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Low-Density Generator Matrix Codes

Jun Chen, Ying Zhang, Sorina Dumitrescu

Abstract

It is shown that the coding problem for an arbitrary point on the dominant face of an L-description

El Gamal-Cover (EGC) region can be converted to that for a vertex of a K-description EGC region for

some K ≤ 2L− 1, where the latter problem can be solved via successive coding. A practical scheme

is proposed for the quadratic Gaussian case by reducing each step in successive coding to a Gaussian

quantization operation and implementing such an operation using low-density generator matrix codes.

The effectiveness of this scheme is verified through extensive simulation experiments.

Index Terms

Lossy source coding, low-density generator matrix, message-passing algorithm, multiple description

coding, quantization splitting.

I. INTRODUCTION

Multiple description coding is a classic problem in network information theory. El Gamal and

Cover [1] established a general inner bound of the 2-description rate region, commonly referred

to as the EGC region. Ozarow [2] proved that the EGC region is tight in the quadratic Gaussian

case. In fact, it has been shown, by refining and generalizing Ozarow’s proof technique, that

a natural extension of the EGC region to the L-description case is tight for Gaussian multiple

description coding with individual and central distortion constraints [3]–[5].
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Driven by a wide range of potential applications (say, multimedia data transmission over lossy

networks), the code design aspect of multiple description coding has also received considerable

attention. Indeed, a number of practical multiple description coding schemes have been proposed

over the last two decades by leveraging various quantization and signal processing techniques,

e.g., scalar quantization [6]–[12], trellis-coded quantization [13], lattice vector quantization [14]–

[19], correlating transforms [20], [21], and Delta-Sigma quantization [22]. It is worth noting that

research work on code design has been largely focused on the quadratic Gaussian case, which is

the only case where the 2-description rate region has been completely characterized. However,

this is not a severe limitation since coding schemes developed for Gaussian sources often have

certain performance guarantee when adopted for other continuous-valued sources due to the

extremal properties of the Gaussian distribution [23].

In view of the recent success of low-density generator matrix (LDGM) codes for lossy source

coding [24]–[27], it is natural to investigate the application of these codes to multiple description

coding. As a first step in this direction, we shall explore an alternative implementation of the

Gaussian 2-description coding scheme proposed in [19] with lattice codes replaced by LDGM

codes as well as the extension to the general L-description case. Although we shall follow

the general strategy of [19], [28] by reducing the Gaussian multiple description problem to

a sequence of Gaussian quantization problems via Gram-Schmidt orthogonalization, there are

several noteworthy conceptual differences.

1) A direct calculation of the coefficients in Gram-Schmidt orthogonalization, though possible

for the 2-description case [19], appears to be cumbersome in the general setting. Instead,

we shall exploit the special structure of the covariance matrix associated with the sum-rate

optimal EGC region, which not only simplifies the calculation, but also leads to an efficient

implementation of Gram-Schmidt orthogonalization.

2) We give a new interpretation of the quantization splitting method developed in [19], [28]

by eliminating the use of conditional codebooks.

The remainder of this paper is organized as follows. In Section II we show that the coding

problem for an arbitrary point on the dominant face of an L-description EGC region can be

converted to that for a vertex of a K-description EGC region for some K ≤ 2L− 1, where the

latter problem can be solved via successive coding; moreover, in the quadratic Gaussian case
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each step in successive coding can be reduced to a Gaussian quantization operation. In Section

III we propose a practical Gaussian multiple description coding scheme by implementing each

Gaussian quantization operation using LDGM codes. The effectiveness of this scheme is verified

through extensive simulation experiments. We conclude the paper in Section IV.

II. EGC REGION, SUCCESSIVE CODING, AND QUANTIZATION SPLITTING

Let {X(t)}∞t=1 be a stationary and memoryless process with marginal distribution pX on X

and d : X × X̂ → [0,∞) be a distortion measure, where X and X̂ are respectively the source

alphabet and the reconstruction alphabet. We say a rate tuple (R1, · · · , RL) is achievable subject

to individual distortion constraints d{ℓ}, ℓ = 1, · · · , L, and central distortion constraint d{1,··· ,L}

if given any ϵ > 0 there exist, for all sufficiently large n, encoding functions f
(n)
ℓ : X n →

{1, · · · , ⌊2n(Rℓ+ϵ)⌋}, ℓ = 1, · · · , L, and decoding functions g
(n)
{ℓ} : {1, · · · , ⌊2n(Rℓ+ϵ)⌋} → X̂ n,

ℓ = 1, · · · , L, and g
(n)
{1,··· ,L} :

∏L
ℓ=1{1, · · · , ⌊2n(Rℓ+ϵ)⌋} → X̂ n such that

1

n

n∑
t=1

E[d(X(t), X̂{ℓ}(t))] ≤ d{ℓ} + ϵ, ℓ = 1, · · · , L,

1

n

n∑
t=1

E[d(X(t), X̂{1,··· ,L}(t))] ≤ d{1,··· ,L} + ϵ,

where X̂n
{ℓ} = g

(n)
{ℓ}(f

(n)
ℓ (Xn)), ℓ = 1, · · · , L, and X̂n

{1,··· ,L} = g
(n)
{1,··· ,L}(f

(n)
1 (Xn), · · · , f (n)

L (Xn)).

The union of such rate tuples, denoted as R(d{1}, · · · , d{L}, d{1,··· ,L}), is called the L-description

rate region subject to individual distortion constraints d{ℓ}, ℓ = 1, · · · , L, and central distortion

constraint d{1,··· ,L}. Note that more generally one can impose a distortion constraint for each non-

empty subset of {1, · · · , L}. We choose the current definition of the L-description rate region

for the following reasons: 1) the L-description rate region subject to individual and central

distortion constraints has been completely characterized in the quadratic Gaussian case; 2) the

current definition is suitable for the case where the distortion constraints are only imposed for

the worst case scenario (i.e., reconstruction based on a single description) and the best case

scenario (i.e., reconstruction based on the complete set of descriptions).
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A. EGC Region and Successive Coding

For any L auxiliary random variables U{1}, · · · , U{L} jointly distributed with the generic source

variable X , we define R(pU{1},··· ,U{L}|X) as the set of rate tuples (R1, · · · , RL) satisfying∑
ℓ∈A

Rℓ ≥
∑
ℓ∈A

H(U{ℓ})−H(U{ℓ}, ℓ ∈ A|X),

∅ ⊂ A ⊆ {1, · · · , L}.

Let P(d{1}, · · · , d{L}, d{1,··· ,L}) be the set of conditional distributions pU{1},··· ,U{L}|X such that

E[d(X, g{ℓ}(U{ℓ}))] ≤ d{ℓ}, ℓ = 1, · · · , L, (1)

E[d(X, g{1,··· ,L}(U{1}, · · · , U{L}))] ≤ d{1,··· ,L} (2)

for some functions g{ℓ}, ℓ = 1, · · · , L, and g{1,··· ,L}. The EGC regionREGC(d{1}, · · · , d{L}, d{1,··· ,L})

is defined1 as the convex closure of ∪
pU{1},··· ,U{L}|X

∈P(d{1},··· ,d{L},d{1,··· ,L})

R(pU{1},··· ,U{L}|X).

