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Polar Codes for Multiple Descriptions
Qi Shi, Lin Song, Chao Tian, Senior Member, IEEE, Jun Chen, Member, IEEE,

and Sorina Dumitrescu, Senior Member, IEEE

Abstract— A polar coding scheme is proposed for the multiple
description coding (MDC) problem and is shown to be able to
achieve a certain rate pair on the dominant line of the achievable
rate region determined by El Gamal and Cover. This scheme is
an adaptation of the one developed by Şaşoğlu et al. for the
multiple access channel (MAC) to the MDC setting. The analysis
of the proposed scheme contains two new ingredients: 1) a certain
MDC-MAC duality and 2) an auxiliary random process that
involves both the mutual information and the Bhattacharyya
parameter. The decorrelation effect of the polar transform is
also investigated.

Index Terms— Duality, multiple access channel, multiple
description coding, polar codes, rate region.

I. INTRODUCTION

POLAR codes, invented by Arikan [1], are “the first
provably capacity-achieving codes for any symmetric

input discrete memoryless channel that have low encod-
ing and decoding complexity” [2]. Specifically, the encod-
ing and decoding complexity of polar codes is of order
O(n log n), where n is the code block length. Furthermore,
Arikan and Telatar [3] upper-bounded the block error prob-
ability to order O(2−nβ ), where β ∈ (0, 1

2 ). The most
intriguing aspect of this new coding technique is that through
recursive channel splitting and combining, n uses of the same
memoryless channel are converted to successive uses of n
different channels, and, asymptotically, each one of these
converted channels is extremal in the sense that it is either
a perfect channel or a pure noise channel. Subsequently,
Korada and Urbanke proposed a lossy source coding scheme
based on polar codes [4]; see also [2], [5]. More recently,
Şaşoğlu et al. [6] extended the polar coding technique to the
two-user multiple access channel (MAC).
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Fig. 1. The system diagram of multiple description coding.

Motivated by the success in [6], we apply the polar coding
technique to the multiple description coding (MDC) problem.
In MDC (see Fig. 1), a single source X is encoded into
two descriptions of rate R1 and rate R2, respectively, such
that the reconstruction distortion based on description i is
Di , i = 1, 2, and the reconstruction distortion based on
both descriptions is D0. The goal is to find efficient coding
schemes to achieve the optimal tradeoff between (R1, R2)
and (D0, D1, D2). Unfortunately, the optimal rate-distortion
tradeoff in MDC is unknown except for certain special cases.
In this work we focus on the achievable rate pairs sub-
ject to distortion constraints (D0, D1, D2) determined by El
Gamal and Cover [8] (sometimes referred to as the EGC
rate region) and propose a MDC scheme based on polar
codes.

We show that the proposed scheme can achieve a certain rate
pair on the dominant line of the EGC rate region. The analysis
of the proposed scheme is substantially facilitated by a certain
MDC-MAC duality, which enables us to translate several
results in [6] and [7, Sec. 6] to the MDC setting. However, the
existing analysis techniques in the MAC setting do not lead to
an effective bound on one particular mutual information term,
which is critical in the MDC setting. This problem is resolved
via the analysis of an auxiliary random process obtained by
adding the Bhattacharyya parameter to the aforementioned
mutual information. To the best of our knowledge, this is the
first case in polar coding that such an analysis is used, and
this technique may be of independent interest to the readers.
Our analysis also reveals a decorrelation effect of the polar
transform. Specifically, it is shown that, under certain mild
conditions, the polar transform can asymptotically remove
the symbol-wise dependency between the two descriptions
(which should be contrasted with the fact that the block-wise
dependency is preserved).

The remainder of this paper is organized as follows.
We establish a certain MDC-MAC duality in Section II.
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A joint polarization scheme for the MDC problem can be
found in Section III. The decorrelation effect of the polar
transform is investigated in Section IV. We conclude the paper
in Section V.

For any positive integer q , we use ⊕ and � to denote
modulo-q addition and subtraction, respectively, where the
value of q should be clear from the context. The cardinality
of a set S is denoted by |S|. We use ‖ · ‖ to denote the L1
norm. Throughout this paper, the logarithm function is to base
2 unless stated otherwise.

II. MDC-MAC DUALITY

Let {Xi : i ≥ 1} be an i.i.d. random process with marginal
distribution pX (x) defined over finite alphabet X . Let d j :
X × X̂ j → [0, dmax], j = 0, 1, 2, be bounded distortion
measures, where X̂ j , j = 0, 1, 2, are the reconstruction
alphabets.

Definition 1: A rate-distortion tuple (R1, R2, D0, D1, D2)
is said to be achievable if, for every ε > 0, there exist encoding
functions f (n)j : X n → C j , j = 1, 2, and decoding functions

g(n)0 : C1 × C2 → X̂ n
0 and g(n)j : C j → X̂ n

j , j = 1, 2, such that

1

n
log |C j | ≤ R j + ε, j = 1, 2,

1

n

n∑

i=1

E[di (Xi , X̂ j,i )] ≤ D j + ε, j = 0, 1, 2,

where X̂n
0 = g(n)0 ( f (n)1 (Xn), f (n)2 (Xn))and X̂n

i = g(n)i (f
(n)
i (Xn)),

i = 1, 2.
The following result provides a sufficient condition on the

achievability of (R1, R2, D0, D1, D2). It was shown in [9] that
the convex hull of this achievable region is equivalent to the
one derived by El Gamal and Cover [8].

Theorem 1: A rate-distortion tuple (R1, R2, D0, D1, D2)
is achievable if there exist some probability mass function
pX (x)p(y, z|x) and deterministic mappings φ j , j = 0, 1, 2,
such that

R1 ≥ I (X; Y ),

R2 ≥ I (X; Z),

R1 + R2 ≥ I (X; Y, Z) + I (Y ; Z),

D0 ≥ E[d0(X, φ0(Y, Z))],
D1 ≥ E[d1(X, φ1(Y ))],
D2 ≥ E[d2(X, φ2(Z))].

Remark: The random variables Y and Z can be understood
as the (single-letter) representations of the source X in the
two descriptions, and the decoding functions φ j , j = 0, 1, 2,
reconstruct X based on these representations.

Let q j be a prime number and define Fq j = {0, 1, . . . ,
q j − 1}, j = 1, 2. In this work we focus on a generic
probability mass function P(x, y, z) = pX (x)p(y, z|x) with
the property that the induced random variables Y and Z are
uniformly distributed over Fq1 and Fq2 , respectively. Such a
restriction is justified by the fact that every random variable
can be approximated arbitrarily well by a random variable
uniformly distributed over a sufficiently large alphabet through

a deterministic mapping. We shall write P(x, y, z) simply as
P when no ambiguity arises.

A probability mass function Q(s, u, v) is referred to as a
MDC distribution if the induced random variables U and V are
uniformly distributed over Fq1 and Fq2 , respectively. For any
MDC distribution Q, define

I (0)(Q) = I (S; U, V )+ I (U ; V ),

I (1)(Q) = I (S; U), I (1)(Q) = I (S,U ; V ),

I (2)(Q) = I (S; V ), I (2)(Q) = I (S, V ; U),

K(Q) = (I (0)(Q), I (1)(Q), I (2)(Q)),

J (Q) = {(R1, R2) : R1 + R2 ≥ I (0)(Q),

R j ≥ I ( j )(Q), j = 1, 2}.
Note that

I (0)(Q) = I ( j )(Q)+ I ( j )(Q), j = 1, 2. (1)

Moreover, since I (0)(Q) ≥ I (1)(Q)+ I (2)(Q), the set

F(Q) � {(R1, R2) ∈ J (Q) : R1 + R2 = I (0)(Q)}
is non-empty. It is clear that P is a MDC distribution. We shall
refer to J (P) as the EGC rate region and F(P) as its
dominant line.

