ(L) < 0 for 3 ≤ L ≤ 6 and σ(L) > 0
for 7 ≤ L ≤ 63. It follows that L0 ≤ 7 and
c0 ≤ max3≤L≤6(− 10

ln 10σ(L)) ≈ 1.25. We conclude
that as R → ∞, it could be possible for scenario 3
to outperform MUEP for some p ∈ (0, 1/2], only if
3 ≤ L ≤ 6, and if this happens then the gain is no
larger than 1.25 dB.

The next result, which establishes the relation between
UEP and scenario 3, follows easily from Propositions 6
and 7.

Corollary 3. For any L ≥ 3, one has

lim
p→0

lim
R→∞

∆1/3(L,R, p) = lim
L→∞

lim
R→∞

∆1/3(L,R, p) = ∞.

Furthermore, there is some L1 > 3 such that for all L ≥
L1 and 0 < p ≤ 1

2 , relation limR→∞ ∆1/3(L,R, p) >
0 holds, and there is some c1 > 0 such that
limR→∞ ∆3/1(L,R, p) ≤ c1 for all L ≥ 3 and 0 < p ≤
1
2 .
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Fig. 4. Asymptotical improvement in performance of scenario 2 versus
3 as R → ∞ for 3 ≤ L ≤ 10 and 0.005 ≤ p ≤ 0.1.

VII. ASYMPTOTICAL COMPARISON BETWEEN
SCENARIOS 1, 2, 3 AND 4, 5

The aim of this section is to compare the asymptotical
performance of the three MD schemes based on SRC
with MDLVQ and the framework of [43]. For the latter
two frameworks the high rate analysis of performance
is available and the problem of computing the optimal
expected distortion when the description losses are inde-
pendent was also addressed in previous work. However, in
the case of MDLVQ an essential constraint was omitted
from the formulation of the optimization problem, namely
the condition that the entropy of the central quantizer
cannot exceed RL. On the other hand, in the case of
[43], the explicit expression of the optimal distortion is
not given. Therefore, for both scenarios 4 and 5 we first
derive the optimal expected distortion relying on the high
rate analysis from prior work.

A. MDLVQ

The existing MDLVQ framework for L ≥ 3 was
introduced in [18] and further investigated in [19]–[21].
The high-rate analysis of performance was carried on in
[18] and further refined in [19], [21]. Here we will use the
derivation provided in [21], which is more concise in our
opinion.

Consider an MDLVQ consisting of a lattice vector
quantizer of dimension n ≥ 1, with a lattice codebook
Λc ⊆ Rn, and an index assignment which maps each
central lattice point λc to an L-tuple of points from a
sublattice Λs of Λc. Let K denote the index of Λs with
respect to Λc and let ν denote the volume of the funda-
mental region of Λc. We will assume that the MDLVQ
is applied to the transform coefficients as in scenarios
1-3. The same assumption as in Section IV holds for
the random variable modelling the transform coefficients.
Assuming that the rate R of one description grows to ∞,



11

the following relation holds [21, Eq.(44)]

(Kν)
2
n = 22(h−R), (23)

where h is as defined in Section IV. Let D4(k,K, ν)
denote the average distortion when k descriptions are
received. Let us denote by G(Λc) the normalized second
moment of the central lattice, and by G(St) the normalized
second moment of a sphere in Rt. According to [21], when
R and K approach ∞, one has

D4(L,K, ν) = G(Λc)2
2(h−R)K− 2

n ,

D4(k,K, ν) = D4(L,K, ν) + 22(h−R)
(G(Sn)

L2
+

L− k

k
L− L

L−1G(SLn−n)K
2

(L−1)n

)
,

for 1 ≤ k ≤ L − 1. We mention that the latter relation
follows from [21, Eq.(50),(58),(59)] and (23).

By minimizing the expected distortion (conditioned on
one description being received) for fixed R, subject to the
condition that the entropy of the central quantizer does not
exceed RL, one obtains the optimal value of K as

Kopt = min

(
2n(L−1)R,

(
G(Λc)L

L
L−1 (L− 1)

pz(p)G(SLn−n)

)n(L−1)
2L

)
,

where z(p) , 1
1−pL

∑L−1
k=1

(
L
k

)
(1− p)kpL−1−k L−k

k . Let

R4(L, p) ,
1

2L
log2

G(Λc)L
L

L−1 (L− 1)

pz(p)G(SLn−n)
.

Then the optimal expected distortion for scenario 4 is

D4(L,R, p) = 22h
(
G(Λc)2

−2LR + py(p)
G(Sn)

L2
2−2R+

pz(p)G(SLn−n)L
−L−1

L

)
, if R < R4(L, p),

D4(L,R, p) = 22(h−R)p
L−1
L

(
p

1
L y(p)

G(Sn)

L2
+

G(Λc)
1
L

(z(p)G(SLn−n)

L− 1

)L−1
L

)
if R ≥ R4(L, p),

(24)

where y(p) , 1
1−pL

∑L−1
k=1

(
L
k

)
(1 − p)kpL−1−k. Notice

that

lim
p→0

D4(L,R, p) = 22hG(Λc)2
−2LR. (25)

B. Scenario 5

Scenario 5 [43] is an improvement upon [40], which
uses staggered scalar quantizers instead of repetition
codes. We will assume that the same transform as in
scenarios 1-3 is first used to decorrelate the signal, and that
the version of the MD scheme developed in [43] for mem-
oryless sources is applied to the transform coefficients.

