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Abstract—This letter presents an algorithm for the design
of fixed-rate unrestricted polar quantizer (FUPQ) for bivariate
circularly symmetric sources. The proposed algorithm is globally
optimal for the class of FUPQs with the magnitude quantizer
thresholds restricted to some predefined finite set. The solution
algorithm is based on dynamic programming, which is further
accelerated by exploiting a monotonicity property of the cost
function. The time complexity of the accelerated algorithm is
O(KN2), where N is the number of target qunatizer levels and
K is the size of the predefined set of possible thresholds. The
experimental results show that our approach outperforms the
previous tractable designs when the total number of quantizer
levels ranges between 25 and 256.

Index Terms—Fixed-rate quantizer, unrestricted polar quanti-
zation, globally optimal algorithm, dynamic programming.

I. INTRODUCTION

A polar quantizer quantizes the magnitude and the phase
of a two dimensional source vector represented in polar
coordinates. The phase quantizer is uniform, while the magni-
tude quantizer may be nonuniform. This paper considers the
unrestricted polar quantizer (UPQ), where the phase quantizer
depends on the magnitude level. More specifically, we address
the design of fixed-rate UPQ (FUPQ).

A UPQ can be characterized by the configuration
(N,M, r,P,θ) defined as follows. M is the number of magni-
tude levels and r = (r0, r1, · · · , rM ) is the vector of thresholds
of the magnitude quantizer, where r0 = 0 < r1 < r2 <
· · · < rM−1 < rM = ∞. Further, P = (P1, P2, · · · , PM ),
where Pm denotes the number of phase levels of the phase
quantizer corresponding to the m-th magnitude bin (i.e., to
[rm−1, rm) ), for 1 ≤ m ≤ M . A = (A1, · · · , AM ), where
Am is the m-th magnitude reconstruction value. Finally, θ =
(θm,s)1≤m≤M,1≤s≤Pm , where θm,s is the phase reconstruction
for the s-th cell of the phase quantizer corresponding to the m-
th magnitude bin. Note that the total number of quantization
bins of the UPQ is N =

∑M
m=1 Pm.

The goal in optimal FUPQ design is to minimize the
distortion for a fixed number N of quantization bins. Design
methods based on the asymptotic quantization theory are ad-
dressed in [1]–[3]. We point out that such techniques guarantee
the optimality of the design only as the rate approaches
infinity.
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The design of optimal FUPQ at finite rates is investigated
in [4] and [5]. The approach taken in [4] is to solve iteratively
the necessary conditions for optimal r and A when M and P
are fixed. However, Wilson [4] relies on exhaustive search to
optimize the rate allocation between the magnitude and phase
quantizers, i.e., to find the optimum configuration (M,P)
satisfying the constraint N =

∑M
m=1 Pm. The algorithm

of [4] is globally optimal, but it becomes intractable as N
increases since the total number of possible configurations
(M,P) increases exponentially with N .

The authors of [5] propose a nearly optimal algorithm which
iteratively optimizes the values of the vector r, respectively,
P and A, while the other two vectors are kept fixed. The
drawbacks of the method in [5] are slow convergence and
lack of guarantee of optimality.

In this work we propose an efficient globally optimal FUPQ
design algorithm, for the class of FUPQs with magnitude
quantizer thresholds restricted to a predefined finite set. The
solution algorithm is based on dynamic programming sped
up with the aid of a fast matrix search technique in totally
monotone matrices [6]. Its time complexity is O(KN2), where
K is the size of the set from which the magnitude thresholds
are selected.

The main contribution of this work over prior work on
FUPQ design, resides in proposing the first algorithm which
handles efficiently the problem of rate allocation between the
magnitude and phase quantizers, while still guaranteeing the
globally optimal solution (under certain constraints) at finite
rates.

Very recently, an efficient algorithm for the design of
optimal entropy-constrained (EC) UPQ was proposed in [7].
It is worth pointing out that the present work has significant
differences versus [7]. Specifically, the current work minimizes
the distortion with a constraint on the number of levels, while
the problem solved in [7] is formulated as the unconstrained
minimization of a weighted sum of distortion and entropy.
These different formulations call for different solution ap-
proaches, with distinct time complexities. Additionally, in the
current work we solve the problem for any possible number
N of quantizer levels, while the algorithm in [7] can find only
the ECUPQs corresponding to points on the lower boundary
of the convex hull of the set of entropy-distortion pairs.