Definition 2: Given a MDC distribution Q over S ×
Fq1 ×Fq2 , let Q− and Q+ be two new MDC distributions over
S2 ×Fq1 ×Fq2 and (S2 ×Fq1 ×Fq2)×Fq1 ×Fq2 , respectively,
such that

Q−((s1, s2), u1, v1)

=
∑

u2∈Fq1

∑

v2∈Fq2

Q(s2, u2, v2)Q(s1, u1 ⊕ u2, v1 ⊕ v2),

Q+((s1, s2, u1, v1), u2, v2)

= Q(s2, u2, v2)Q(s1, u1 ⊕ u2, v1 ⊕ v2),

where we have written (s1, s2) in parentheses to indicate that
they should be viewed as a single vector, and similarly for
(s1, s2, u1, v1).

Applying this process to P results in two new MDC
distributions P− and P+. We can obtain 2k MDC distributions

P−···−, . . . , P+···+

by repeating this k times. Similarly to [3] and [6], let
S1, S2, . . . , be an i.i.d. sequence of random variables taking
values in the set {−,+} with Pr(Si = −) = Pr(Si = +) = 1

2 .
Define

P0 = P,

Pk = P Sk
k−1, k ≥ 1.

We shall characterize the polarization behavior of
{I ( j )(Pk) : k ≥ 0}, j = 0, 1, 2, and {I ( j )(Pk) : k ≥ 0},
j = 1, 2 by leveraging the corresponding results in the
MAC setting via a certain MDC-MAC duality. Given random
variables (X,Y, Z) induced by the generic probability mass
function P(x, y, z) in the MDC problem, it is tempting to
view P(x |y, z) as a MAC with inputs (Y, Z) and output X .
Unfortunately, in the MAC setting the two inputs are required
to be independent whereas Y and Z in general are not in MDC.
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Nevertheless, one can create desired independence via a dither-
ing step. Let Z ′ be a random variable uniformly distributed
over Fq2 and independent of (X,Y, Z). Define X̃ = (X, Z ′),
Ỹ = Y , and Z̃ = Z ⊕ Z ′. Note that Ỹ and Z̃ are independent.
Therefore, we can view P̃ as a MAC with inputs (Ỹ , Z̃) and
output X̃ , where P̃ the conditional distribution of X̃ given
(Ỹ , Z̃). It is clear that

I (X̃ ; Ỹ ) = I (X; Y ), (2)

I (X̃ , Z̃; Ỹ ) = I (X, Z; Y ). (3)

Moreover, we have

I (X̃ ; Z̃) = I (X, Z ′; Z ⊕ Z ′)
= H (Z)− H (Z ⊕ Z ′|X, Z ′)
= H (Z)− H (Z |X)
= I (X; Z) (4)

and

I (X̃ , Ỹ ; Z̃) = I (X, Z ′,Y ; Z ⊕ Z ′)
= H (Z)− H (Z ⊕ Z ′|X, Z ′,Y )

= H (Z)− H (Z |X,Y )

= I (X,Y ; Z). (5)

For any two-user MAC Q̃ with input alphabets Fq1 and Fq2 ,
define

I (0)(Q̃) = I (Ũ , Ṽ ; S̃),

I (1)(Q̃) = I (Ũ ; S̃), I (1)(Q̃) = I (Ṽ ; S̃, Ũ),

I (2)(Q̃) = I (S̃; Ṽ ), I (2)(Q̃) = I (Ũ ; S̃, Ṽ ),

J (Q̃) = {(R1, R2) ∈ R
2+ : R1 + R2 ≤ I (0)(Q̃),

R j ≤ I ( j )(Q̃), j = 1, 2},
where S̃ is the output of MAC Q̃ generated by independent
inputs Ũ and Ṽ uniformly distributed over Fq1 and Fq2 ,
respectively. Note that

I (0)(Q̃) = I ( j )(Q̃)+ I ( j )(Q̃), j = 1, 2. (6)

Given a MDC distribution Q, we say Q̃ is a dual MAC1 of Q
(see Fig. 2) if2

I ( j )(Q) = I ( j )(Q̃), j = 0, 1, 2,

I ( j )(Q) = I ( j )(Q̃), j = 1, 2.

It follows by (2)–(5) that P̃ is a dual MAC of P .
Definition 3: Given a MAC Q̃ : Fq1 × Fq2 → S̃, let Q̃− :

Fq1 × Fq2 → S̃2 and Q̃+ : Fq1 × Fq2 → S̃2 × Fq1 × Fq2 be
two new MACs such that

Q̃−((s̃1, s̃2)|ũ1, ṽ1)

= 1

q1q2

∑

ũ2∈Fq1

∑

ṽ2∈Fq2

Q̃(s̃2|ũ2, ṽ2)Q̃(s̃1|ũ1 ⊕ ũ2, ṽ1 ⊕ ṽ2),

Q̃+((s̃1, s̃2, ũ1, ṽ1)|ũ2, ṽ2)

= 1

q1q2
Q̃(s̃2|ũ2, ṽ2)Q̃(s̃1|ũ1 ⊕ ũ2, ṽ1 ⊕ ṽ2).

1For a given MDC distribution Q, its dual MAC is not unique.
2In view of (1) and (6), I (0)(Q) = I (0)(Q̃) is implied by

I ( j)(Q) = I ( j)(Q̃) and I ( j)(Q) = I ( j)(Q̃), j = 1, 2.

Fig. 2. The duality between MDC distribution Q and MAC Q̃, where
I ( j) = I ( j)(Q) = I ( j)(Q̃), j = 0, 1, 2, and I ( j) = I ( j)(Q) = I ( j)(Q̃),
j = 1, 2.

Applying this process to P̃ results in two new MACs
P̃− and P̃+. We can obtain 2k MACs

P̃−···−, . . . , P̃+···+

by repeating this k times. Following the derivation of (2)–(5),
one can verify that

I ( j )(Psk
) = I ( j )(P̃sk

), j = 0, 1, 2, (7)

I ( j )(Psk
) = I ( j )(P̃sk

), j = 1, 2, (8)

for any sk ∈ {−,+}k . Therefore, with our specific choice
of P̃ , the duality is preserved under the polarization procedure.
Define

P̃0 = P̃,

P̃k = P̃ Sk
k−1, k ≥ 1.

It is shown in [6] that

E[I (0)(P̃k)] = I (0)(P̃), k ≥ 0,

which, together with (7), implies

E[I (0)(Pk)] = I (0)(P), k ≥ 0. (9)

One can obtain the following result by translating
[6, Th. 2] and [7, Sec. 6.1.2] to the MDC setting via
(7) and (8). It provides a characterization of the polarization
behavior {I ( j )(Pk) : k ≥ 0}, j = 0, 1, 2. Note that the
polarization behavior of {I ( j )(Pk) : k ≥ 0}, j = 1, 2, is
determined by that of {I ( j )(Pk) : k ≥ 0}, j = 0, 1, 2, via (1).

Theorem 2: The process {K(Pk) : k ≥ 0} converges almost
surely.

1) When q1 and q2 are non-identical primes, the limit of
{K(Pk) : k ≥ 0} belongs to the set

{(0, 0, 0), (�1,�1, 0), (�2, 0,�2), (�1 +�2,�1,�2)}
with probability 1, where � j = log q j , j = 1, 2.