According to [43], under the high resolution assumption,
the expected distortion of this scheme (conditioned on at
least one description being received) is

τ
(pγ(p)

L
2−2R1 +

µ(p)

L
2−2R2

)
,

where

γ(p) , L(1− p)

(1− pL)

(
pL−2(L− 1)+

L−1∑
k=2

(1− p)k−1pL−1−k

(L− 1)2

L−k∑
ℓ=1

(
L− 2− ℓ

k − 2

)
ℓ3

)
,

and µ(p) , L(1−p)
1−pL . Recall that τ = 1

122
2h. We mention

that the rates R1 and R2 satisfy the conditions 0 ≤
R1 ≤ R2 and (L− 1)R1 + R2 = LR. Then the problem
of minimizing the expected distortion has the form of
problem P with L = 2. It is easy to verify that when
0 < p ≤ 1

2 the alpha-beta curve of the problem is convex.
Thus, by applying Propositions 1 and 2 one obtains the
optimal expected distortion as

D5(R,L, p) = τ
(pγ(p)

L
+

1− p

1− pL
2−2RL

)
,

if R < R5(L, p),

D5(R,L, p) = τ
(pγ(p)
L− 1

)L−1
L

µ(p)
1
L 2−2R, (26)

if R ≥ R5(L, p), (27)

where

R5(L, p) ,
1

2L
log2

µ(p)(L− 1)

pγ(p)
.

Further, notice that

lim
p→0

D5(R,L, p) = τ2−2RL. (28)

C. Comparison between Scenarios 1,2,3 and 4,5
We will extend the notation ∆i/j(R,L, p) to include

scenarios 4 and 5 as well, i.e., for 1 ≤ i, j ≤ 5. The results
of the asymptotical comparison of the MD schemes based
on SRC with scenarios 4 and 5 are summarized next.

Proposition 8. Let L ≥ 3.
8.a) For any R > 0 and i = 1, 2, 3, the following hold:

lim
p→0

∆5/i(R,L, p) = 0,

lim
p→0

∆4/i(R,L, p) = 10 log10
1

12G(Λc)
.

8.b) Additionally, one has

lim
p→0

lim
R→∞

∆5/4(R,L, p) =

10 log10

12G(Λc)
1
L

(
(L− 1)G(SLn−n)

)L−1
L

L
1
L

, (29)
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which further implies that

10
(
log10(L− 1)

L−3
L − log10

2πe

12

)
<

lim
p→0

lim
R→∞

∆5/4(R,L, p) < 10 log10 L
L−2
L , (30)

and

lim
p→0

lim
R→∞

∆5/4(R,L, p) > 0 for all L ≥ 4. (31)

Furthermore,

lim
p→0

lim
R→∞

∆i/j(R,L, p) = ∞, i = 1, 2, 3, j = 4, 5.

(32)

Remark 4. a) For L ≥ 3 and fixed R, as p approaches
0, the MDLVQ with n ≥ 2 has a slight advantage
over the other four schemes (because G(Λc) ≤ 1

12 ),
which is solely due to the use of vector quantization
over scalar quantization. On the other hand, as
R → ∞, both scenarios 4 and 5 are highly inferior
to any of the first three scenarios, for p sufficiently
small. This result is not surprising since the latter
three schemes have more degrees of freedom than the
former two (L− 1 versus 1).

b) We point out that relation (31) is in agreement with
the numerical results reported in [43, Fig. 8(b)] for a
unit variance Gaussian source, which show that for
L = 4 and R = 5 scenario 5 strictly outperforms
scenario 4 in terms of expected distortion for all 0 <
p < 1

10 .

Proof of Proposition 8: Claim 8.a) follows from
relations (25), (28) and Corollary 1. To prove 8.b) notice
first that for fixed L and p, 0 < p ≤ 1

2 , relations (24) and
(27) hold as R → ∞. Therefore, one has

lim
R→∞

10 log10
D4(R,L, p)

D5(R,L, p)
= 10 log10

12B(p)(
γ(p)
L−1

)L−1
L

µ(p)
1
L

,

where B(p) denotes the expression enclosed in paren-
theses in (24). Computing further the limit as p → 0
relation (29) follows. Applying further the inequalities
1
12 ≥ G(Λc) and 1

12 > G(SLn−n), relation (30) follows,
which in turn, implies (31).

For 0 < p ≤ 1
2 and R ≥ R3(L, p, 1), one has

D3(R,L, p) = τ2−2RL 1−p
1−pL p

L−1
2 . Using further (27),

one gets

lim
R→∞

D5(R,L, p)

D3(R,L, p)
= p−

(L−1)(L−2)
2L

( γ(p)

(L− 1)µ(p)

)L−1
L

.

For L ≥ 3, one has limp→0 p
− (L−1)(L−2)

2L = ∞, while
limp→0

γ(p)
µ(p) > 0. Thus, (32) holds for i = 3 and j = 5.

The validity of (32) for the other values of i and j follows
using (20), (29), and Corollary 3.