This letter is structured as follows. The next section con-
tains the problem formulation. Section III presents a dynamic
programming solution algorithm achieving O(K2N2) time
complexity. Section IV establishes a monotonicity property of
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the objective function, which is further exploited to reduce the
time complexity to O(KN2). Section V presents experimental
results and the comparison with prior FUPQ designs. Finally,
Section VI concludes the letter.

II. PROBLEM FORMULATION

Consider a bivariate random variable with the following
circularly symmetric density, as a function of the polar co-
ordinates r and θ,

p(r, θ) =
1

2π
g(r), 0 ≤ r <∞, 0 ≤ θ < 2π.

Note that g(r) is the marginal probability density function
(pdf) of the magnitude variable, while the phase variable is
uniformly distributed over the interval [0, 2π). Each quantiza-
tion bin of the UPQ can be represented as

R(m, s) =

{
rejθ|rm−1 ≤ r < rm, (s− 1)

2π

Pm
≤ θ < s

2π

Pm

}
,

with Amejθm,s being the reconstructed magnitude-phase pair,
for 1 ≤ m ≤ M , 1 ≤ s ≤ Pm. According to [4]
the reconstruction values which minimize the squared error
distortion are given by θm,s = (2s− 1)π/Pm and

Am = sinc

(
1

Pm

) ∫ rm
rm−1

rg(r)dr∫ rm
rm−1

g(r)dr
,

where sinc( 1
Pm

) = sin(π/Pm)
π/Pm

. The expected distortion (per
sample) of the UPQ is [4]

D =
1

2

(∫ ∞
0

r2g(r)dr −
M∑
m=1

A2
m

∫ rm

rm−1

g(r)dr

)
. (1)

We will assume that the thresholds of the magnitude quantizer
of the UPQ take values in some set A = {a0, a1, · · · , aK−1},
where a0 = 0, aK−1 =∞ and ai < ai+1, for 0 ≤ i ≤ K−2.
This set can be obtained by finely discretizing some interval
[0, B], chosen such that the probability that the magnitude
level is larger than B, to be sufficiently small.

For each positive integer k and extended real number β ∈
A∩ (R ∪ {∞}), denote by Tk(β) the set of all (k+1)-tuples
r = (r0, r1, · · · , rk) such that 0 = r0 < r1 < r2 < · · · <
rk = β and rm ∈ A for all 1 ≤ m ≤ k − 1.

The problem of fixed-rate UPQ design can be formulated
as the following level-constrained minimization problem

min
M,r,P

D

s.t.

M∑
m=1

Pm = N, Pm ∈ Z+, r ∈ TM (∞),
(2)

where Z+ is the set of positive integers and N is the target
value for the number of levels of the UPQ. In this work we
propose a globally optimal solution to the above problem.

III. DYNAMIC PROGRAMMING SOLUTION

In this section we present a solution to problem (2) based
on dynamic programming. First we will introduce a few more
notations. For each y ≥ 1, let f(y) , −sinc2( 1y ) and for
α ≤ β and positive integer P denote

q(α, β) ,
∫ β

α

g(r)dr, x(α, β) ,

∫ β
α
rg(r)dr∫ β

α
g(r)dr

,

ωP (α, β) ,
1

2
f(P ) (x(α, β))

2
q(α, β). (3)

Notice that the first term in (1) is constant, therefore it can
be removed from the cost function of (2). After doing so the
objective function of (2) becomes

O(r,P) ,
M∑
m=1

ωPm
(rm−1, rm).

For each pair of positive integers (k, n) with 1 ≤ k ≤ K − 1
and 1 ≤ n ≤ N , consider problem P(k, n) defined as

min
M,r,P

O(r,P)

s.t.

M∑
m=1

Pm = n, Pm ∈ Z+, r ∈ TM (ak).
(4)

Additionally, denote by Ô(k, n) the optimal value of the
objective function in (4), for 1 ≤ k ≤ K − 1 and 1 ≤ n ≤ N .