It is known [3] that

REGC(d{1}, · · · , d{L}, d{1,··· ,L})

⊆ R(d{1}, · · · , d{L}, d{1,··· ,L}).

Roughly speaking, one may view U{ℓ}, ℓ = 1, · · · , L, as L descriptions of source X; more-

over, g{1}(U{ℓ}), ℓ = 1, · · · , L, can be interpreted as the reconstructions based on individual

descriptions while g{1,··· ,L}(U{1}, · · · , U{L}) can be interpreted as the reconstruction based on the

complete set of descriptions.

Henceforth we shall primarily focus on R(pU{1},··· ,U{L}|X) and simply refer to it as the EGC

region when no confusion can arise. As observed in [4], [28], R(pU{1},··· ,U{L}|X) is a contra-

polymatroid and its vertices can be easily characterized. Specifically, (R1(π), · · · , RL(π)) is a

1Note that REGC(d{1}, · · · , d{L}, d{1,··· ,L}) is consistent with the standard definition of the EGC region for the 2-description
case [1]. More precisely, REGC(d{1}, · · · , d{L}, d{1,··· ,L}) becomes the EGC* region (an antecedent version of the EGC region)
when L = 2, which is known to be equivalent to the EGC region [29].
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vertex of R(pU{1},··· ,U{L}|X) for every permutation π on {1, · · · , L}, where

Rπ(1)(π) = I(X;U{π(1)}), (3)

Rπ(ℓ)(π) = I(X,U{π(1)}, · · · , U{π(ℓ−1)};U{π(ℓ)}),

ℓ = 2, · · · , L. (4)

The dominant face of R(pU{1},··· ,U{L}|X), denoted as D(pU{1},··· ,U{L}|X), is the set of rate tuples

in R(pU{1},··· ,U{L}|X) satisfying

L∑
ℓ=1

Rℓ =
L∑

ℓ=1

H(U{ℓ})−H(U{1}, · · · , U{L}|X).

It can be readily verified by leveraging (3) and (4) that all the vertices are on the dominant face.

Note that the vertices of R(pU{1},··· ,U{L}|X) are of particular importance since every rate

tuple in R(pU{1},··· ,U{L}|X) is dominated in a component-wise manner by some rate tuple in

D(pU{1},··· ,U{L}|X) and the latter can be expressed as a convex combination of no more than L

vertices. As pointed out in [19], [28], the expression of the vertices (see (3) and (4)) sug-

gests a successive coding scheme which can be roughly described as follows2: for vertex

(R1(π), · · · , RL(π)), one first uses X to produce U{π(1)}, then successively from ℓ = 2 to L, uses

(X,U{π(1)}, · · · , U{π(ℓ−1)}) to produce U{π(ℓ)}. Furthermore, every rate tuple in D(pU{1},··· ,U{L}|X)

is achievable via suitable timesharing of such successive coding schemes.

Now we proceed to propose an efficient implementation of the aforementioned successive

coding scheme in the quadratic Gaussian case, where pX is a Gaussian distribution with mean

zero and variance σ2
X , and d(·, ·) is the standard squared error distortion measure. In this setting

it is known [5] that REGC(d{1}, · · · , d{L}, d{1,··· ,L}) = R(d{1}, · · · , d{L}, d{1,··· ,L}); moreover, it

suffices to assume that U{1}, · · · , U{L} are zero-mean and jointly Gaussian with the generic source

variable X . By exploiting the properties of the Gaussian distribution, the following simplified

version of the successive coding scheme, referred to as the successive quantization scheme, was

developed in [19], [28]. Without loss of generality, we shall assume π(ℓ) = ℓ, ℓ = 1, · · · , L.

2For simplicity, here we describe the scheme in the form of single-letter operation. However, it should be noted that to
approach the information-theoretic limits, one has to implement such a scheme over long blocks.
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Using the Gram-Schmidt orthogonalization procedure, we can write

U{ℓ} = Û{ℓ} +∆ℓ, ℓ = 1, · · · , L,

where

Û{1} = E[U{1}|X],

Û{ℓ} = E[U{ℓ}|X,U{1}, · · · , U{ℓ−1}], ℓ = 2, · · · , L,

and X,∆1, · · · ,∆L are jointly independent and Gaussian. Now (3) and (4) can be rewritten as

Rℓ(π) = I(Û{ℓ};U{ℓ}) = I(Û{ℓ}; Û{ℓ} +∆ℓ),

ℓ = 1, · · · , L. (5)

As observed in [19], [28], one can readily obtain an L-step successive quantization scheme by

interpreting Û{ℓ}, U{ℓ}, and ∆ℓ in (5) respectively as the quantization input, the quantization

output, and the quantization error at step ℓ. Note that the explicit expressions of Û{1}, · · · , Û{L}

in terms of (X,U{1}, · · · , U{L}) depend on the covariance matrix of (X,U{1}, · · · , U{L}), which

in turn depends on distortion constraints d{1}, · · · , d{L}, and d{1,··· ,L}. A direct derivation of

such expression, though possible for the case L = 2 [19], appears to be cumbersome for

general L. Fortunately, it turns out that the special structure of the optimal covariance matrix of

(X,U{1}, · · · , U{L}) allows for an efficient implementation of Gram-Schmidt orthogonalization

as well as a simple calculation of the relevant coefficients.

Without loss of generality, we shall assume 0 < d{ℓ} ≤ σ2
X , ℓ = 1, · · · , L, and 0 < d{1,··· ,L} ≤

σ2
X . Define

RΣ(d{1}, · · · , d{L}, d{1,··· ,L}) = min

{ L∑
ℓ=1

Rℓ :

(R1, · · · , RL) ∈ R(d{1}, · · · , d{L}, d{1,··· ,L})
}
.

It is known [4], [5] that

RΣ(d{1}, · · · , d{L}, d{1,··· ,L}) =

February 5, 2012 DRAFT
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max
a∈[0,σ2

X ]

1

2
log

(
σ4L−2
X (σ2

Xd{1,··· ,L} − ad{1,··· ,L} + aσ2
X)

d{1,··· ,L}
∏L

ℓ=1(σ
2
Xd{ℓ} − ad{ℓ} + aσ2

X)

)
.

In particular,

RΣ(d{1}, · · · , d{L}, d{1,··· ,L})

=


1
2

L∑
ℓ=1

log(
σ2
X

d{ℓ}
), d{1,··· ,L} ≥ d{1,··· ,L}

1
2
log(

σ2
X

d{1,··· ,L}
), d{1,··· ,L} ≤ d{1,··· ,L}

,

where

d{1,··· ,L} =

( L∑
ℓ=1

1

d{ℓ}
− L− 1

σ2
X

)−1

,

d{1,··· ,L} =
L∑

ℓ=1

dℓ − (L− 1)σ2
X .