VIII. CONCLUSION

This work compares analytically five representative MD
scenarios for practical L ≥ 3 symmetric descriptions.
The first scenario is the PET or UEP scheme, which
uses unequal erasure protection via Reed Solomon codes.
The second scenario, also known as MUEP, is a recently
proposed improvement to the UEP scheme, which uses
domain partitioning into L subsets and applies the SRC
code to each subset. Additionally, the FEC is applied
using permuted RS codes. The third scheme partitions the
domain into L! subsets and applies the FEC via repetition
codes of various lengths. The existing framework for MD
lattice vector quantization and another recently proposed
MD scheme are also included in the comparison.

The comparison is performed in terms of the minimum
squared error achieved given a constraint on the rate, under
the independent description loss assumption. Our analysis
shows that in the limit of R → ∞ and p → 0 the
gain of the second scenario upon the first one is bounded
reaching up to 1.68 dB, and it gradually approaches
0 as L → ∞. Additionally, we prove that UEP and
MUEP always outperform scenario 3 as R → ∞ if L
is sufficiently large or if p is sufficiently low, and that the
difference in performance is unbounded as L → ∞ or as
p → 0. Further, our analysis reveals that the first three
scenarios are superior to the other two as R → ∞ with
gains which become unbounded as p → 0.

On the other hand, we would like to acknowledge that
for these results to be useful when designing practical
systems, an extensive experimental validations is needed,
which is deferred to future work.

APPENDIX A
PROOF OF PROPOSITION 2

Proof of Proposition 2: The Lagrangian associated
to problem DP is

J(R′
1, · · · , R′

M , λ1, · · ·λM , ν) =

σ2
M∑
k=1

β′(k)2−2R′
k −

M∑
k=1

λkR
′
k + ν(

M∑
k=1

α′(k)R′
k −R).

Because the problem is convex, the KKT conditions, which
are given below, are necessary and sufficient for optimality.

λk ≥ 0, 1 ≤ k ≤ M, (33)
R′

k,opt ≥ 0, 1 ≤ k ≤ M, (34)

λkR
′
k,opt = 0, 1 ≤ k ≤ M, (35)

M∑
k=1

α′(k)R′
k,opt = R, (36)

− 2τβ′(k)2−2R′
k,opt ln 2− λk + να′(k) = 0, 1 ≤ k ≤ M.

(37)

Note that (37) and (33) imply that

λk = −2τβ′(k)2−2R′
k,opt ln 2 + α′(k)ν ≥ 0,
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which further leads to

R′
k,opt ≥

1

2
log2

2τ(ln 2)β′(k)

να′(k)
,

which is satisfied with equality if and only if λk = 0.
Corroborating with (34) and the fact that at least one of
R′

k,opt and λk must equal 0 by (35), it follows that

R′
k,opt = max

{
0,

1

2
log2

2τ(ln 2)β′(k)

να′(k)
}.

Now let us define an integer n0 as follows. If there is some
k ∈ {2, · · · ,M} such that

log2
2τ(ln 2)β′(k)

α′(k)
≥ log2 ν > log2

2τ(ln 2)β′(k − 1)

να′(k − 1)
,

(38)

then n0 , k. Notice that if such a k exists then it is unique
by (6). If such a k does not exist, but the first inequality
in (38) holds for k = 1 then n0 , 1. Finally, if the second
inequality in (38) holds for k = M +1 then n0 , M +1.
It further follows that

R′
k,opt =

{
0, 1 ≤ k ≤ n0 − 1

1
2 log2

2τ(ln 2)β′(k)
να′(k) , n0 ≤ k ≤ M

.

(39)

Substituting (39) in (36) and solving for ν leads to n0 <
M + 1 (since R > 0) and

log2 ν = log2(2τ ln 2)−
2R

S(n0)
+

1

S(n0)

M∑
k=n0

α′(k) log2
β′(k)

α′(k)
. (40)

Using (7) it can be shown that
M∑

k=n0

α′(k) log2
β′(k)

α′(k)
= S(n0) log2

β′(n0)

α′(n0)
+ 2R(n0).

Substituting the above in (40) leads to

log2 ν =
2(R(n0)−R)

S(n0)
+ log2

2τ(ln 2)β′(n0)

α′(n0)
. (41)

Replacing log2 ν from the above equality in (38) when n0

equals k satisfying (38), leads after some algebra to

R(n0) ≤ R < R(n0 − 1).

The above relation also follows when n0 = 1. Thus,
it follows that n0 equals the integer k0 defined in the
statement of Proposition 2. Using this observation and
replacing (41) in (39), relation (8) follows. Relation (9)
is further obtained by replacing R′

k,opt from (8) in the
objective function.

APPENDIX B
PROOF OF RESULTS OF SECTION V

Proof of Proposition 3: The case L = 2 is straight-
forward. Assume now that L ≥ 3. Let 0 ≤ k ≤ L − 3
and let us analyze when the inequality slope(PkPk+1) ≤
slope(Pk+1Pk+2) holds. This inequality is equivalent to
(k+1)(k+2)U(k+1) ≤ (k+2)(k+3)U(k+2), which,
by (10), after straightforward algebraic manipulations,
becomes equivalent to fL(k) ≤ 0, where

fL(k) , k2 + k
(
4− p− (1− p)L

)
+ 3− p− 3(1− p)L.