2) When q1 = q2 = q for some prime number q , the limit
of {K(Pk) : k ≥ 0} belongs to the set

{(0, 0, 0), (�,�, 0), (�, 0,�), (2�,�,�), (�, 0, 0)}
with probability 1, where � = log q .
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Fig. 3. The four extremal rate regions when q1 
= q2.

Fig. 4. The five extremal rate regions when q1 = q2.

Theorem 2 implies that, when q1 
= q2, for most of Psk
,

sk ∈ {−,+}k , the rate region J (Psk
) approaches one of the

four extremal ones, as depicted in Fig. 3. The rate region
associated with (0, 0, 0) corresponds to the case that both
descriptions reveal nothing about the source, thus are useless;
the rate regions associated with (�1,�1, 0) and (�2, 0,�2)
correspond to the cases that one description is useless, while
the other is informative; the last case (�1 + �2,�1,�2)
is when both descriptions are informative. From a coding
perspective, (0, 0, 0) corresponds to the case that both coded
symbols can be set arbitrarily, as long as they are revealed to
both the encoder and the decoder; (�1,�1, 0) and (�2, 0,�2)
correspond to the cases that the coded symbol in one of the
descriptions is fully determined by the source vector, while the
other can be set arbitrarily; (�1 +�2,�1,�2) corresponds to
the case that both symbols are fully determined. Note that we
have an additional extremal case3 (�, 0, 0) when q1 = q2
(see Fig. 4), corresponding to the scenario where the two
descriptions jointly are informative whereas each individual
description by itself is useless. From a coding perspective,
this case means that any one symbol in the two descriptions
can be set arbitrarily, and the other is then fully determined.
This will become clearer in Section III when we describe the
coding scheme in more details.

3This extremal case can indeed arise. For example, let X = Y ⊕ Z , where
Y and Z are mutually independent and uniformly distributed over Fq ; it can

be verified that K(Psk
) = (�, 0, 0) for all for sk ∈ {−,+}k .

III. POLAR CODES FOR MULTIPLE DESCRIPTIONS

WITH JOINT POLARIZATION

A. q1 
= q2

Now we proceed to describe the polar coding algorithm
for the case q1 
= q2. Let (Xi ,Yi , Zi ), i = 1, . . . , n,
be n independent copies of (X,Y, Z) distributed according
to P(x, y, z), where n = 2k is the code length. Let Bn denote
the n × n “bit reversal” permutation matrix in [1], and let
Gn = G⊗k

1 be the k-th power Kronecker product of the matrix

G1 �
[

1 0
1 1

]
.

Define P(i) to be the joint distribution of
((Xn,Ui−1, V i−1),Ui , Vi ), i = 1, . . . , n, where Un and
V n are defined via the polar transform:

Un = Y n(BnGn)
−1, V n = Zn(BnGn)

−1. (10)

Note that [1] (see also [6])

P(1) = P−...−, . . . , P(n) = P+...+.

Theorem 2 ensures that for almost all P(i)’s, the triple K(P(i))
is close to one of the extremals when n is sufficiently large.

We shall partition the indices of Un into two sets (a frozen
set and an information set), and similarly for V n . More
precisely, fix some small ε > 0 and let F1 and F2 be subsets
of {1, 2, . . . , n} defined as follows.

1) If I (2)(P(i)) ≤ ε, then i ∈ F1; otherwise, i /∈ F1.
2) If I (1)(P(i)) ≤ ε, then i ∈ F2; otherwise, i /∈ F2.

We denote the joint distribution of (Xn ,Un, V n) as
pXn,U n,V n (xn, un, vn), which is specified by the product dis-
tribution

∏n
i=1 P(xi , yi , zi ) and the polar transform in (10);

the marginals of pXn,U n,V n (xn, un, vn) are written in a similar
way; when clear from the context, we shall omit the subscripts.

For each i ∈ F1, randomly set the value of ui according to
the uniform distribution over Fq1; similarly, for each i ∈ F2,
randomly set the value of vi according to the uniform dis-
tribution over Fq2; uF1 � (ui )i∈F1 and vF2 � (vi )i∈F2

are referred to as the frozen symbols of un and vn , respec-
tively, and are revealed to both the encoder and the decoder.
We define the randomized encoding function f (n)uF1 ,vF2

: X n →
F

n−|F1|
q1 × F

n−|F2|
q2 as follows.

For i = 1, 2, . . . , n, if i /∈ F1, then ui takes value a ∈ Fq1

with probability

pXn,U i ,V i−1(xn, (ui−1, a), v i−1)

pXn,U i−1,V i−1(xn, ui−1, v i−1)
;

if i /∈ F2, then vi takes value a ∈ Fq2 with probability

pXn,U i ,V i (xn, ui , (v i−1, a))

pXn,U i ,V i−1(xn, ui , v i−1)
.

Descriptions 1 and 2 consist of uF c
1

� (ui )i /∈F1 and
vF c

2
� (vi )i /∈F2 , respectively.

With only the first description, the decoder forms
yn = un BnGn ; it further applies φ1 in Theorem 1 to each
symbol of yn individually and then concatenates the outputs
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as the reconstruction. Similarly, with only the second descrip-
tion, the decoder forms zn = vn BnGn; it further applies
φ2 in Theorem 1 to zn and then concatenates the outputs as
the reconstruction. When both descriptions are available, the
decoder can apply φ0 in Theorem 1 to (yi , zi ), i = 1, 2, . . . , n,
and then concatenate the outputs as the reconstruction.

The detailed performance analysis can be found
in Appendix A, where it is shown that the proposed
scheme can asymptotically achieve a certain rate pair on the
dominant line of the EGC rate region.

B. q1 = q2

Now consider the case4 where q1 = q2 = q for some prime
number q . Due to the existence of the additional extremal
case (�, 0, 0), the polar coding scheme and the associated
performance analysis need to be modified. In particular, we
use η(i) to indicate whether or not K(P(i)) is close to
(�, 0, 0), i = 1, 2, . . . , n. Specifically, we fix some small
ε > 0 and define

η(i) =
{

1, ‖K(P(i))− (�, 0, 0)‖ ≤ ε
0, otherwise.

Further define the frozen sets F1 ⊆ {1, 2, . . . , n} and
F2 ⊆ {1, 2, . . . , n} as follows.

1) η(i) = 0: if I (2)(P(i)) ≤ ε, then i ∈ F1, otherwise,
i /∈ F1; if I (1)(P(i)) ≤ ε, then i ∈ F2, otherwise, i /∈ F2.

2) η(i) = 1: i ∈ F1 and i /∈ F2.

With this new definition of F1 and F2, the encoding operation
remains the same as that in Section III-A.

In contrast to the other four extremal cases where the prob-
lem largely boils down to the point-to-point setting, the
case (�, 0, 0) is a non-degenerate one. For this reason, the
performance analysis becomes more difficult. In fact, one
encounters a similar situation in the MAC setting. However,
there is a crucial difference: to handle the additional extremal
case (�, 0, 0), one needs to have an effective bound on the
rate of polarization for {I ( j )(Pk), k ≥ 0}, j = 1, 2, in MDC
whereas such a bound is only available for {I ( j )(P̃k), k ≥ 0},
j = 1, 2, in the dual MAC setting [6].

The following theorem provides the main analytical tool
for dealing with this additional case. Its proof hinges upon
the analysis of an auxiliary random process that involves both
the mutual information and the Bhattacharyya parameter.

Theorem 3: For any β ∈ (0, 1
2 ),

lim
k→∞ Pr

(
‖K(Pk)− (�, 0, 0)‖ ≤ 2−2kβ

)

= Pr
(

lim
k→∞K(Pk) = (�, 0, 0)

)

= lim
k→∞ Pr

(
‖K(Pk)− (�, 0, 0)‖ ≤ 2−2kβ

,

lim
k′→∞

K(Pk′ ) = (�, 0, 0)
)
.