Therefore, if d{1,··· ,L} ≥ d{1,··· ,L}, then one can decrease d{1,··· ,L} until d{1,··· ,L} = d{1,··· ,L} without

affecting RΣ(d{1}, · · · , d{L}, d{1,··· ,L}); similarly, if d{1,··· ,L} ≤ d{1,··· ,L}, then one can decrease one

of d{ℓ}, ℓ = 1, · · · , L, until d{1,··· ,L} = d{1,··· ,L} without affecting RΣ(d{1}, · · · , d{L}, d{1,··· ,L}).

As a consequence, there is no loss of generality in assuming d{1,··· ,L} ≤ d{1,··· ,L} ≤ d{1,··· ,L}. In

this case we have

RΣ(d{1}, · · · , d{L}, d{1,··· ,L})

=
1

2
log

(
σ4L−2
X (σ2

Xd{1,··· ,L} − âd{1,··· ,L} + âσ2
X)

d{1,··· ,L}
∏L

ℓ=1(σ
2
Xd{ℓ} − âd{ℓ} + âσ2

X)

)
,

where â ∈ [0, σ2
X ] is the solution to the following equation(

σ2
Xd{1,··· ,L}

σ2
X − d{1,··· ,L}

+ a

)−1

=
L∑

ℓ=1

(
σ2
Xd{ℓ}

σ2
X − d{ℓ}

+ a

)−1

.

In particular, when d{1} = · · · = d{L} = d, we have

â =
σ4
Xd− Lσ4

Xd{1,··· ,L} − σ2
Xdd{1,··· ,L} + Lσ2

Xdd{1,··· ,L}
(L− 1)(σ2

X − d)(σ2
X − d{1,··· ,L})
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and

RΣ(d, · · · , d, d{1,··· ,L})

=
1

2
log

(
(L− 1)L−1σ2

X(σ
2
X − d{1,··· ,L})

L

LLd{1,··· ,L}(σ2
X − d)(d− d{1,··· ,L})L−1

)
.

Note that in the current setting (1) and (2) can be rewritten as

E[(X − E[X|U{ℓ}])
2] ≤ d{ℓ}, ℓ = 1, · · · , L, (6)

E[(X − E[X|U{1}, · · · , U{L}])
2] ≤ d{1,··· ,L}. (7)

It is known [4], [5] that if U{1}, · · · , U{L} are zero-mean and jointly Gaussian with X such that

E[XU{ℓ}] = σ2
X , ℓ = 1, · · · , L, (8)

E[U{ℓ}U{ℓ′}] =

 σ2
X + σ2

{ℓ}, ℓ = ℓ′

σ2
X − â, ℓ ̸= ℓ′

, (9)

where σ2
{ℓ} =

σ2
Xd{ℓ}

σ2
X−d{ℓ}

, then rate tuples in D(pU{1},··· ,U{L}|X) achieve the minimum sum rate

RΣ(d{1}, · · · , d{L}, d{1,··· ,L}) and distortion constraints (6) and (7) are satisfied; the corresponding

R(pU{1},··· ,U{L}|X) will be referred to as the sum-rate optimal Gaussian EGC region. Now we

proceed to give an explicit construction of such (U{1}, · · · , U{L}). Let

σ2
{1,··· ,ℓ} =

(
ℓ∑

i=1

(
σ2
{i} + â

)−1

)−1

− â, ℓ = 2, · · · , L.

Note that

â =
√
(σ2

{1,··· ,ℓ−1} − σ2
{1,··· ,ℓ})(σ

2
{ℓ} − σ2

{1,··· ,ℓ})− σ2
{1,··· ,ℓ},

ℓ = 2, · · · , L.

Let N{1,··· ,L} and N ′
{1,··· ,ℓ}, ℓ = 2, · · · , L, be L zero-mean Gaussian random variables, where the

variance of N{1,··· ,L} is σ2
{1,··· ,L} and the rest have unit variance. We assume that X , N{1,··· ,L},

and N ′
{1,··· ,ℓ}, ℓ = 2, · · · , L, are jointly independent. One can successively construct

N{1,··· ,ℓ}
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9

= N{1,··· ,ℓ+1} +
√

σ2
{1,··· ,ℓ} − σ2

{1,··· ,ℓ+1}N
′
{1,··· ,ℓ+1}

from ℓ = L− 1 to 1. Now let

U{1,··· ,ℓ} = X +N{1,··· ,ℓ}, ℓ = 1, · · · , L,

U{ℓ} = U{1,··· ,ℓ} −
√

σ2
{ℓ} − σ2

{1,··· ,ℓ}N
′
{1,··· ,ℓ},

ℓ = 2, · · · , L.

It can be verified that the constructed (U{1}, · · · , U{L}) satisfies (8) and (9). Note that (U1, · · · , U{ℓ})−

U{1,··· ,ℓ} − (X,U{ℓ+1}, · · · , U{L}) form a Markov chain, ℓ = 2, · · · , L. Therefore, we have

Û{1} = X,

Û{ℓ} = E[U{ℓ}|X,U{1,··· ,ℓ−1}] = γℓ−1X + βℓ−1U{1,··· ,ℓ−1},

ℓ = 2, · · · , L, (10)

where

γℓ−1 = 1 +
â

σ2
{1,··· ,ℓ−1}

,

βℓ−1 = −
â

σ2
{1,··· ,ℓ−1}

.

It is easy to see that

U{1,··· ,ℓ} = ηℓ−1U{1,··· ,ℓ−1} + η̄ℓ−1U{ℓ}, ℓ = 2, · · · , L, (11)

where

ηℓ−1 = 1− η̄ℓ−1

=

√
σ2
{ℓ} − σ2

{1,··· ,ℓ}√
σ2
{1,··· ,ℓ−1} − σ2

{1,··· ,ℓ} +
√
σ2
{ℓ} − σ2

{1,··· ,ℓ}

.

This recurrence relation leads to an efficient implementation of Gram-Schmidt orthogonalization
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(see Fig. 1). It can also be verified that

E[X|U{ℓ}] = α{ℓ}U{ℓ}, ℓ = 1, · · · , L, (12)

E[X|U{1}, · · · , U{ℓ}] = E[X|U{1,··· ,ℓ}] = α{1,··· ,ℓ}U{1,··· ,ℓ},

ℓ = 2, · · · , L, (13)

E[∆2
1] = σ2

{1},

E[∆2
ℓ ] = σ2

{ℓ} −
â2

σ2
{1,··· ,ℓ−1}

, ℓ = 2, · · · , L,

where

α{ℓ} =
σ2
X

σ2
X + σ2

{ℓ}
,

α{1,··· ,ℓ} =
σ2
X

σ2
X + σ2

{1,··· ,ℓ}
.