(42)

Recall that 0 < p ≤ 1/2. Then it can be easily shown
that fL((1 − p)L − 1) < 0, fL((1 − p)(L − 1)) > 0 and
fL(0) < 0. Using further the facts that fL(k) is convex and
that (1−p)L−1 > 0, it follows that there is a real value x0

such that (1−p)L−1 < x0 < (1−p)(L−1), fL(x0) = 0,
and fL(k) ≤ 0 for all integers k ∈ {0, · · · , ⌊x0⌋}, while
fL(k) > 0 for all integers k ∈ {⌊x0⌋+1, · · · , L−3}. This
further implies that the portion of the alpha-beta curve
between the points P0 and Pmin{L−1,⌊x0⌋+2} is convex,
while the remaining portion up to PL−1 (if non empty) is
concave.

By using straightforward algebra it can be shown that re-
lation slope(PL−2PL−1) ≤ slope(PL−1PL) is equivalent
to p ≤ 1

L2−L+1 . Additionally, notice that 1
L2−L+1 ≤ 1

L ,
while the inequality p ≤ 1

L implies that (1 − p)L − 1 ≥
L−2, and further that x0 > L−2. We conclude that when
p ≤ 1

L2−L+1 the alpha-beta curve is convex.
On the other hand, when p > 1

L2−L+1 the alpha-beta
curve is non convex since at least PL−1 is not on its lower
convex hull. However, the portion of the curve between
the points P0 and Pmin{L−1,⌊x0⌋+2} is convex, while the
remaining portion is concave.

Notice now that for S < L relation (11) is equivalent
to

slope(PS−1PS) > slope(PS−1PL). (43)

Thus, the smallest integer S ∈ {1, · · · , L − 1}
satisfying (11), assuming that such an integer
exists, obeys the conditions slope(PS−1PS) >
slope(PS−1PL) ≥ slope(PS−2PS−1), where, by
convention, slope(P−1P0) = 0. Then, according to the
properties of the alpha-beta curve highlighted above,
it follows that its lower convex hull satisfies the claim
made in Proposition 3. On the other hand, when (43) is
violated for all 1 ≤ S ≤ L− 1, the alpha-beta curve must
be convex and the only integer satisfying (11) is S = L
(when S = L the right hand side of (11) is 0), in which
case the claim also holds.

It follows that problem DP(1) has M = S and by
applying (7) relation (12) follows.

Proof of Proposition 4: The case L = 2 is trivial.
Assume now that L ≥ 3. For 0 ≤ k ≤ L − 3, the
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inequality slope(PkPk+1) ≤ slope(Pk+1Pk+2) is equiv-
alent to fL−1(k) ≤ 0, where fL−1(k) is obtained by
replacing L by L − 1 in (42). Following similar steps
as in the proof of Proposition 3 it follows that there is
a real value x1 such that (1 − p)(L − 1) − 1 < x1 <
(1 − p)(L − 2), fL−1(x1) = 0, and fL−1(k) ≤ 0 for all
integers k ∈ {0, · · · , ⌊x1⌋}, while fL−1(k) > 0 for all
integers k ∈ {⌊x1⌋+ 1, · · · , L− 3}. This implies that the
portion of the alpha-beta curve between the points P0 and
Pmin{L−1,⌊x1⌋+2} is convex, while the remaining portion
up to PL−1 (if non empty) is concave. Moreover, notice
that the whole portion between the points P0 and PL−1

is convex if and only if x1 ≥ L − 3, which is further
equivalent to fL−1(L−3) ≤ 0, which is in turn equivalent
to p ≤ L

L2−2L+2 .

Next we will show that the inequality
slope(PL−2PL−1) ≤ slope(PL−1PL) holds for all
L ≥ 3 and 0 < p ≤ 1. After some algebra the
above relation becomes equivalent to h(p) ≤ 0, where
h(p) = (1− p)L−2p− 1

L−1 . A simple analysis of the sign
of the derivative h′(p) implies that 1

L−1 is the unique
point of maximum of the function h(·) on the interval
(0, 1]. Since h( 1

L−1 ) < 0 the claim follows.

We conclude that for L ≥ 3 and p ≤ L
L2−2L+2 , the

alpha-beta curve is convex and applying Proposition 2 to
problem DP(2) yields (13).

When L ≥ 3 and L
L2−2L+2 < p ≤ 1

2 the alpha-beta
curve is non convex because at least the point PL−2 is
not an extreme point on the lower convex hull. Then
there must exist an integer T ∈ {1, · · · , L− 2} satisfying
the relation slope(PT−1PT ) > slope(PT−1PL−1), which
is equivalent to (14). Considering the smallest T with
this property and using an argument as in the proof of
Proposition 3, it follows that the lower convex hull of the
portion of the alpha-beta curve up to the point PL−1 is
the union of segment lines PkPk+1, 0 ≤ k ≤ T − 2, and
PT−1PL−1.

To complete the proof of the claim it is sufficient to
show that slope(PT−1PL−1) ≤ slope(PL−1PL). This
inequality is equivalent to

∑L−1
k=T V (k) ≤ L−T

T V (L).
Since V (L) = 1−p

1−pL > 1 − p, while
∑L−1

k=T V (k) ≤
1−V (L) < p, it is sufficient to prove that p ≤ L−T

T (1−p),
which is equivalent to T ≤ L(1 − p). When T = 1
the previous inequality clearly holds. Let us consider
now the case T > 1. The definition of T implies that
slope(PT−2PT−1) ≤ slope(PT−1PT ), fact which implies
that T ≤ ⌊x1⌋+2 < (1−p)(L−2)+2 = (1−p)L+2p ≤
(1− p)L+ 1, thus T ≤ (1− p)L. Thus, the proof of the
claim on the convex hull is complete.