Intuitively, problem (4) can be interpreted as finding the
optimal FUPQ with n levels, corresponding to the portion of
the magnitude space ranging from 0 to ak. It can be easily seen
that problem (2) is equivalent to P(K − 1, N). The dynamic
programming solution consists of solving all sub-problems
P(k, n), for 1 ≤ k ≤ K − 1 and 1 ≤ n ≤ N , using the
following recurrence relation

Ô(k, n) = min
0≤t<n

min
0≤j<k

(
Ô(j, t) + ωn−t(aj , ak)

)
, (5)

where Ô(0, 0) = 0 and Ô(0, t) = Ô(j, 0) = ∞, for t > 0
and j ≥ 1. The dynamic programming process evaluates
(5) in increasing order of k and n. For each pair (k, n) the
minimizations in (5) take O(KN) operations if each quantity
ωn−t(aj , ak) can be evaluated in constant time. Since there
are O(KN) pairs (k, n) in total, the time complexity of
the solution algorithm becomes O(K2N2). It can be seen
from (3) that for computing the values ωn−t(aj , ak) the
quantities x(aj , ak) and q(aj , ak) are needed. In order to
enable the computation of each x(aj , ak) and q(aj , ak) in
constant time, the cumulative probabilities and first moments
are precomputed and stored in a preprocessing step as in [7],
which only requires O(K) operations.

In the next section we will show that the algorithm can be
sped up by exploiting a certain monotonicity property of the
objective function.
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IV. COMPLEXITY REDUCTION

For each pair of integers (n, t) with 1 ≤ t < n ≤ N ,
consider the upper triangular matrix Gn,t with elements
Gn,t(j, k), 1 ≤ j < k ≤ K − 1,

Gn,t(j, k) , Ô(j, t) + ωn−t(aj , ak). (6)

Clearly, the minimization over j in (5) is equivalent to finding
the smallest element on column k of matrix Gn,t, i.e., finding

Ĝn,t(k) , min
1≤j≤k−1

Gn,t(j, k). (7)

Then relation (5) is equivalent to

Ô(k, n) = min

(
ωn(0, ak), min

1≤t<n
Ĝn,t(k)

)
. (8)

Determining all column minima takes O(K2) time in a general
O(K)-by-O(K) matrix. However, when the matrix is totally
monotone this task can be accomplished in O(K) time using
the algorithm nicknamed SMAWK [6]. According to [6]
matrix Gn,t is said to be totally monotone (with respect to
the column minima problem1) if for all j < j′ and k < k′ the
following implication holds

Gn,t(j
′, k) < Gn,t(j, k)⇒ Gn,t(j

′, k′) < Gn,t(j, k
′).

A sufficient condition for the total monotonicity to hold is the
following, known as the Monge condition [8]

Gn,t(j, k) +Gn,t(j
′, k′) ≤ Gn,t(j, k′) +Gn,t(j

′, k) (9)

for all 1 ≤ j < j′ < k < k′ ≤ K − 1.
Proposition 1: Matrix Gn,t satisfies the Monge condition.

Proof: By replacing (6) in (9) and performing the can-
cellation of the like terms, (9) becomes equivalent to

ωn−t(aj , ak)+ωn−t(aj′ , ak′) ≤ ωn−t(aj , ak′)+ωn−t(aj′ , ak).
(10)

Define now, for 1 ≤ j < k ≤ K − 1,

d(j, k) ,
∫ ak

aj

r2g(r)dr − (x(aj , ak))
2
q(aj , ak).

It was shown in [9] that d(j, k) satisfies the Monge condition,
i.e., the following holds

d(j, k) + d(j′, k′) ≤ d(j, k′) + d(j′, k), (11)

for all 1 ≤ j < j′ < k < k′ ≤ K − 1. Note from (3) that

d(j, k) =

∫ ak

aj

r2g(r)dr +
2

sinc2( 1
n−t )

ωn−t(aj , ak).