4This case can in principle be circumvented in view of the fact that random
variables with identical alphabets can be approximated by those with non-
identical alphabets. However, as we shall show next, expanding the alphabet
size to make such approximations is in fact unnecessary, which is also less
desirable from a practical perspective.

Proof: It suffices to show that for any β ∈ (0, 1
2 )

lim
k→∞ Pr

(
|I (0)(Pk)−�| ≤ 2−2kβ

, lim
k′→∞

K(Pk′ ) = (�, 0, 0)
)

= lim
k→∞ Pr

(
I ( j )(Pk) ≤ 2−2kβ

, lim
k′→∞

K(Pk′ ) = (�, 0, 0)
)

= Pr
(

lim
k→∞K(Pk) = (�, 0, 0)

)
, j = 1, 2. (11)

It follows by (7) and (8) that (11) is equivalent to

lim
k→∞ Pr

(
|I (0)(P̃k)−�| ≤ 2−2kβ

, lim
k′→∞

K(P̃k′ ) = (�, 0, 0)
)

= lim
k→∞ Pr

(
I ( j )(P̃k) ≤ 2−2kβ

, lim
k′→∞

K(P̃k′ ) = (�, 0, 0)
)

= Pr
(

lim
k→∞K(P̃k) = (�, 0, 0)

)
, j = 1, 2. (12)

It is known [6] that

lim
k→∞ Pr

(
|I ( j )(P̃k)−�| ≤ 2−2kβ

, lim
k′→∞

K(P̃k′ ) = (�, 0, 0)
)

= Pr
(

lim
k→∞K(P̃k) = (�, 0, 0)

)
, j = 1, 2.

Hence, for the purpose of proving (12), it suffices to show that

lim
k→∞ Pr

(
I ( j )(P̃k) ≤ 2−2kβ

, lim
k′→∞

K(P̃k′ ) = (�, 0, 0)
)

= Pr
(

lim
k→∞K(P̃k) = (�, 0, 0)

)
, j = 1, 2.

By symmetry, we shall only consider the case j = 1.
For any α ∈ Fq\{0} and pS,U,V over S × F

2
q , define

Zα(pS,U,V ) = Z(αU ⊕ V |S),
where

Z(αU ⊕ V |S)
= 1

q − 1

∑

a,a′∈Fq
a 
=a′

∑

s

√
pαU⊕V ,S(a, s)pαU⊕V ,S(a′, s).

Let C0(α) = I (1)(P̃0)+ Z(P̃0). For k ≥ 1, define

Ck(α) =
{

I (1)(P̃−
k−1)+ Zα(P̃

+
k−1), Sk = −

I (1)(P̃+
k−1)+ Zα(P̃

−
k−1), Sk = +.

In view of the fact that limk→∞ I (1)(P̃k) ∈ {0,�} and
limk→∞ Zα(P̃k) ∈ {0, 1} almost surely [6], one can readily
show that

Pr
(

lim
k→∞ Ck(α) ∈ {0, 1,�,�+ 1}

)
= 1.

Therefore, if there exists some K > 0 such that

Ck(α) ≤
{

K [Ck−1(α)]2, Sk = −
K Ck−1(α), Sk = +, (13)

then it follows from Lemma 4 in Appendix A that

lim
k→∞ Pr

(
Ck(α) ≤ 2−2kβ

, lim
k′→∞

Ck′ (α) = 0
)

= Pr
(

lim
k→∞ Ck(α) = 0

)
. (14)
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It suffices to verify (13) for k = 1. Let (X̃1, Ỹ1, Z̃1)
and (X̃2, Ỹ2, Z̃2) be two independent copies of (X̃ , Ỹ , Z̃)
(see Section II for the definition of (X̃ , Ỹ , Z̃)), and define

Ũ1 = Ỹ1 � Ỹ2, Ũ2 = Ỹ2,

Ṽ1 = Z̃1 � Z̃2, Ṽ2 = Ṽ2.

Note that

I (1)(P̃+
0 )+ Zα(P̃

−
0 )

= I (X̃1, X̃2, Ũ1, Ṽ1; Ũ2)+ Z(αŨ1 ⊕ Ṽ1|X̃1, X̃2)

= I (X̃1, X̃2, Ũ1; Ũ2)+ I (Ṽ1; Ũ2|X̃1, X̃2, Ũ1)

+Z(αŨ1 ⊕ Ṽ1|X̃1, X̃2)

≤ I (X̃1, X̃2; Ũ1, Ũ2)+ H (Ṽ1|X̃1, X̃2, Ũ1)

+Z(αŨ1 ⊕ Ṽ1|X̃1, X̃2)

= 2I (1)(P̃0)+ H (αŨ1 ⊕ Ṽ1|X̃1, X̃2, Ũ1)

+Z(αŨ1 ⊕ Ṽ1|X̃1, X̃2)

≤ 2I (1)(P̃0)+ H (αŨ1 ⊕ Ṽ1|X̃1, X̃2)

+Z(αŨ1 ⊕ Ṽ1|X̃1, X̃2)

≤ 2I (1)(P̃0)+[(q − 1)(log e)+1]Z(αŨ1 ⊕ Ṽ1|X̃1, X̃2)

(15)

≤ 2I (1)(P̃0)+ [(q − 1)(log e)+ 1]q Zα(P̃0), (16)

where (15) is due to the fact that

H (αŨ1 ⊕ Ṽ1|X̃1, X̃2)

≤ log(1 + (q − 1)Z(αŨ1 ⊕ Ṽ1|X̃1, X̃2))

≤ (q − 1)(log e)Z(αŨ1 ⊕ Ṽ1|X̃1, X̃2),

and (16) is due to the fact [6, Eq. (14)] that
Zα(P̃

−
0 ) ≤ q Zα(P̃0); moreover,

I (1)(P̃−
0 )+ Zα(P̃

+
0 )

≤ κ(q)[I (1)(P̃0)]2 + q[Zα(P̃0)]2, (17)

where (17) follows from Lemma 5 in Appendix A and the
fact [6, Eq. (14)] that Zα(P̃

+
0 ) ≤ q[Zα(P̃0)]2. Therefore, (13)

holds with K = max{[(q −1)(log e)+1]q, κ(q)}. Hence, (14)
is proved. It is known [6] that

Pr
(

lim
k→∞K(P̃k) = (�, 0, 0)

)

= Pr
(

lim
k→∞ min

α∈Fq\{0}
Zα(P̃k) = 0, lim

k→∞K(P̃k) = (�, 0, 0)
)
,

which implies

Pr
(

lim
k→∞K(P̃k) = (�, 0, 0)

)

= Pr
(

lim
k→∞ min

α∈Fq\{0}
Ck(α) = 0, lim

k→∞K(P̃k) = (�, 0, 0)
)
.