When L = 2, the alpha-beta curve is clearly convex for
all 0 < p ≤ 1/2. Because in this case L

L2−2L+2 = 1 the
statement of the proposition holds, too.

APPENDIX C
PROOF OF CLAIMS OF SECTION VI

Proof of Proposition 6: Relation (16) follows from
(15) and Propositions 3 and 4, leading immediately to
(17). Further, in order to prove (18) we need to show that
limL→∞

A(L)
lnL
L

= 1. Notice first that by the mean value
theorem there are µk ∈ (L− k, L+ 1− k) such that

ln
L+ 1− k

L− k
= ln(L+ 1− k)− ln(L− k) =

1

µk
,

for 1 ≤ k ≤ L−1. Using further the inequalities 1
L−k+1 <

1
µk

< 1
L−k and equalities 1

k
1

L−k+1 = 1
L+1 (

1
k + 1

L−k+1 )

and 1
k

1
L−k = 1

L (
1
k +

1
L−k ) for 1 ≤ k ≤ L−1, one obtains

1

L+ 1
(H(L− 1) +H(L)− 1)− lnL

L
< A(L) <

2

L
H(L− 1)− lnL

L
, (44)

where H(n) ,
∑n

i=1
1
i , for any integer n > 0. Next we

apply the well known relations ln(n+1) < H(n) < lnn+
1 < ln(n+ 1) + 1 to (44) and obtain

2 lnL− 1

L+ 1
− lnL

L
< A(L) <

2

L
(lnL+ 1)− lnL

L
.

Using further the fact that

lim
L→∞

2 lnL−1
L+1 − lnL

L
lnL
L

= lim
L→∞

2
L (lnL+ 1)− lnL

L
lnL
L

= 1.

relation (18) follows. Finally, the last claim follows from
Theorem 4.1 in [38].

Proof of Proposition 7: Using (15) and replac-
ing R2(L, p, 1) from (13) (since p ≤ L

L2−2L+2 ) and
R3(L, p, 1) from Proposition 5, equation (19) follows.
Further, it can be easily proved by induction that the
coefficient of ln 1

p in the right hand side of (19) is
positive for L ≥ 3. The fact that limp→0 ln

1
p = ∞ and

limp→0 ln
1

1−p = 0 imply relation (20).
In order to prove claim 7.b) we will establish an upper

bound for D2(L,R, p) for all L,R and p ∈ (0, 1/2]. For
this, consider problem P’(2) which is obtained from prob-
lem P by replacing L by k1+1 and letting α(k) = 1

k(k+1) ,
β(k) = V (k), for 1 ≤ k ≤ k1, and α(k1 + 1) = 1

k1+1 ,
β(k1+1) =

∑L
k=k1+1 V (k). Clearly, any feasible solution

(R1, · · · , Rk1+1) of problem P’(2) can be extended to a
feasible solution (R1, · · · , RL) to problem P(2) by letting
Rk = Rk1+1 for all k1 + 2 ≤ k ≤ L. Therefore, the
optimal value of the cost function of P’(2) is an upper
bound for D2(L,R, p) for all R, p, L.

To determine the solution of problem P’(2) we will first
show that its alpha-beta curve is convex. Consider first
k1 ≥ 2 and recall that in the proof of Proposition 4 it
was established that relation V (k+1)

1
(k+1)(k+2)

≤ V (k+2)
1

(k+2)(k+3)

holds

for 0 ≤ k ≤ (1 − p)(L − 1) − 1. These inequalities hold
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for 0 ≤ k ≤ k1 − 2 (because p ≤ 1
2 ). It follows that the

portion of the alpha-beta curve up to point Pk1 is convex.

It remains to show now that V (k1)
1

k1(k1+1)

≤
∑L

k=k1+1 V (k)
1

k1+1

,
which is equivalent to

k1V (k1) ≤
L∑

k=k1+1

V (k). (45)

Notice that relation V (k) ≤ V (k+1) is equivalent to k ≤
L(1−p)−1, and, consequently, it is true for k ≤ ⌊L+1

2 ⌋−2.
Since k1−1 ≤ ⌊L+1

2 ⌋−1−k1 (due to k1 = ⌊L
4 ⌋), it further

follows that (k1 − 1)V (k1) ≤
∑⌊L+1

2 ⌋−1

k=k1+1 V (k). Finally,
corroborating with the fact that V (k1) ≤

∑L−1
k=1 V (k) =

p
1−pL ≤ V (L), relation (45) follows.

When k1 = 1 in order to establish the convexity of the
alpha-beta curve of problem P’(2) one only needs to prove
(45), which holds in view of the inequality V (1) ≤ V (L).

Using Propositions 1 and 2 to solve problem P’(2), and
since its optimal cost is an upper bound for D2(L,R, p),
one obtains

D2(L,R, p) ≤ 2τ(L− 1)(1− p)pL−1

1− pL
2−2(R−R∗

2(L,p)),

for all L ≥ 3, 0 < p ≤ 1
2 , and R > R∗

2(L, p), where
R∗

2(L, p) is defined as R(1) in (7) for problem P’(2), i.e.,

R∗
2(L, p) =

1

2

(
k1∑
k=2

1

k
log2

V (k)(k + 1)

V (k − 1)(k − 1)
+

1

k1 + 1
log2

∑L
k=k1+1 V (k)

k1V (k1)

)
.