By applying the above in (11) and performing some algebraic
manipulations, relation (10) follows.
The fast solution algorithm proceeds as follows. It iterates over
n in increasing order from 1 to N . For each n, problem P(k, n)
is solved for all k, as follows. We increase t from 1 to n−1 and
for each t all column minima in matrix Gn,t are determined
using SMAWK. This requires O(K) time for each matrix.

1The total monotonicity is defined in [6] for the problem of row maxima,
which can be converted to the column minima problem by transposing the
matrix and multiplying all entries by −1. Here we adapt the definition of total
monotonicity to the column minima problem.

Over all values of t, this amounts to O(KN) operations. After
that the minimization over t in (5) is performed, for each k,
requiring a total of O(KN) operations. Performing the above
for all n leads to O(KN2) time complexity for the solution
algorithm.

Note that in order to apply SMAWK, the matrix Gn,t has
to be extended to a full matrix. This can be done by setting
to ∞ all elements below the main diagonal. This extension
does not change the column minima, and the full matrix still
satisfies the total monotonicity [8].

The following pseudocode (Algorithm 1) describes the
algorithm to solve problem (2). We use the notation ĵn,t(k)
for the value of j achieving optimality in (7), and t̂(n, k) for
the optimal t in (5).

Algorithm 1: Solution algorithm to problem (2).
Preprocessing Stage
begin

for k = 1 to K − 1 do
Ô(k, 1) = ω1(0, ak) /∗ n = 1 ∗/
ĵ1,0(k) = 0
t̂(1, k) = 0

for n = 1 to N do
Ô(1, n) = ωn(0, a1) /∗ k = 1 ∗/
ĵn,0(1) = 0
t̂(n, 1) = 0

for n = 2 to N do
for t = 1 to n− 1 do

Evaluate Ĝn,t(k) for all k using SMAWK
Record ĵn,t(k) for all k

for k = 2 to K do
Compute Ô(k, n) using (8)
Record t̂(n, k)

Restore the vectors r and P

V. EXPERIMENTAL RESULTS

This section assesses the practical performance of the
proposed FUPQ design algorithm and compares it with the
designs of [3], [4] and [5]. The experiments are conducted for
a two-dimensional random vector (X1, X2), where X1 and X2

are i.i.d. Gaussian variables with zero-mean and unit-variance,
with the following joint pdf in polar coordinates

p(r, θ) =
r

2π
exp

(
−r

2

2

)
, 0 ≤ r <∞, 0 ≤ θ < 2π,

where r =
√
x21 + x22, and θ = tan−1(x2/x1). It then follows

that g(r) = r exp(−r2/2).
The set A consists of elements ai = 0.002i, for 0 ≤ i ≤

K − 2, and aK−1 = ∞, where K = 3001. We applied
the dynamic programming algorithm to construct the optimal
FUPQ with N = 256. The FUPQs for all N < 256 were also
generated during the dynamic programming process.
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TABLE I
PERFORMANCE COMPARISON WITH THE FUPQ OF [4] AND THE CORRESPONDING OPTIMAL CONFIGURATION, FOR N = 25 AND 36.

N (M,P1, · · · , PM ) (r1, · · · , rM−1) 10 log10 D (M,P1, · · · , PM )[4] (r1, · · · , rM−1)
[4] 10 log10 D

[4] 10 log10
D[4]

D
25 (3, 5, 9, 11) (0.856, 1.682) −11.3188 (3, 4, 10, 11) (0.798, 1.674) −11.3181 0.0007
36 (4, 3, 8, 12, 13) (0.524, 1.130, 1.898) −12.7805 (4, 1, 8, 13, 14) (0.369, 1.051, 1.848) −12.7772 0.0033

TABLE II
PERFORMANCE COMPARISON WITH THE FUPQ OF [5] AND THE CORRESPONDING OPTIMAL CONFIGURATION.