(18)

Given any ε > 0 and δ ∈ (0, 1), there exists a k0 such that

Pr
(

Ck(α) ≤ δ, lim
k′→∞

Ck′ (α) = 0
)

≥ Pr
(

Ck(α) ≤ δ
)

− ε (19)

for all k ≥ k0 and α ∈ Fq\{0}. In view of (18), given any
ε > 0 and δ > 0, there exists a k ′

0 such that

Pr
(

min
α∈Fq\{0}

Ck(α) ≤ δ, lim
k′→∞

K(P̃k′ ) = (�, 0, 0)
)

≥ Pr
(

lim
k′→∞

K(P̃k′ ) = (�, 0, 0)
)

− ε (20)

for all k ≥ k ′
0. Let k∗ = max{k0, k ′

0}. We have

Pr
(

lim
k→∞K(P̃k) = (�, 0, 0)

)

≤ Pr
(

Ck∗(α) ≤ δ, lim
k→∞K(P̃k) = (�, 0, 0)

)
+ ε (21)

≤ Pr
(

Ck∗(α) ≤ δ, lim
k→∞ Ck(α) = 0,

lim
k→∞K(P̃k) = (�, 0, 0)

)
+ 2ε (22)

≤ Pr
(

lim
k→∞ Ck(α) = 0, lim

k→∞K(P̃k) = (�, 0, 0)
)

+ 2ε

for some α ∈ Fq\{0}, where (21) and (22) are due to
(20) and (19), respectively. Therefore,

Pr
(

lim
k→∞K(P̃k) = (�, 0, 0)

)

= Pr
(

lim
k→∞ Ck(α) = 0, lim

k→∞K(P̃k) = (�, 0, 0)
)

for some α ∈ Fq\{0}, which, together with (14), implies

Pr
(

lim
k→∞K(P̃k) = (�, 0, 0)

)

= lim
k→∞ Pr

(
min

α∈Fq\{0}
Ck(α) ≤ 2−2kβ

,

lim
k′→∞

K(P̃k′ ) = (�, 0, 0)
)
.

The proof is complete in view of the fact that
Ck(α) ≥ I (1)(P̃k) for all α ∈ Fq\{0}.

With the aid of Theorem 3, one can readily show that the
proposed scheme can asymptotically achieve a certain rate pair
on the dominant line of the EGC rate region. The detailed
performance analysis is relegated to Appendix B.

Remark: In fact, when η(i) = 1, one can assign i into one
of F1 and F2 in an arbitrary manner, and modify the encoding
operation accordingly. Specifically, the encoding operation
remains the same if η(i) = 0; for the case η(i) = 1, there
are two possible scenarios.

1) If i ∈ F1, then vi takes value a ∈ Fq with probability

pXn,U i ,V i (xn, ui , (v i−1, a))

pXn,U i ,V i−1(xn, ui , v i−1)
.

2) If i ∈ F2, then ui takes value a ∈ Fq with probability

pXn,U i ,V i (xn, (ui−1, a), v i )

pXn,U i−1,V i (xn, ui−1, v i )
.

The performance analysis in Appendix B can be applied to
this generalized version of the polar coding scheme with no
essential change. Due to the aforementioned freedom in the
case η(i) = 1, this general scheme can asymptotically achieve
a segment of the dominant line of the EGC rate region if
Pr(limk→∞(I (0)(Pk), I (1)(Pk), I (2)(Pk)) = (�, 0, 0)) > 0.
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IV. THE DECORRELATION EFFECT OF THE

POLAR TRANSFORM

As shown in Section II, the MDC problem considered in this
work can be viewed as the source coding dual of the MAC
coding problem considered in [6]. Underlying this duality
is a dithering-based argument that removes the dependency
between the two (single-letter) descriptions without affecting
the key mutual information quantities. This dithering-based
argument is motivated by our analysis of the polarization
behavior of symbol-wise mutual information between the two
descriptions. It will be seen that, under mild conditions,
the polar transform in (10) has the effect of removing the
symbol-wise dependency between the two descriptions, which
is somewhat surprising in view of the fact that the block-wise
mutual information is invariant under the transformation. For
the purpose of proving this result, we establish a necessary
and sufficient condition for irreducibility and aperiodicity of
a class of Markov chains defined over Fq1 × Fq2 .

For any MDC distribution Q(s, u, v), we define

Ĩ (Q) = I (S; U, V ),

Î (Q) = I (U ; V ).

Note that

I (0)(Pk) = Ĩ (Pk)+ Î (Pk), k ≥ 0,

where Î (Pk) can be viewed as a measure of the symbol-wise
dependency between the two descriptions after the transforma-
tion. This section is devoted to investigating the polarization
behavior of { Î (Pk) : k ≥ 0}. The polarization behavior of
{ Ĩ (Pk) : k ≥ 0} can be deduced from that of {I (0)(Pk) : k ≥ 0}
(see Theorem 2) and { Î (Pk) : k ≥ 0}.

Let Y and Z be two single-letter descriptions of source X .
We assume that Y and Z are uniformly distributed over
Fq1 and Fq2 , respectively, and denote their joint distribution
by pY,Z . Define U−, U+, V −, and V + such that

Y = U− ⊕ U+, Ỹ = U+,
Z = V − ⊕ V +, Z̃ = V +,

or equivalently,

U− = Y � Ỹ , U+ = Ỹ ,

V − = Z � Z̃, V + = Z̃ ,

where (Ỹ , Z̃ ) is an independent copy of (Y, Z). We further
define

U∗− = U∗ � Ũ∗, U∗+ = Ũ∗,
V ∗− = V ∗ � Ṽ ∗, V ∗+ = Ṽ ∗,

where ∗ ∈ {−,+} and (Ũ∗, Ṽ ∗) is an independent copy of
(U∗, V ∗). Recursively, we can define Usk

and V sk
for every

sk ∈ {−,+}k , k ≥ 0, where Usk = Y and V sk = Z
when k = 0. For every sk ∈ {−,+}k , let τ (sk) denote the
number of minus signs (−) in sk . Note that if τ (sk) = 0, then
(Usk

, V sk
) is distributed according to pY,Z ; if τ (sk) > 0, then

(Usk
, V sk

) is the sum of 2τ (s
k)−1 independent copies of (Y, Z)

and 2τ (s
k)−1 independent copies of (q1 � Y, q2 � Z), where

the sum is modulo-q j for the j th entry, j = 1, 2. Define

h̄(sk) = H (Usk
, V sk

) for sk ∈ {−,+}k . Let S1, S2, . . . , be
an i.i.d. sequence of random variables taking values in the set
{−,+} with Pr(Si = −) = Pr(Si = +) = 1

2 . Clearly,

Î (Pk) = �1 +�2 − h̄(Sk), k ≥ 0.

Let T be a distribution over Fq1 × Fq2 . Define
supp(T ) = {(a, b) ∈ Fq1 × Fq2 : T (a, b) > 0}. Let
{W� : � ≥ 0} be a Markov chain induced by T such that
Pr(W�+1 = (a, b)|W� = (a′, b′)) = T (a � a′, b � b′) for all
(a, b) ∈ Fq1 × Fq2 and (a′, b′) ∈ Fq1 × Fq2 , � ≥ 0. It will be
seen that the polarization behavior of { Î (Pk) : k ≥ 0} depends
critically on the properties of this Markov chain with T chosen
to be pY,Z .

A. q1 
= q2

Lemma 1: When q1 and q2 are non-identical primes, the
Markov chain {W� : � ≥ 0} is irreducible and aperiodic if
and only if there exist (ai , bi ) ∈ supp(T ), i = 1, 2, 3, 4, such
that a1 
= a2 and b3 
= b4 (some of these four vectors can be
identical).

Proof: If the condition specified in Lemma 1 is not
satisfied, then one of the following cases must be true.

1) There exists an a∗ ∈ Fq1 such that a = a∗ for all
(a, b) ∈ supp(T ).

2) There exists a b∗ ∈ Fq2 such that b = b∗ for all
(a, b) ∈ supp(T ).

It suffices to consider case 1). Clearly, the Markov chain
{W� : � ≥ 0} is reducible if a∗ = 0. Now assume a∗ 
= 0.
For any (ãi , b̃i ) ∈ supp(T ), i = 1, 2, . . . , L, such that
(ã1 ⊕ · · · ⊕ ãL, b̃1 ⊕ · · · ⊕ b̃L) = (0, 0), one can easily see
that L must be a multiple of q1. Therefore, the Markov chain
{W� : � ≥ 0} cannot be aperiodic.