Using further Corollary 2 it follows that

lim
R→∞

∆2/3(L,R, p) ≥ 10

ln 10

(
ln

L

2(L− 1)
+

2(R3(L, p, 1)−R∗
2(L, p)) ln 2

)
for any L ≥ 3 and 0 < p ≤ 1

2 . Corroborating with the
fact that

∑L−1
k=k1+1 V (k) ≤

∑L−1
k=1 V (k) = p

1−pL < V (L),
after some algebra, one obtains

limR→∞ ∆2/3(L,R, p) ≥ 10
ln 10

(
ln L

2(L−1) +

1
k1+1 ln

k1(L−1
k1

)
2 −

∑k1

k=2
1
k ln (L−k)(k+1)

k(k−1) +(
2k1

k1+1 −H(k1)
)
ln(1− p) +(

H(k1) +
L−2k1−1

k1+1 − L−1
2

)
ln p

)
.

Let ϕ(p) denote the expression on the right hand side of
the above inequality, for 0 < p ≤ 1

2 . We will show that
ϕ(p) achieves its minimum over the interval (0, 1

2 ] in p =
1
2 . This statement trivially holds for k1 = 1 since the
coefficients of ln(1 − p) and of ln p are 0. Assume now

that k1 ≥ 2, i.e., L ≥ 8. Let a denote the coefficient of
ln p, and b denote the coefficient of ln(1 − p) in ϕ(p).
Notice that it can be proved easily by induction that a ≤
b < 0. The derivative of ϕ(p) with respect to p is ϕ′(p) =
10

ln 10
a−(a+b)p
p(1−p) and its unique zero point is p0 = a

a+b ≥ 1
2 .

It follows that ϕ′(p) < 0 for 0 < p ≤ 1
2 , fact which

implies that ϕ(p) is decreasing over the interval (0, 1
2 ].

Thus, ϕ(p) ≥ ϕ( 12 ) =
10

ln 10σ(L) leading to (21).
In order to prove relation (22) it is sufficient to show

that limL→∞ σ(L) = ∞. To this end we will first find a
simpler lower bound for σ(L). Notice that

k1∑
k=2

1

k
ln

(L− k)(k + 1)

(k − 1)k
=

k1∑
k=2

1

k
ln

L− k

k − 1
+

k1∑
k=2

1

k
ln

k + 1

k
≤

lnL

k1∑
k=2

1

k
+

k1∑
k=2

1

k(k − 1)
≤

(lnL− 2 ln 2) lnL+ 1,

where the first inequality follows from ln L−k
k−1 ≤ lnL

and ln k+1
k = ln(k + 1) − ln k = 1

νk
< 1

k−1 , for some
νk ∈ (k, k + 1) by the mean value theorem. Meanwhile,
the second inequality follows from H(k1) ≤ ln k1 + 1 ≤
ln(L/4)+ 1 and from

∑k1

k=2
1

k(k−1) = 1− 1
k1

< 1. Using

further the fact that ln L
2(L−1) ≥ ln 1

2 , 1
k1+1 ln

k1(L−1
k1

)
2 ≥

0, and that L−1
2 − L−1

k1+1 ≤ L−1
2 −4 when k1 ≤ 2, it follows

that σ(L) ≥ (L−11
2 + 2 lnL) ln 2− ln2 L− 1 for k1 ≤ 2.

Since limL→∞(L−11
2 + 2 lnL) ln 2 − ln2 L − 1 = ∞ the

claim follows.
Finally, claim 2.c) follows from (21) and from the fact

that ∆3/2(L,R, p) = −∆2/3(L,R, p).

REFERENCES

[1] V. A. Vaishampayan, ”Design of multiple-description scalar quan-
tizers”, IEEE Trans. Inform. Th., vol. 39, no. 3, pp. 821–834, May
1993.

[2] C. Tian and S. S. Hemami, ”Universal multiple description scalar
quantization: analysis and design”, IEEE Trans. Inform. Theory,
vol. 50, no. 9, pp. 2089–2102, Sept. 2004.

[3] S. Dumitrescu and X. Wu, ”Optimal two-description scalar quan-
tizer design”, Algorithmica, vol. 41, no. 4, pp. 269-287, Feb. 2005.

[4] S. Dumitrescu and X. Wu, ”Lagrangian optimization of two-
description scalar quantizers”, IEEE Trans. Inform. Theory, vol.
53, no. 11, pp. 3990–4012, Nov. 2007.

[5] D. Muresan and M. Effros, ”Quantization as histogram segmenta-
tion: optimal scalar quantizer design in network systems”, IEEE
Trans. Inform. Theory, vol. 54, no. 1, pp. 344–366, Jan. 2008.

[6] M. Fleming, Q. Zhao, and M. Effros, ”Network vector quantiza-
tion”, IEEE Trans. Inform. Theory, vol. 50, no. 8, pp. 1584–1604,
Aug. 2004.

[7] V. A. Vaishampayan, N. Sloane, and S. Servetto, ”Multiple de-
scription vector quantization with lattice codebooks: design and
analysis,” IEEE Trans. Inform. Theory, vol. 47, no. 5, pp. 1718–
1734, Jul. 2001.