N (M,P1, · · · , PM ) (r1, · · · , rM−1) 10 log10 D (M,P1, · · · , PM )[5] (r1, · · · , rM−1)
[5] 10 log10 D

[5] 10 log10
D[5]

D
64 (5, 5, 10, 15, 18, 16) (0.536, 0.998, 1.534, 2.234) −15.150 (6, 2, 6, 11, 15, 16, 14) (0.277, 0.663, 1.120, 1.655, 2.345) −15.082 0.068

128
(8, 1, 7, 13, 18,
22, 24, 24, 19)

(0.180, 0.498, 0.826, 1.174,
1.564, 2.026, 2.650)

−18.053
(8, 4, 9, 14, 18,
22, 23, 22, 16)

(0.324, 0.623, 0.943, 1.290,
1.688, 2.161, 2.806)

−17.991 0.062

256
(11, 1, 8, 14, 20, 25,
29, 33, 35, 35, 32, 24)

(0.138, 0.378, 0.610, 0.848, 1.098,
1.364, 1.660, 1.998, 2.408, 2.972)

−20.985 − − −20.907 0.078

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED FUPQ WITH ASY AND

PASY OF [3], FOR N ≥ 16.

N 10 log10 D 10 log10 DASY 10 log10 DPASY 10 log10
DPASY

D
16 −9.614 −9.572 −9.324 0.290
32 −12.340 −12.297 −12.206 0.134
64 −15.150 −15.125 −15.075 0.075
128 −18.053 −18.022 −17.969 0.084
256 −20.985 −20.963 −20.945 0.040

Wilson [4] constructed the optimal FUPQs for all N be-
tween 1 and 16, and for 25, 32 and 36, and reported the
optimal configuration M,P, r. Our approach generated the
same FUPQs as in [4] for all N , except for N = 25 and
36. The results for the latter values and the comparison with
[4], are presented in Table I. We see that our design exhibits
an improvement in distortion of 0.0033 dB for N = 36,
respectively 0.0007 dB for N = 25. It is worth pointing out
that, while the performance of the FUPQ of [4] is identical or
very close to our scheme for small values of N , the algorithm
of [4] is not tractable for larger values of N , because of the
exponential growth of the space of all configurations (M,P)
satisfying N =

∑M
m=1 Pm. On the other hand, the time

complexity of our proposed solution grows only quadratically
with N , therefore it is tractable for much larger values.

Table II illustrates the comparison with the FUPQ of [5].
Note that the authors of [5] only report the distortions for
N = 64, 128, 256, and the optimal FUPQ parameters M,P, r
for N = 64, 128. It can be seen that our algorithm always
outperforms the design of [5] with gains higher than 0.06 dB,
and reaching a peak improvement of 0.078 dB when N = 256.

Next we compare the performance of the proposed design
with the FUPQ of [3], using the results reported in [3]. We
use the acronym ASY to refer to the asymptotical performance
derived in [3], and the acronym PASY to refer to the practical
design counterpart. Table III illustrates the performance of the
proposed algorithm in comparison with ASY and PASY, for N
taking as values the powers of 2 from 16 to 256. We see that
the proposed algorithm is superior to both ASY and PASY for
all values of N examined. Specifically, the gains over ASY
are always higher than 0.01 dB, with a peak of 0.043 dB at
N = 32. The performance improvement over PASY ranges
between 0.29 dB and 0.075 dB for N between 16 and 128.
Additionally, we observe that the gap between PASY and the
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Fig. 1. Performance comparison with PASY [3] and with [5].

proposed scheme tends to decrease as N increases. This is
expected since PASY is globally optimal as N →∞, therefore
its accuracy is expected to improve as N increases. On the
other hand, since the proposed approach is globally optimal
at finite rates (subject to the confined set of thresholds), it can
serve as a benchmark to establish the accuracy of PASY and
ASY at finite rates.

Finally, Figure 1 plots the distortion in dB (i.e., 10 log10D)
versus rate, computed as R = 1

2 log2N , for the proposed
FUPQ, the PASY scheme in [3] and the design of [5], where
the plots of (R,D) pairs at R = 3 and 3.5 are magnified.

VI. CONCLUSION

This letter presents a globally optimal algorithm for fixed-
rate unrestricted polar quantizer design for bivariate circularly
symmetric sources. The global optimality holds when the
thresholds of the magnitude quantizer are selected from a
predefined finite set. The proposed solution is a dynamic
programming algorithm sped up based on a monotonicity
property of the objective function. The experimental results
show better performance than predicted by the high-rate quan-
tization theory and than the prior tractable designs when the
number of quantizer cells ranges between 25 and 256.
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