If the condition specified in Lemma 1 is satisfied (i.e., there
exist (ai , bi ) ∈ supp(T ), i = 1, 2, 3, 4, such that a1 
= a2 and
b3 
= b4), then one of the following cases must be true.

i) There exists (a, b) ∈ supp(T ) such that a 
= 0 and
b 
= 0.

ii) There exist (a, 0) ∈ supp(T ) and (0, b) ∈ supp(T ) such
that a 
= 0 and b 
= 0.

The Markov chain {W� : � ≥ 0} is irreducible in light of the
fact that in case i)

{(ca mod q1, cb mod q2) : c = 0, 1, . . . , q1q2 − 1}
= Fq1 × Fq2,

and in case ii)

{(ca mod q1, db mod q2) : c ∈ Fq1, d ∈ Fq2} = Fq1 × Fq2 .

Since a1 
= a2 and b3 
= b4, it follows that ca1 ⊕ c̃a2 = 0
and db3 ⊕ d̃b4 = 0 for some c ∈ Fq1 , c̃ ∈ Fq1 , d ∈ Fq2 , and
d̃ ∈ Fq2 such that c + c̃ ≤ q1 − 1 and d + d̃ ≤ q2 − 1. Note
that

(q2(ca1 + c̃a2) mod q1, q2(cb1 + c̃b2) mod q2) = (0, 0),

(q1(da3 + d̃a4) mod q1, q1(db3 + d̃b4) mod q2) = (0, 0),

(q1q2a1 mod q1, q1q2b1 mod q2) = (0, 0).
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The Markov chain {W� : � ≥ 0} is aperiodic in light of the
fact that the greatest common divisor of q2(c + c̃), q1(d + d̃),
and q1q2 is 1. This completes the proof of Lemma 1.

Theorem 4: When q1 and q2 are non-identical primes, the
process { Î (Pk), k ≥ 0} converges to 0 almost surely; further-
more,

lim
k→∞ Pr( Î (Pk) ≤ 2−2kβ

) = 1

for any β ∈ (0, 1
2 ).

Proof: Let {W� : � ≥ 0} be the Markov chain induced
by pY,Z . One can readily show by invoking Lemma 1 that
{W� : � ≥ 0} is irreducible and aperiodic. Moreover, it is easy
to see that the equilibrium distribution of {W� : � ≥ 0} is
unif(Fq1 × Fq2), where unif(Fq1 × Fq2) denotes the uniform
distribution over Fq1 × Fq2 . Therefore, in light of the
well-known fact (see [10, Th. 1]) that the state distribution of a
finite-state irreducible and aperiodic Markov chain converges
to the equilibrium distribution with a geometric rate, there exist
constants C > 0 and γ ∈ (0, 1) such that

‖pW� − unif(Fq1 × Fq2)‖ ≤ Cγ �, � ≥ 0,

for any initial state distribution pW0 . Note that if
τ (sk) = 0, then p

U sk
,V sk = pW1 (with W0 = (0, 0)); if

τ (sk) > 0, then p
U sk

,V sk = pW
2τ (s

k)−1
with W0 being the sum

of 2τ (s
k)−1 independent copies of (q1 � Y, q2 � Z) (the sum

is modulo-q j for the j th entry, j = 1, 2). As a consequence,

‖p
U sk

,V sk − unif(Fq1 × Fq2)‖ ≤ Cγ 2τ (s
k )−1
,

which, together with [11, Lemma 2], implies

I (Usk ; V sk
) ≤ (q1q2 log e)Cγ 2τ (s

k )−1
(23)

for every sk ∈ {−,+}k . Therefore, we have

Pr
(

lim
k→∞ Î (Pk) = 0

)

≥ 1 −
∞∑

k=1

Pr(Sk′ = + for all k ′ ≥ k)

= 1,

which implies that { Î (Pk), k ≥ 0} converges to 0 almost surely.
By the weak law of large numbers,

lim
k→∞ Pr(τ (Sk) ≥ βk) = 1, β ∈ (0, 1

2
). (24)

It can be shown by combining (23) and (24) that

lim
k→∞ Pr( Î (Pk) ≤ 2−2kβ

) = 1

for any β ∈ (0, 1
2 ). This completes the proof

of Theorem 4.

B. q1 = q2

Lemma 2: When q1 = q2 = q for some prime number q ,
the Markov chain {W� : � ≥ 0} is irreducible and aperiodic if
and only if supp(T ) contains (at least) three different vectors
(ai , bi ), i = 1, 2, 3, with the following properties:

1) (a1, b1) and (a2, b2) are linearly independent;
2) (a3, b3) = c(a1, b1)⊕ d(a2, b2) with c ⊕ d 
= 1.

Proof: It is clear that the irreducibility of {W� : � ≥ 0}
is equivalent to the fact that supp(T ) contains a basis of F

2
q ,

i.e., two linearly independent vectors (a1, b1) and (a2, b2).
Note that the aperiodicity of {W� : � ≥ 0} is equivalent

to the existence of (ãi , b̃i ) ∈ supp(T ) and ei ∈ Fq ,
i = 1, 2, . . . , L, for some L such that e1(ã1, b̃1) ⊕ · · · ⊕
eL(ãL, b̃L) = (0, 0) and e1 ⊕ · · · ⊕ eL 
= 0. Now assume that
(a3, b3) = c(a1, b1) ⊕ d(a2, b2) with c ⊕ d 
= 1 for some
(a3, b3) ∈ supp(T ). It is easy to see that (a3, b3) ⊕ (q � c)
(a1, b1)⊕(q�d)(a2, b2) = (0, 0) and 1⊕(q�c)⊕(q�d) 
= 0.
Therefore, {W� : � ≥ 0} is aperiodic. Conversely, if there
exist (ãi , b̃i ) ∈ supp(T ) and ei ∈ Fq , i = 1, 2, . . . , L, for
some L such that e1(ã1, b̃1) ⊕ · · · ⊕ eL(ãL, b̃L) = (0, 0)
and e1 ⊕ · · · ⊕ eL 
= 0, then, by writing (ãi , b̃i ) =
ci (a1, b1) ⊕ di (a2, b2), i = 1, 2, . . . , L, we obtain
(e1c1 ⊕ · · · ⊕ eLcL)(a1, b1) ⊕ (e1d1 ⊕ · · · ⊕ eLdL)(a2, b2) =
(0, 0). The linear independence of (a1, b1) and
(a2, b2) implies that e1c1 ⊕ · · · ⊕ eLcL = 0 and
e1d1 ⊕ · · · ⊕ eLdL = 0, which further implies
e1(c1 ⊕d1)⊕· · ·⊕eL(cL ⊕dL) = 0. We must have ci ⊕di 
= 1
for some i since otherwise e1 ⊕ · · · ⊕ eL = 0, which is
contradictory with the assumption that e1 ⊕ · · · ⊕ eL 
= 0.
This completes the proof of Lemma 2.

It is clear that q ≤ |supp(pY,Z)| ≤ q2 when q1 = q2 = q for
some prime number q; furthermore, there are three possible
cases for supp(pY,Z).

1) All vectors in supp(pY,Z) are linearly dependent.
2) supp(pY,Z) contains two linearly independent

vectors (y, z) and (y ′, z′); furthermore, every vector
in supp(pY,Z ) can be written as c(y, z) ⊕ d(y ′, z′) for
some c and d with c ⊕ d = 1.