In particular, when d{1} = · · · = d{ℓ} = d, we have

σ2
{1} = · · · = σ2

{L} =
σ2
Xd

σ2
X − d

, σ2,

σ2
{1,··· ,ℓ} =

1

ℓ
σ2 − ℓ− 1

ℓ
â =

σ2
Xd

ℓ(σ2
X − d)

− ℓ− 1

ℓ
â,

ℓ = 2, · · · , L,

U{1,··· ,ℓ} =
ℓ− 1

ℓ
U{1,··· ,ℓ−1} +

1

ℓ
U{ℓ} =

1

ℓ

ℓ∑
i=1

U{i},

ℓ = 2, · · · , L,

E[∆2
1] = σ2,

E[∆2
ℓ ] = σ2 − (ℓ− 1)â2

σ2 − (ℓ− 2)â
, ℓ = 2, · · · , L.

It should be pointed out that although we have mainly focused on the minimum sum rate,

one can obtain similar results in a more general setting. Indeed, it can be shown by leveraging

the construction in [5] that the Gram-Schmidt orthogonalization procedure can be simplified in

essentially the same manner for a vertex that achieves a general minimum weighted sum rate.

The details are left to the interested reader.
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Fig. 1. Successive quantization scheme for a vertex of the sum-rate optimal Gaussian EGC region.

B. Quantization Splitting

As mentioned earlier, every rate tuple on the dominant face of an EGC region is achievable

via timesharing of the successive coding schemes for vertices. Alternatively, one can use the

splitting method developed in [19], [28].

Given (X,U{1}, · · · , U{L}), we say (U{1},1, · · · , U{L},1) is split from (U{1}, · · · , U{L}) if U{ℓ},1−

U{ℓ}−(X,U{ℓ′},1, U{ℓ′}, ℓ
′ ̸= ℓ) form a Markov chain for all ℓ. Let U = {U{1},1, U{1}, · · · , U{L},1, U{L}}.

We say µ is a well-ordered permutation on U if U{ℓ},1 is placed before U{ℓ} for all ℓ. For any

U ∈ U , let {U}−µ denote the set of random variables placed before U in µ.

It is known [19], [28] that for any (R1, · · · , RL) ∈ D(pU{1},··· ,U{L}|X), one can find (U{1},1, · · · , U{L},1)

split from (U{1}, · · · , U{L}) and a well-ordered permutation µ such that

Rℓ = Rℓ,1 +Rℓ,2, ℓ = 1, · · · , L,
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where

Rℓ,1 = I(X, {U{ℓ},1}−µ ;U{ℓ},1),

Rℓ,2 = I(X, {U{ℓ}}−µ ;U{ℓ}|U{ℓ},1);

moreover, at least one U{ℓ},1 can be set to zero3 and removed from µ.

Note that Rℓ,2 is expressed as a conditional mutual information. This is why in [19], [28]

conditional codebooks are used in the random coding argument for the splitting method. In fact,

an inspection of the random coding argument in [19], [28] reveals that the resulting scheme

requires one to construct and store 2nRℓ,1 conditional codebooks, each of size 2nRℓ,2 , for the

ℓ-th description. Here we shall give a new interpretation of the splitting method by converting

the expression of Rℓ,2 from a conditional form to an unconditional form and consequently

eliminating the use of conditional codebooks4. In view of Lemma 1 in [29], there exist random

variables U{1},2, · · · , U{L},2 jointly distributed with (X,U{1},1, U{1}, · · · , U{L},1, U{L}) such that

the following properties are satisfied for all ℓ:

P1) U{ℓ},2 is independent of U{ℓ},1;

P2) U{ℓ} is a deterministic function of U{ℓ},1 and U{ℓ},2;

P3) U{ℓ},2 − (U{ℓ},1, U{ℓ})− (X,U{ℓ′},1, U{ℓ′},2, U{ℓ′}, ℓ
′ ̸= ℓ) form a Markov chain.

Let U ′ = {U{1},1, U{1},2, · · · , U{L},1, U{L},2} and µ′ be a permutation on U ′ induced by µ with

U{ℓ} replaced by U{ℓ},2 at the corresponding positions. For any U ∈ U ′, let {U}−µ′ denote the set

of random variables placed before U in µ′. By P2) and P3), we can rewrite Rℓ,1 as

Rℓ,1 = I(X, {U{ℓ},1}−µ′ ;U{ℓ},1).

Moreover, it follows by P1), P2), and P3) that

I(X, {U{ℓ},2}−µ′ ;U{ℓ},2)

= I(X, {U{ℓ},2}−µ′ ;U{ℓ},2|U{ℓ},1) + I(U{ℓ},1;U{ℓ},2)

= I(X, {U{ℓ},2}−µ′ ;U{ℓ},2|U{ℓ},1)

3In this case we have Rℓ,1 = 0 and Rℓ = Rℓ,2 = I(X, {U{ℓ}}−µ ;U{ℓ}).
4More precisely, the new interpretation allows one to replace those 2nRℓ,1 conditional codebooks with a single codebook of

size 2nRℓ,2 .
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= I(X, {U{ℓ}}−µ ;U{ℓ}|U{ℓ},1).

Therefore, we have

Rℓ,2 = I(X, {U{ℓ},2}−µ′ ;U{ℓ},2).

Now by ordering R1,1, R1,2, · · · , RL,1, RL,2 according to µ′, one can readily see that the coding

problem for an arbitrary point on the dominant face of an L-description EGC region can be

converted to that for a vertex of a K-description EGC region for some K ≤ 2L − 1 (due to

the fact that at least one U{ℓ},1 can be set to zero and removed from µ and µ′), where the latter

problem can be solved via successive coding. Note that we essentially split each description into

two coarse descriptions; moreover, according to P2), the original description can be recovered

from the two coarse descriptions.

More concrete results can be obtained in the quadratic Gaussian case. In this setting there is

no loss of generality in assuming that U{1},1, U{1},2, · · · , U{L},1, U{L},2 are zero-mean and jointly

Gaussian with (X,U{1}, · · · , U{L}). Specifically, we can let U{ℓ},1 = U{ℓ} + Zℓ and U{ℓ},2 =

U{ℓ}− bℓZℓ, ℓ = 1, · · · , L, where Zℓ is a Gaussian random variable with mean zero and variance

σ2
Zℓ

, and bℓ =
E[U2

{ℓ}]

σ2
Zℓ

; moreover, Z1, · · · , ZL, and (X,U{1}, · · · , U{L}) are jointly independent.

The values of σ2
Z1
, · · · , σ2

ZL
are determined by (R1, · · · , RL). Note that in the extreme case

when σ2
Zℓ

= ∞, we let U{ℓ},1 = 0 and U{ℓ},2 = U{ℓ}; similarly, when σ2
Zℓ

= 0, we let U{ℓ},1 =

U{ℓ} and U{ℓ},2 = 0. It is easy to verify that P1), P2), and P3) are satisfied; in particular,

we have U{ℓ} = τℓU{ℓ},1 + τ̄ℓU{ℓ},2, ℓ = 1, · · · , L, where τℓ = 1 − τ̄ℓ = bℓ
bℓ+1

. To obtain a

successive quantization scheme, one can apply the Gram-Schmidt orthogonalization procedure

to (U{1},1, U{1},2, · · · , U{L},1, U{L},2) with the projection order specified by µ′.