[8] Y. Wang, M. T. Orchard, V. A. Vaishampayan, and A. R. Reib-
man, ”Multiple description coding using pairwise correlating trans-
forms,” IEEE Trans. Image Proc., vol. 10, no. 3, pp. 351–366, Mar.
2001.



16

[9] V. K Goyal and J. Kovacevic, ”Generalized multiple description
coding with correlating transforms,” IEEE Trans. Inform. Theory,
vol. 47, no. 6, pp. 2199–2224, Sept. 2001.

[10] W. Jiang and A. Ortega, ”Multiple description coding via polyphase
transform and selective quantization”, Proc. SPIE: Visual Comm.
and Image Proc., Jan. 1999.

[11] K. P. Subbalakshmi and S. Somasundaram, ”Multiple description
image coding framework for EBCOT”, IEEE Intern. Conf. Image
Proc., Sept. 2002, Rochester, NY.

[12] I. V. Bajic and J. W. Woods, ”Domain-based multiple description
coding of images and video,” IEEE Trans. Image Proc., vol. 12,
no. 10, pp. 1211-1225, Oct. 2003.

[13] T. Tillo, M. Grangetto, and G. Olmo, ”Multiple description image
coding based on Lagrangian rate allocation”, IEEE Trans. Image
Proc., vol. 16, no. 3, pp. 673–683, Mar. 2007.

[14] Y. Zhang, S. Dumitrescu, J. Chen, and Z. Sun, ” LDGM-based
multiple description coding for finite alphabet sources”, IEEE
Trans. Commun., vol. 60, no. 12, pp. 3671–3682, Dec. 2012.

[15] T. Y. Berger-Wolf and E. M. Reingold, ”Index assignment for
multichannel communication under failure”, IEEE Trans. Inform.
Theory, vol. 48, no. 10, pp. 2656-2668, Oct. 2002.

[16] S. Dumitrescu and X. Wu, ”On properties of locally optimal
multiple description scalar quantizers with convex cells”, IEEE
Trans. Inform. Theory, vol. 55, no. 12, pp. 5591–5606, Dec. 2009.

[17] C. Tian and S. S. Hemami, ”Sequential design of multiple de-
scription scalar quantizers”, Proc. IEEE Data Compression Conf.,
Snowbird, UT, pp. 32–41, Mar. 2004.

[18] J. Ostergaard, J. Jensen, and R. Heusdens, ”n-channel entropy-
constrained multiple description lattice vector quantization”, IEEE
Trans. Inform. Theory, vol. 52, no. 5, pp. 1956–1973, May 2006.

[19] X. Huang and X. Wu, ”Optimal index assignment for multiple de-
scription lattice vector quantization,” Proc. IEEE Data Compression
Conf., pp. 272–281, Snowbird, UT, Mar. 2006.

[20] M. Liu and C. Zhu, ”M -description lattice vector quantization:
index assignment and analysis”, IEEE Trans. Signal Proc., vol. 57,
no. 6, pp. 2258–2274, Jun. 2009.

[21] G. Zhang, J. Ostergaard, J. Klejsa, and W. B. Kleijn, ”High-
rate analysis of symmetric L-channel multiple description coding”,
IEEE Trans. Commun., vol. 59, no. 7, pp. 1846–1856, Jul. 2011.

[22] Z. Zhang and T. Berger, “New results in binary multiple descrip-
tions,” IEEE Trans. Inform. Theory, vol. IT-33, no. 4, pp. 502-521,
Jul. 1987.

[23] J. Chen, Y. Zhang, and S. Dumitrescu, ”Gaussian multiple descrip-
tion coding with low-density generator matrix codes”, IEEE Trans.
Commun., vol. 60, no. 3, pp. 676–687, Mar. 2012.

[24] G. Davis and J. Danskin, ”Joint source and channel coding for
image transmission over lossy packet networks”, Proc. SPIE Conf.
Wavelet Applications of Digital Image Proc. XIX , pp. 376–387,
Denver, August 1996.

[25] R. Puri and K. Ramchandran, ”Multiple description source coding
through forward error correction codes,” Proc. 33rd Asilomar Conf.
Signals, Systems, and Computers, vol. 1, pp. 342–346, Oct. 1999.

[26] A. E. Mohr, E. A. Riskin, and R. E. Ladner, ”Unequal loss pro-
tection: graceful degradation over packet erasure channels through
forward error correction”, IEEE J. Selected Areas Commun., vol.
18, no. 7, pp. 819-828, Jun. 2000.

[27] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan,
”Priority encoding transmission”, IEEE Trans. Inform. Theory, vol.
42, no. 6, pp. 1737–1744, Nov. 1996.

[28] A. Said and W. A. Pearlman, ”A new, fast, and efficient image
codec based on set partitioning in hierarchical trees”, IEEE Trans.
Circuits Systems Video Tech., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[29] D. Taubman, ”High performance scalable image compression with
EBCOT”, IEEE Trans. Image Proc., vol. 9, no. 7, pp. 1158–1170,
Jul. 2000.

[30] B.-J. Kim, Z. Xiong, and W. A. Pearlman, ”Very low bit-rate
embedded video coding with 3-D set partitioning in hierarchical
trees (3-D SPIHT)”, IEEE Trans. Circuits Systems Video Tech., vol.
10, no. 8, pp. 1374-1385, Dec. 2000.