3) supp(pY,Z) contains two linearly independent
vectors (y, z) and (y ′, z′); furthermore, there exists
a vector in supp(pY,Z ) which can be written as
c(y, z)⊕ d(y ′, z′) for some c and d with c ⊕ d 
= 1.

Theorem 5: For cases 1) and 2),

Î (Pk) = �, k ≥ 0.

For case 3), the process { Î (Pk) : k ≥ 0} converges to 0 almost
surely; furthermore,

lim
k→∞ Pr( Î (Pk) ≤ 2−2kβ

) = 1

for any β ∈ (0, 1
2 ).

Proof: It is easy to see that in case 1)

supp(pY,Z ) = span{(y, z)}
for some (y, z) 
= (0, 0); as a consequence,

supp(p
U sk

,V sk ) = span{(y, z)}

for every sk ∈ {−,+}k . It is also easy to see that in case 2)

supp(pY,Z ) = {c(y, z)⊕ d(y ′, z′) : c ⊕ d = 1}



SHI et al.: POLAR CODES FOR MULTIPLE DESCRIPTIONS 115

for some linearly independent (y, z) and (y ′, z′); therefore,

supp(p
U sk

,V sk )

=
{{c(y, z)⊕ d(y ′, z′) : c ⊕ d = 1}, τ (sk) = 0
{c(y, z)⊕ d(y ′, z′) : c ⊕ d = 0}, τ (sk) > 0

for every sk ∈ {−,+}k . Hence, we have |supp(p
U sk
,V sk )| = q

in both case 1) and case 2), which implies that Usk
and V sk

are related by a bijection, and consequently

I (Usk; V sk
) = �

for every sk ∈ {−,+}k .
The proof for case 3) is essentially the same as that for

Theorem 4 and is thus omitted.
Remark: If Y and Z are not related by a bijection,

then supp(pY,Z ) must contain three different pairs (y, z),
(y, z′), and (ỹ, z̃) with y 
= 0 and y 
= ỹ. It is clear
that (y, z) and (y, z′) are linearly independent. Now write
(ỹ, z̃) = c(y, z)⊕ d(y, z′). Since ỹ = cy ⊕ dy and y 
= ỹ, it
follows that c ⊕ d 
= 1. As a consequence, supp(pY,Z ) must
belong to case 3) if Y and Z are not related by a bijection.
However, the converse is not true. Indeed, it is easy to find
examples in which supp(pY,Z ) belongs to case 3) even though
Y and Z are related by a bijection. Note that if Y = ψ(Z)
for some bijective function ψ , then one can simply generate
one description of rate I (X; Y ) and transform it to the second
description using ψ; the total rate of this simple scheme is
2I (X; Y ), which is less than or equal to the EGC sum rate
I (X; Y, Z)+ I (Y ; Z) (the inequality is strict unless Y and Z
are determined by X).

V. CONCLUSION

A joint polarization scheme for the MDC problem is
proposed in this paper and is shown to be able to asymp-
totically achieve a certain rate pair on the dominant line of
the EGC rate region. However, this is by no means the only
possible polar coding scheme for the MDC problem. It is
expected that polar codes can be incorporated to the rate
splitting method [12] to achieve the entire EGC rate region;
one can also obtain a similar scheme by adapting the method
developed in [13] to the MDC setting.

APPENDIX A
PERFORMANCE ANALYSIS: q1 
= q2

Recall that the probability distribution p(xn, un, vn) is
induced by the product distribution

∏n
i=1 P(xi , yi , zi ) and the

polar transform in (10). Clearly if our encoding procedure
replicates this probability distribution, then at the decoder,
we can recover yn and zn which are distributed jointly
with xn according to

∏n
i=1 P(xi , yi , zi ), and thus meet the

distortion constraints (D0, D1, D2) as given in Theorem 1;
moreover, Theorem 2 and (9) ensure that a certain rate pair
on the dominant line of the EGC rate region is achieved
asymptotically. However, the encoding procedure does not
completely replicate p(xn, un, vn), but only closely approx-
imates it (because the almost independent symbols are chosen
completely independently instead). As such, our goal is to

show that this approximation does not cause significant per-
formance degradation in terms of the achieved distortions, i.e.,
the excess distortions can be bounded.

The following lemma (which is a consequence of Pinsker’s
inequality) is needed for bounding the excess distortions.

Lemma 3 [5, Lemma 5]: Let W denote the transition prob-
ability of a discrete channel, and I (W ) denote the mutual
information between the input X and the output Y when X is
uniformly distributed in the alphabet X , then

∑

x∈X
E

∣∣∣∣
1

|X | − p(x |Y )
∣∣∣∣ ≤

√
(2 log−1 e)I (W ).

Let p̂(xn, un, vn) be a probability distribution defined as
follows

p̂(xn, un, vn) = p(xn)

n∏

i=1

p̂(ui , vi |xn, ui−1, v i−1),

where

p̂(ui , vi |xn, ui−1, v i−1)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

q1q2
, i ∈ F1 and i ∈ F2

1

q2
p(ui |xn, ui−1, v i−1), i /∈ F1 and i ∈ F2

1

q1
p(vi |xn, ui , v i−1), i ∈ F1 and i /∈ F2

p(ui , vi |xn, ui−1, v i−1), i /∈ F1 and i /∈ F2.

For the coding procedure described in Section III-A, we can
write the resultant reconstruction distortion based on the first
description as

D̂1 = E p̂[d(n)1 (Xn, φ
(n)
1 (Un BnGn))],

where d(n)1 and φ(n)1 are, respectively, the n-letter extensions
of d1 and φ1 in Theorem 1. Similarly, the reconstruction dis-
tortion based on the second description and the reconstruction
distortion based on both descriptions are given by

D̂2 = E p̂[d(n)2 (Xn, φ
(n)
2 (V n BnGn))],

D̂0 = E p̂[d(n)0 (Xn, φ
(n)
0 (Un BnGn, V n BnGn))],

where d(n)0 , d(n)2 , φ(n)0 , and φ(n)2 are, respectively, the n-letter
extensions of d0, d2, φ0, and φ2 in Theorem 1. Note that

D1 ≥ E[d1(X, φ1(Y ))]
= Ep[d(n)i (Xn , φ

(n)
1 (Un BnGn))] � D∗

1 ,

D2 ≥ E[d2(X, φ2(Z))]
= Ep[d(n)i (Xn , φ

(n)
2 (V n BnGn))] � D∗

2 ,

D0 ≥ E[d0(X, φ0(Y, Z))]
= Ep[d(n)i (Xn , φ

(n)
0 (Un BnGn, V n BnGn))] � D∗

0 .

Thus we only need to compare D∗
i and D̂i for i = 0, 1, 2. For

this purpose we can write

|D̂1 − D∗
1 | = |E p̂[d(n)1 (Xn, φ

(n)
1 (Un BnGn))]

−Ep[d(n)1 (Xn , φ
(n)
1 (Un BnGn))]|

≤ dmax

∑

xn,un,vn

| p̂(xn, un, vn)− p(xn, un, vn)|.
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Similarly, we have

|D̂2 − D∗
2 | ≤ dmax

∑

xn,un,vn

| p̂(xn, un, vn)− p(xn, un, vn)|,

|D̂0 − D∗
0 | ≤ dmax

∑

xn,un,vn

| p̂(xn, un, vn)− p(xn, un, vn)|.