Now we proceed to give a detailed treatment of the case L = 2. It is known [2], [4], [5]

that there is no loss of generality in assuming d{1,2} ≤ d{1,2} ≤ d{1,2}; moreover, in this setting

R(d{1}, d{2}, d{1,2}) = R(pU{1},U{2}|X), where pU{1},U{2}|X is the conditional Gaussian distribution

specified by (8) and (9) with

σ2
{ℓ} =

σ2
Xd{ℓ}

σ2
X − d{ℓ}

, ℓ = 1, 2,
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â =

√√√√ 2∏
ℓ=1

(
σ2
Xd{ℓ}

σ2
X − d{ℓ}

−
σ2
Xd{1,2}

σ2
X − d{1,2}

)
−

σ2
Xd{1,2}

σ2
X − d{1,2}

.

Note that for any (R1, R2) ∈ D(pU{1},U{2}|X), we can set U{2},1 = 0, U{2},2 = U{2}, and write

R1 = R1,1 +R1,2,

R2 = I(X,U{1},1;U{2}), (14)

where

R1,1 = I(X;U{1},1), (15)

R1,2 = I(X,U{1},1, U{2};U{1},2). (16)

The Gram-Schmidt orthogonalization procedure yields

U{1},1 = E[U{1},1|X] + ∆̃1,

U{2} = E[U{2}|X,U{1},1] + ∆̃2,

U{1},2 = E[U{1},2|X,U{1},1, U{2}] + ∆̃3,

where X, ∆̃1, ∆̃2, ∆̃3 are jointly independent. Therefore, we can rewrite R1,1, R2, and R1,2 as

R1,1 = I(E[U{1},1|X];U{1},1)

= I(E[U{1},1|X];E[U{1},1|X] + ∆̃1),

R2 = I(E[U{2}|X,U{1},1];U{2})

= I(E[U{2}|X,U{1},1];E[U{2}|X,U{1},1] + ∆̃2),

R1,2 = I(E[U{1},2|X,U{1},1, U{2}];U{1},2)

= I(E[U{1},2|X,U{1},1, U{2}];E[U{1},2|X,U{1},1, U{2}]

+ ∆̃3).

It can be verified that

E[U{1},1|X] = X,
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E[U{2}|X,U{1},1]

= X + E[U{2} −X|U{1},1 −X]

= X − â

σ2
{1} + σ2

Z1

(U{1},1 −X)

= ν1X + ν2U{1},1, (17)

E[U{1},2|X,U{1},1, U{2}]

= X + E[U{1},2 −X|U{1},1 −X,U{2} −X]

= X −
σ2
Xσ

2
{2} + â2

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
(U{1},1 −X)

−
σ2
X â+ (σ2

{1} + σ2
Z1
)â

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
(U{2} −X)

= ν3X + ν4U{1},1 + ν5U{2}, (18)

and

E[∆̃2
1] = σ2

{1} + σ2
Z1
,

E[∆̃2
2] = σ2

{2} −
â2

σ2
{1} + σ2

Z1

,

E[∆̃2
3] = σ2

{1} +
(σ2

X + σ2
{1})

2

σ2
Z1

−
σ4
Xσ

2
{2} + 2σ2

X â
2 + (σ2

{1} + σ2
Z1
)â2

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
,

where

ν1 =
σ2
{1} + σ2

Z1
+ â

σ2
{1} + σ2

Z1

,

ν2 = −
â

σ2
{1} + σ2

Z1

,

ν3 =
(σ2

X + σ2
{1} + σ2

Z1
)(σ2

{2} + â)

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
,

ν4 = −
σ2
Xσ

2
{2} + â2

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
,
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ν5 = −
σ2
X â+ (σ2

{1} + σ2
Z1
)â

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
.

Note that

R2 = h(U{2})− h(∆̃2) =
1

2
log

(
σ2
X + σ2

{2}

σ2
{2} −

â2

σ2
{1}+σ2

Z1

)
,

which implies

σ2
Z1

=
â2

σ2
{2} − 2−2R2(σ2

X + σ2
{2})
− σ2

{1}.

In particular, when d{1} = d{2} = d and R1 = R2 = R, we have

R =
1

4
log

(
(σ2

X + σ2)2

σ4 − â2

)
,

and consequently,

σ2
Z1

=
â2

σ2 − 2−2R(σ2
X + σ2)

− σ2 =
√
σ4 − â2,

where

σ2 =
σ2
Xd

σ2
X − d

,

â =
σ2
Xd

σ2
X − d

−
2σ2

Xd{1,2}
σ2
X − d{1,2}

.

The quantization splitting system for the 2-description case is depicted in Fig. 2.

III. A PRACTICAL SCHEME BASED ON LDGM CODES

A. Gaussian Quantization with LDGM Codes

As discussed previously, each stage ℓ in the successive quantization scheme reduces to a

Gaussian quantization operation interpreted as the forward channel U{ℓ} = Û{ℓ} + ∆ℓ, which

we implement based on LDGM codes. Therefore, let us first describe the proposed Gaussian

quantization scheme in a general setting.

Consider an i.i.d. Gaussian source Û ∼ N (0, σ2
Û
) and an additive Gaussian noise channel

U = Û + ∆, where ∆ ∼ N (0, σ2) denotes the noise. Our goal is to construct an n-block

quantizer of rate R = I(Û ;U) + ϵ and codebook C = {un
i : 1 ≤ i ≤ 2nR}, to approximate this
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1

X {1},1
U

{2}
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Û
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Û
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1

1

{1},2
U

1

Fig. 2. Quantization splitting scheme for the Gaussian 2-description case.

Gaussian channel. To this end we need first to construct a finite random variable Ũ over some

finite alphabet Ũ , to approximate U . An additional requirement on Ũ , to be explained shortly, is

that a positive integer ω exists such that 2ωpŨ(ũ) is a positive integer for every ũ ∈ Ũ . Next we

design a multilevel LDGM code [27] to generate the codebook C ⊆ Ũn, such that the marginal

distribution of the codewords approximates Ũ , and thus approximates U as well; finally, given

an input sequence ûn = û(1) · · · û(n), the quantizer output un = u(1) · · ·u(n) is selected from

C using a message passing algorithm.

The multilevel LDGM code is best described by means of its associated factor graph (Fig. 3).

The factor graph is composed of n source nodes {S1, · · · , Sn}, m variable nodes {V1, · · · , Vm},

where m = nR, nω check nodes {C1, · · · , Cnω}, and n network nodes {N1, · · · , Nn}. Every
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variable node Vk is associated to information bit v(k) and is connected by an edge to every

check node Ch such that G(h, k) = 1, where G is some low-density generator matrix of

dimension nω×m over GF (2). Each network node Nl is connected by an edge to check nodes

Cl, Cl+n, · · · , Cl+(ω−1)n, and to source node Sl. Source node Sl is associated to the l-th symbol

û(l) in the input sequence, and Nl is associated to the l-th symbol u(l) of the output sequence

(i.e., codeword). Given an assignment of bit values to the variable nodes, the bit value c(h)

assigned to the check node Ch is computed as the modulo 2 addition of the values in neighboring

variable nodes. The value u(l) in the network node is computed via a mapping applied to the

neighboring check nodes. In other words, u(l) = ϕ(c(l), c(n + l), · · · , c(n(ω − 1) + l), where

ϕ : {0, 1}ω → Ũ is chosen such that |ϕ−1(ũ)|
2ω

= pŨ(ũ) for every ũ ∈ Ũ . Such a mapping is

guaranteed to exist since 2ωpŨ(ũ), ũ ∈ Ũ , are positive integers. Finally, the codebook consists

of all possible sequences un constructed at the network nodes for all possible assignments of

bit values to the variable nodes.