[31] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand, ”Overview
of the scalable video coding extension of the H.264/AVC standard,”
IEEE Trans. Circuits Systems Video Tech., Special Issue on Scalable
Video Coding, vol. 17, no. 9, pp. 1103–1120, Sept. 2007.

[32] D. G. Sachs, R. Anand, and K. Ramchandran, ”Wireless image
transmission using multiple-description based concatenated codes”,
Proc. SPIE 2000, vol. 3974, pp. 300–11, Jan. 2000.

[33] T. Stockhammer and C. Buchner, ”Progressive texture video stream-
ing for lossy packet networks”, Proc. 11th Intern. Packet Video
Workshop, Kyongju, May 2001.

[34] S. Dumitrescu, X. Wu, and Z. Wang, “Globally optimal uneven
error-protected packetization of scalable code streams,” IEEE Trans.
Multimedia, vol. 6, no. 2, pp. 230–239, Apr. 2004.

[35] V. Stankovic, R. Hamzaoui, and Z. Xiong, “Efficient channel
code rate selection algorithms for forward error correction of
packetized multimedia bitstreams in varying channels,” IEEE Trans.
Multimedia, vol. 6, no. 2, pp. 240–248, Apr. 2004.

[36] J. Thie and D. Taubman, “Optimal erasure protection strategy for
scalably compressed data with tree-structured dependencies,” IEEE
Trans. Image Proc., vol. 14, no. 12, pp. 2002–2011, Dec. 2005.

[37] S. Dumitrescu, X. Wu, and Z. Wang, “Efficient algorithms for
optimal uneven protection of single and multiple scalable code
streams against packet erasures,” IEEE Trans. Multimedia, vol. 9,
no. 7, pp. 1466–1474, Nov. 2007.

[38] C. Tian, S. Mohajer, and S. N. Diggavi, ”Approximating the Gaus-
sian multiple description rate region under symmetric distortion
constraints”, IEEE Trans. Inform. Theory, vol. 55, no. 8, pp. 3869–
3891, Aug. 2009.

[39] S. Dumitrescu, G. Rivers, and S. Shirani, ”Unequal erasure pro-
tection technique for scalable multi-streams”, IEEE Trans. Image
Proc., vol. 19, no. 2, pp. 422-434, Feb. 2010.

[40] E. Baccaglini, T. Tillo, and G. Olmo, ”A flexible R-D based
multiple description scheme for JPEG 2000”, IEEE Signal Proc.
Letters, vol. 14, no. 3, pp. 197–200, Mar. 2007.

[41] E. Akyol, A. M. Tekalp, and M. R. Civanlar, ”A flexible multi-
ple description coding framework for adaptive peer-to-peer video
streaming”, IEEE J. Selected Topics Signal Proc., vol. 1, no. 2, pp.
231–245, Aug. 2007.

[42] T. Tillo, E. Baccaglini, and G. Olmo, ”Multiple descriptions based
on multirate coding for JPEG 2000 and H.264/AVC”, IEEE Trans.
Image Proc., vol. 19, no. 7, pp. 1756–1767, July 2010.

[43] U. Samarawickrama, J. Liang, and C. Tian, ”M -channel multiple
description coding with two-rate coding and staggered quantiza-
tion”, IEEE Trans. Circuits Systems Video Tech., vol. 20, no. 7, pp.
933–944, Jul. 2010.

[44] S. Dumitrescu and T. Zheng, ”Improved multiple description frame-
work based on successively refinable quantization and uneven
erasure protection”, Proc. IEEE Data Compression Conf., pp. 514-
514, Mar. 2008, Snowbird, UT.

[45] S. Dumitrescu and X. Wu, ”Optimal multiresolution quantization
for scalable multimedia coding”, Proc. IEEE Inform. Theory Work-
shop, pp. 139–142, Bangalore, Oct. 2002.

[46] H. Gish and J. N. Pierce, ”Asymptotically efficient quantizing”,
IEEE Trans. Inform. Theory, vol. IT-14, no.5, pp. 676–683, Sept.
1968.

PLACE
PHOTO
HERE

Sorina Dumitrescu (M’05-SM’13) received
the B.Sc. and Ph.D. degrees in mathematics
from the University of Bucharest, Romania,
in 1990 and 1997, respectively. From 2000 to
2002 she was a Postdoctoral Fellow in the
Department of Computer Science at the Univer-
sity of Western Ontario, London, Canada. Since
2002 she has been with the Department of Elec-
trical and Computer Engineering at McMaster
University, Hamilton, Canada, where she held
Postdoctoral, Research Associate, and Assistant

Professor positions, and where she is currently an Associate Professor.
Her current research interests include multimedia coding and communica-
tions, network-aware data compression, multiple description codes, joint
source-channel coding, signal quantization. Her earlier research interests
were in formal languages and automata theory. Dr. Dumitrescu held an
NSERC University Faculty Award during 2007-2012.



17

PLACE
PHOTO
HERE

Ting Zheng received her B.Eng degree in
electronic information engineering from Beijing
University of Technology, Beijing, China, in
2006, and her MASc. in electrical and computer
engineering from McMaster University, On-
tario, Canada, in 2008. She is currently working
at IBM China in Beijing.