Fig. 3. Factor graph associated to the multilevel LDGM code.

Notice that the MMSE estimator of Û given the variable U is E[Û |U ] = αU , where α =
σ2
Û

σ2
Û
+σ2 .

Thus, if the quantizer output is un then the optimal source reconstruction is αun. Therefore, given

the quantizer input sequence ûn, we formulate the quantizer encoder problem as the problem of

selecting the output sequence un ∈ C such that the mean squared error between ûn and αun to

be minimized.

As a heuristic algorithm to solve the encoder problem we use the belief propagation with

decimation. The algorithm is similar to the message passing algorithm described in [30], [31].

The algorithm description is presented in Fig. 5, and the equations to compute the messages in
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Fig. 4. The notation MA→B is for the message passed by node A to node B. All messages have

two components, except for messages sent by the source nodes, which have |Ũ | components, one

for each symbol ũ ∈ Ũ . Finally, any check node, whose adjacent variable nodes are all fixed,

computes the message to send, using:

M(b) =
1

exp(δ) + exp(−δ)
(c exp((−1)1−bδ)

+ (1− c) exp((−1)bδ)), (19)

for b ∈ {0, 1}, where c equals the fixed value of the check node.

MSl→Nl
(ũ) = exp(−λ(û(l)− αũ)2),

for all ũ ∈ Ũ , 1 ≤ l ≤ n,

MNl→Cl+sn
(b) =

∑
ũ∈Ũ

MSl→Nl
(ũ)

∑
bω∈{0,1}ω
b(s+1)=b
ϕ(bω)=ũ

∏
j=0
j ̸=s

ω−1
MCl+jn→Nl

(b(j))

MCl+sn→Nl
(b) =

1

2
+

(−1)b

2

∏
k∈Bv(l+sn)

(MVk→Cl+sn
(0)−MVk→Cl+sn

(1))

for all b ∈ {0, 1}, 1 ≤ l ≤ n, 0 ≤ s ≤ ω − 1,

MCl+sn→Vk
(b) =

1

2
+

(−1)b

2
(MNl→Cl+sn

(0)−MNl→Cl+sn
(1))

∏
i∈Bv(l+sn)\{k}

(MVi→Cl+sn
(0)−MVi→Cl+sn

(1))

MVk→Cl+sn
(b) =

∏
q∈Ac(k)\{l+sn}

MCq→Vk
(b)

for all b ∈ {0, 1}, k ∈ Bv(l + sn), 1 ≤ l ≤ n, 0 ≤ s ≤ ω − 1.

Fig. 4. Message passing equations. After applying these equations, the components of each message are normalized to sum
up to 1. Ac(k) denotes the set of indices q such that Cq is adjacent to node Vk, and Bv(q) denotes the set of of indices k such
that Vk is adjacent to Cq .

B. A Note on Optimal Ũ

The performance of aforedescribed scheme depends on how well the message passing algo-

rithm solves the encoder problem, but also on the choice of random variable Ũ . The choice

February 5, 2012 DRAFT



20

of Ũ is constrained by the requirement that a positive integer ω exists such that 2ωpŨ(ũ) is

a positive integer for every ũ ∈ Ũ . Notice that this condition also constrains the size of the

alphabet Ũ to be at most 2ω. Therefore it is interesting to consider the problem of optimizing Ũ

subject to fixed ω. In order to formulate this problem we will disregard the dependence on the

particular behavior of the message passing algorithm. Moreover, we will assume that the LDGM

encoder approximates a theoretical random coding scheme5. Then the problem of optimizing Ũ

is equivalent to optimizing the alphabet Ũ and the conditional probability pŨ |Û , formulated as

follows

min
Ũ ,pŨ|Û

E[(Û − αŨ)2] (20)

subject to I(Û ; Ũ) = I(Û ;U), Ũ ⊆ R, and 2ωpŨ(ũ) ∈ N for all ũ ∈ Ũ . This optimization problem

has similar flavor to the problems considered in the context of alphabet constrained rate-distortion

theory for continuous-valued sources in [35], [36], but appears to be more difficult due to the

additional integer constraint. On the other hand, as a practical solution to LDGM code design,

one can modify the requirements to fit the problems solved in [35], [36]. Specifically, one can

replace first Û by the output Ŭ of a fine scalar quantizer; then drop the last constraint in (20),

impose instead the condition that pŨ(ũ) are equal to some fixed values, and use the algorithm

of [36] to determine the optimal alphabet Ũ . Alternatively, upon replacing Û by Ŭ , one can fix

only the size of the alphabet Ũ and determine the probabilities pŨ(ũ) via the algorithm of [35];

then choose an integer ω such that 2ωpŨ(ũ) are close to some integer values.

We leave the quest for a solution algorithm to problem (20) and/or the investigation of the

performance of the aforementioned strategies for future work. In our experiments we confine

ourselves to a simple heuristic for the selection of Ũ , inspired by the central limit theorem

and by the intuition that Ũ has to be a good approximation of variable U . Let W1, · · · ,Wω

be ω independent random variables, uniformly distributed over the alphabet {−1, 1}. Define

W̄ω =
∑ω

j=1 Wi

√
σ2
Û
+σ2

√
ω

. According to the central limit theorem, the sequence of random variables

W̄ω converges to N (0, σ2
Û
+ σ2) as ω →∞. Therefore, we choose Ũ = W̄ω.

5Such an assumption is supported by the results of [27]. Although the argument in [27] is for discrete-valued sources and
bounded distortion measures, it can be extended to cover the quadratic Gaussian case using standard techniques.

February 5, 2012 DRAFT



21

C. Successive Quantization

As discussed in Section II-A, the successive quantization scheme for vertices of the sum-

rate optimal Gaussian EGC region follows the block diagram in Fig. 1. The operation U{ℓ} =

Û{ℓ} + ∆ℓ, at the ℓ-th step, ℓ = 1, · · · , L, is implemented using an n-block multilevel LDGM

code as described in Section III-A, for U = U{ℓ}, Û = Û{ℓ}, and ∆ = ∆ℓ. The input sequence

ûn
{ℓ} = û{ℓ}(1), · · · , û{ℓ}(n) coincides with the source sequence xn = x(1) · · · x(n) for ℓ = 1, and

for ℓ > 1, it is computed based on the sequences un
{κ} output at all previous stages 1 ≤ κ ≤ ℓ−1,

according to the recursive equations (10) and (11), applied symbol by symbol. The sequence un
{ℓ}

output by the quantizer at stage ℓ, is found using the belief propagation algorithm described in

Section III-A. The index iℓ formed out of the nRℓ information bits corresponding to the selected

output is transmitted as the ℓ-th description.

The decoder corresponding to the ℓ-th description receives index iℓ and constructs the cor-

responding codeword un
{ℓ} using the factor graph for the ℓ-th stage LDGM code. The source

reconstruction x̂n
{ℓ} is formed by x̂{ℓ}(l) = α{ℓ}u{ℓ}(l), 1 ≤ l ≤ n, according to (12).

Finally, the central decoder receives all indices i1, · · · , iL, recovers un
{1}, · · · , un

{L}, and based

on them constructs the sequence un
{1,··· ,L} using (11) recursively. Then the source reconstruction

is generated according to (13).

D. Quantization Splitting

The procedure of quantization splitting for the 2-description case is illustrated in the block

diagram of Fig. 2. It consists of three successive n-block quantizers implemented using multilevel

LDGM codes, as described in Section III-A. Specifically, the first quantizer models the forward

channel U{1},1 = X+∆̃1. Its input is the source sequence xn and its output is denoted by un
{1},1.

The second quantizer approximates the channel U{2} = Û{2} + ∆̃2. Its n-block input sequence

ûn
{2} is constructed based on xn and un

{1},1 according to (17) as shown in the block diagram. Its

output is denoted by un
{2}. Finally, the third quantizer models the channel U{1},2 = Û{1},2 + ∆̃3,

with input ûn
{1},2 generated from xn, un

{1},1, and un
{2} using (18). Its output is denoted by un

{1},2.

Let i1, i2, i3 denote the information bit sequences corresponding to the outputs of the three

quantizers, respectively. Then indices i1 and i3 form the first description, while i2 constitutes the

second description. The decoder of the first description receives i1 and i3, recovers un
{1},1 and

un
{1},2, based on which it generates un

{1}, and further x̂n
{1} as the source reconstruction, using the

February 5, 2012 DRAFT



22

operations described in Fig. 2. The decoder of the second description receives index i2, recovers

un
{2}, and generates the source reconstruction x̂n

{2} according to Fig. 2. When both descriptions

are received at the decoder, the sequence un
{1,2} is generated from un

{1} and un
{2}, which is used

to further generate the source reconstruction x̂n
{1,2} as in Fig. 2.

E. Experimental Results

We have tested the proposed successive quantization and quantization splitting scheme for an

i.i.d. zero-mean unit-variance Gaussian source. We have considered input sequences of various

lengths n = 100, 1000 and 10000. In all our tests we set η = 0.9, and ω = 4. The degree

distributions of the low-density generator matrices used in our simulations are obtained from the

website (http://lthcwww.epfl.ch.research/ldpcopt) or by implementing the algorithm in [32]. We

use damping as in [25], [31] in our message passing algorithm, if the messages do not converge

after 30 iterations.

Tables I and II present the simulation results of the LDGM-based successive quantization

scheme for a 2-description symmetric and asymmetric distortion tuples, respectively. Tables III

and IV exhibit the results of the proposed scheme for an L-description symmetric distortion

tuple with L = 3 and L = 4, respectively. In each table (d{1}, · · · , d{L}, d{1,··· ,L}) denotes

the target distortion tuple, while d̂{1}, · · · , d̂{L}, and d̂{1,··· ,L} denote the empirical distortions;

(R1, · · · , RL) denotes the rate pair used in the experiments, which corresponds to a vertex of the

sum-rate optimal Gaussian EGC region, defined by (5); λi and δi are for the parameters λ and δ,

respectively, used in the message passing algorithm at the encoding stage i, i = 1, · · · , L. Next

we list the values of the parameters for L = 4, which did not fit in Table IV. For n = 10000,

we have λ1 = · · · = λ4 = 1.7 and δ1 = · · · = δ4 = 1.9, while for n = 1000 and n = 100, we

have λ1 = λ2 = 1.6, λ3 = λ4 = 1.7, δ1 = δ2 = 1.8 and δ3 = δ4 = 1.9.

Table V presents the result obtained using the proposed quantization splitting scheme for a

2-description problem with symmetric rates and symmetric distortions: (d{1}, d{2}, d{1,2}) denotes

the target distortion triple and d̂{1}, d̂{2}, d̂{1,2} are the empirical distortions; R1,1, R1,2, R2

represent the rates defined in (15), (16), and (14); λ1,1, δ1,1 and λ1,2, δ1,2 are the parameters

of the LDGM codes used for the first description, in other words for encoder of stage 1 and

encoder of stage 3, respectively; λ2 and δ2 are the parameters of the LDGM code used for the

second description, i.e., for encoder of stage 2.
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From the results showed in the tables, we can observe that the empirical distortions are very

close to the theoretical distortion bounds.

Notice that the results in Tables III and IV show a tendency for the gap between the empirical

and the target distortion to increase with the index of the description. This increase could be

due to the error propagation from an encoding stage to the subsequent one in the successive

coding scheme. Another possible reason could be the suboptimal choice of the LDGM code or

of the parameters involved in the message passing algorithm. However, in the event that error

propagation is the real cause, it is worth discussing methods to reduce its effect.

Some error propagation from an encoding stage to the subsequent one is expected to appear

in any successive coding scheme, be it practical or theoretical (based on random codebooks), not

only when using LDGM codes. In theoretical schemes, as n → ∞, the error in each encoding

stage, and thus, in each description, should go to 0. This suggests increasing n as a practical

solution to keep the errors in all descriptions as well as the error in the central reconstruction

below some desired value. The fact that indeed in practice the errors in all descriptions can go

down as n increases, is validated in our experiments - see the results in Tables I-V. On the other

hand, if increasing the value of n is not an option, then another practical solution to limit the

errors at higher descriptions, is to slightly increase the rates at later encoding stages.

We would also like to mention that the “pure” successive coding scheme is applied only at the

corner points of the rate region, while for rate tuples inside the dominant face of the rate region

time-sharing of successive codes for corner points or quantization splitting have to be used. Both

latter techniques lessen the effect of error propagation by distributing errors more evenly among

descriptions. In particular, for the case of symmetric rates and symmetric distortion constraints,

which is the most common case in practice and is also the most addressed case in the literature,

the errors in all descriptions will be approximately equal as a consequence of equal time-sharing

of the codes for corner points.

IV. CONCLUSION

We have proposed a practical Gaussian multiple description coding scheme based on LDGM

codes for the scenario where the distortion constraints are only imposed on individual descriptions

and the complete set of descriptions. The effectiveness of the proposed scheme is verified through

simulation. It is worth noting for the more general scenario studied in [33], [34], the Gaussian

February 5, 2012 DRAFT



24

n (R1, R2) (d{1}, d{2}, d{1,2}) d̂{1} d̂{2} d̂{1,2} λ1 λ2 δ1 δ2
10000 (1, 1.015) (0.25, 0.25, 0.125) 0.267 0.262 0.135 1.7 1.7 1.9 1.9
1000 (1, 1.015) (0.25, 0.25, 0.125) 0.267 0.264 0.136 1.6 1.6 1.8 1.8
100 (1, 1.015) (0.25, 0.25, 0.125) 0.270 0.272 0.148 1.6 1.6 1.8 1.8

TABLE I
PARAMETERS AND RESULTS FOR A 2-DESCRIPTION CASE WITH SYMMETRIC DISTORTIONS.

n (R1, R2) (d{1}, d{2}, d{1,2}) d̂{1} d̂{2} d̂{1,2} λ1 λ2 δ1 δ2
10000 (1.161, 0.914) (0.2, 0.25, 0.1) 0.211 0.266 0.111 2.6 1.7 2.8 1.9
10000 (1, 1.075) (0.25, 0.2, 0.1) 0.262 0.219 0.111 1.7 2.5 1.9 2.7
1000 (1.161, 0.914) (0.2, 0.25, 0.1) 0.212 0.269 0.113 2.8 1.7 2.8 1.9
1000 (1, 1.075) (0.25, 0.2, 0.1) 0.265 0.220 0.114 1.8 2.6 1.9 2.8
100 (1.161, 0.914) (0.2, 0.25, 0.1) 0.219 0.277 0.121 2.8 1.7 2.8 1.8
100 (1, 1.075) (0.25, 0.2, 0.1) 0.271 0.225 0.122 1.8 2.6 1.9 2.8

TABLE II
PARAMETERS AND RESULTS FOR A 2-DESCRIPTION CASE WITH ASYMMETRIC DISTORTIONS.

n (R1, R2, R3) (d{1}, d{2}, d{3}, d{1,2,3}) d̂{1} d̂{2} d̂{3} d̂{1,2,3} λ1 λ2 λ3 δ1 δ2 δ3
10000 (1.161, 1.165, 1.169) (0.2, 0.2, 0.2, 0.067) 0.210 0.210 0.212 0.076 1.7 1.7 1.7 1.9 1.9 1.9
1000 (1.161, 1.165, 1.169) (0.2, 0.2, 0.2, 0.067) 0.212 0.214 0.217 0.079 1.6 1.6 1.7 1.8 1.9 1.9
100 (1.161, 1.165, 1.169) (0.2, 0.2, 0.2, 0.067) 0.219 0.222 0.226 0.088 1.6 1.6 1.7 1.8 1.9 1.9

TABLE III
PARAMETERS AND RESULTS FOR A 3-DESCRIPTION CASE WITH SYMMETRIC DISTORTIONS.

n (R1, R2, R3, R4) (d{1}, d{2}, d{3}, d{4}, d{1,2,3,4}) d̂{1} d̂{2} d̂{3} d̂{4} d̂{1,2,3,4}
10000 (1.161, 1.163, 1.165, 1.168) (0.2, 0.2, 0.2, 0.2, 0.05) 0.209 0.209 0.211 0.213 0.059
1000 (1.161, 1.163, 1.165, 1.168) (0.2, 0.2, 0.2, 0.2, 0.05) 0.210 0.211 0.213 0.214 0.061
100 (1.161, 1.163, 1.165, 1.168) (0.2, 0.2, 0.2, 0.2, 0.05) 0.218 0.219 0.222 0.227 0.075

TABLE IV
RESULTS FOR A 4-DESCRIPTION CASE WITH SYMMETRIC DISTORTIONS.
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n (R1,1, R1,2, R2) (d{1}, d{2}, d{1,2}) d̂{1} d̂{2} d̂{1,2} λ1,1 λ1,2 λ2 δ1,1 δ1,2 δ2
10000 (0.661, 0.346, 1.007) (0.25, 0.25, 0.125) 0.268 0.269 0.138 1.0 0.3 1.5 1.2 0.6 1.7
1000 (0.661, 0.346, 1.007) (0.25, 0.25, 0.125) 0.272 0.271 0.141 1.0 0.3 1.5 1.2 0.6 1.7
100 (0.661, 0.346, 1.007) (0.25, 0.25, 0.125) 0.278 0.276 0.147 1.0 0.3 1.5 1.2 0.6 1.7

TABLE V
PARAMETERS AND RESULTS FOR A 2-DESCRIPTION CASE WITH SYMMETRIC RATES AND SYMMETRIC DISTORTIONS, USING

QUANTIZATION SPLITTING.

multiple description problem has both a source coding aspect (in the form of quantization) and

a channel coding aspect (in the form of binning). In a certain sense, only the source coding

aspect is addressed in the present work. Therefore, it is of considerable interest to develop more

advanced multiple description techniques by incorporating practical binning methods into the

proposed scheme.
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1: maxiter ← 100, η ← 0.9
2: Ac(k)← {q|G(q, k) = 1}, for all k = 1, · · · ,m
3: Bv(q)← {k|G(q, k) = 1}, for all q = 1, · · · , nω
4: NV ← {1, · · · ,m}
5: for l = 1 to n do
6: Compute MSl→Nl

as in Fig. 4
7: for s = 0 to ω − 1 do
8: MCl+sn→Nl

← (1
2
, 1
2
)

9: for k ∈ Bv(l + sn) do
10: MCl+sn→Vk

← (1
2
, 1
2
)

11: end for
12: end for
13: end for
14: while NV ̸= ∅ do
15: for i = 1 to maxiter do
16: Compute MNl→Cl+sn

, MVk→Cl+sn
as in Fig. 4

17: for all l = 1, · · · , n, s = 0, · · · , ω − 1,
k ∈ Bv(l + sn) ∩NV .

18: for l = 1 to n do
19: for s = 0 to ω − 1 do
20: if Bv(l + sn) ∩NV ̸= ∅ then
21: Compute MCl+sn→Nl

as in Fig. 4
22: for k ∈ Bv(l + sn) ∩NV do
23: Compute MCl+sn→Vk

as in Fig. 4
24: end for
25: else
26: Compute MCl+sn→Nl

as in Eq. (19)
27: end if
28: end for
29: end for
30: if MCq→Vk

converge for all q = 1, · · · , nω,
k ∈ Bv(q) ∩NV then

31: Break
32: end if
33: end for
34: for k ∈ NV do
35: p(Vk = b)←

∏
q∈Ac(k)

MCq→Vk
(b), for b ∈ {0, 1}

36: p(Vk = b)← p(Vk=b)
p(Vk=0)+p(Vk=1)

, for b ∈ {0, 1}
37: if |p(Vk = 0)− p(Vk = 1)| > η then
38: NV ← NV − {k}
39: b̂← argmaxb∈{0,1}p(Vk = b), Vk ← b̂

40: MVk→Cq(b̂)← 1, MVk→Cq(1− b̂)← 0, for all q ∈ Ac(k)
41: end if
42: end for
43: end while

Fig. 5. Message passing algorithm. NV denotes the set of indices k of currently non-decimated variable nodes Vk.
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