We can further write
∑

xn,un,vn

| p̂(xn, un, vn)− p(xn, un, vn)|

=
∑

xn,un,vn

p(xn)| p̂(un, vn |xn)− p(un, vn |xn)|

=
∑

xn,un,vn

p(xn)

∣∣∣∣∣

n∏

i=1

p(ui , vi |xn, ui−1, v i−1)

−
n∏

i=1

p̂(ui , vi |xn, ui−1, v i−1)

∣∣∣∣∣

=
∑

xn,un,vn

p(xn)

∣∣∣∣
n∑

i=1

(p(ui , vi |xn, ui−1, v i−1)

− p̂(ui , vi |xn, ui−1, v i−1))

·
⎛

⎝
i−1∏

j=1

p(u j , v j |xn, u j−1, v j−1)

n∏

j=i+1

p̂(u j , v j |xn, u j−1, v j−1)

⎞

⎠
∣∣∣∣ (25)

≤
n∑

i=1

∑

xn,un,vn

p(xn)

∣∣∣∣(p(ui , vi |xn, ui−1, v i−1)

− p̂(ui , vi |xn, ui−1, v i−1))

·
⎛

⎝
i−1∏

j=1

p(u j , v j |xn, u j−1, v j−1)

n∏

j=i+1

p̂(u j , v j |xn, u j−1, v j−1)

⎞

⎠
∣∣∣∣

=
n∑

i=1

∑

xn,ui ,v i

p(xn, ui−1, v i−1)|(p(ui , vi |xn, ui−1, v i−1)

− p̂(ui , vi |xn, ui−1, v i−1))|,
where in (25) the following telescoping expansion [4] is
applied

n∏

i=1

Ai −
n∏

i=1

Bi =
n∑

i=1

(Ai − Bi )

i−1∏

j=1

A j

n∏

j=i+1

B j .

Now one can readily obtain the following upper bounds on
the excess distortions

|D̂ j − D∗
j | ≤ dmax

n∑

i=1

Ei , j = 0, 1, 2,

where

Ei =
qi−1∑

ui =0

q2−1∑

vi=0

Ep|p(ui , vi |Xn,Ui−1, V i−1)

− p̂(ui , vi |Xn,Ui−1, V i−1)|.

We need to bound Ei for each of the four cases.

• Case 1: i ∈ F1 and i ∈ F2. It can be shown that

Ei =
q1−1∑

ui=0

q2−1∑

vi =0

Ep

∣∣∣∣
1

q1q2
− p(ui , vi |Xn,Ui−1, V i−1)

∣∣∣∣

=
∑

xn,ui ,v i

∣∣∣∣
1

q1q2
p(xn, ui−1, v i−1)− p(xn, ui , v i )

∣∣∣∣

=
∑

xn,ui ,v i

∣∣∣∣
1

q1q2
p(xn, ui−1, v i−1)− p(xn, ui , v i )

− 1

q2
p(xn, ui , v i−1)+ 1

q2
p(xn, ui , v i−1)

∣∣∣∣

≤
∑

xn,ui ,v i

∣∣∣∣
1

q1q2
p(xn, ui−1, v i−1)

− 1

q2
p(xn, ui , v i−1)

∣∣∣∣

+
∑

xn,ui ,v i

∣∣∣∣
1

q2
p(xn, ui , v i−1)− p(xn, ui , v i )

∣∣∣∣

=
q2−1∑

vi=0

1

q2

∑

xn,ui ,v i−1

∣∣∣∣
1

q1
p(xn, ui−1, v i−1)

−p(xn, ui , v i−1)

∣∣∣∣

+
∑

xn,ui ,v i

∣∣∣∣
1

q2
p(xn, ui , v i−1)− p(xn, ui , v i )

∣∣∣∣

≤
√
(2 log−1 e)I (Ui ; Xn,Ui−1, V i−1)

+
√
(2 log−1 e)I (Vi ; Xn,Ui , V i−1) (26)

=
√
(2 log−1 e)I (1)(P(i))+

√
(2 log−1 e)I (1)(P(i))

≤
√
(2 log−1 e)I (2)(P(i))+

√
(2 log−1 e)I (1)(P(i))

≤ 2
√
(2 log−1 e)ε,

where (26) follows from Lemma 3.
• Case 2: i /∈ F1 and i ∈ F2. We have

Ei =
q2−1∑

vi=0

Ep

∣∣∣∣
1

q2
− p(vi |Xn,Ui , V i−1)

∣∣∣∣

≤
√
(2 log−1 e)I (1)(P(i))

≤
√
(2 log−1 e)ε.

• Case 3: i ∈ F1 and i /∈ F2. We have

Ei =
q1−1∑

ui =0

Ep

∣∣∣∣
1

q1
− p(ui |Xn,Ui−1, V i−1)

∣∣∣∣

≤
√
(2 log−1 e)I (1)(P(i))

≤
√
(2 log−1 e)I (2)(P(i))

≤
√
(2 log−1 e)ε.

• Case 4: i /∈ F1 and i /∈ F2. For this case, we have Ei = 0.
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Therefore,

|D̂ j − D∗
j | ≤ 2dmaxn

√
(2 log−1 e)ε, j = 0, 1, 2.

Choosing ε = 2−nβ with β ∈ (0, 1
2 ) yields that

|D̂ j − D∗
j | = O(2−nβ

′
), j = 0, 1, 2,

for any β ′ ∈ (0, β).
The following two lemmas provide a way to determine the

limiting rates of the two descriptions.
Lemma 4 [3, Th. 1]: Let S1, S2, . . . , be an i.i.d. sequence

of random variables taking values in the set {−,+} with
Pr(Si = −) = Pr(Si = +) = 1

2 . Let Z0, Z1, . . ., be a
non-negative valued random process where Z0 is a constant,
Zk is a function of S1, . . . , Sk , and

Zk+1 =
{≤ K Z2

k , Sk+1 = −
≤ K Zk, Sk+1 = +

for some finite K > 0. Suppose also that Zk converges almost
surely to Z∞. Then for any β < 1

2 ,

lim
k→∞ Pr(Zk ≤ 2−2kβ

)

= Pr(Z∞ = 0)

= lim
k→∞ Pr(Zk ≤ 2−2kβ

, Z∞ = 0).

Lemma 5 [5, Lemma 6]: For any q , there is a constant κ(q)
such that for any q-ary input channel W

I (W−) ≤ κ(q)[I (W )]2, I (W+) ≤ 2I (W ),

where

W−((s1, s2)|u1) = 1

q

∑

u2∈Fq

W (s2|u2)W (s1|u1 ⊕ u2),

W+((s1, s2, u1)|u2) = 1

q
W (s2|u2)W (s1|u1 ⊕ u2).

We shall show that

I (1)(P−
k ) ≤ κ(q2)[I (1)(Pk)]2, (27)

I (2)(P−
k ) ≤ κ(q1)[I (2)(Pk)]2, (28)

I ( j )(P+
k ) ≤ 2I ( j )(Pk), j = 1, 2, (29)

which, in light of Lemma 4, implies that for any β ∈ (0, 1
2 )

lim
k→∞ Pr

(
I ( j )(Pk) ≤ 2−2kβ

)

= Pr
(

lim
k→∞ I ( j )(Pk) = 0

)

= lim
k→∞ Pr

(
I ( j )(Pk) ≤ 2−2kβ

, lim
k′→∞

I ( j )(Pk′ ) = 0
)
,

j = 1, 2. (30)

It suffices to verify (27)–(29) for k = 0. By symmetry, we
shall only consider the case j = 1. Indeed,5

I (1)(P+
0 ) = I (X1, X2,U1,U2, V1; V2)

= I (X1, X2,Y1,Y2, V1; V2)

≤ 2I (1)(P0) (31)

5With a slight abuse of notation, here we define U1 = Y1 � Y2, U2 = Y2,
V1 = Z1 � Z2, and V2 = Z2.

and

I (1)(P−
0 ) = I (X1, X2,U1; V1)

≤ I (X1, X2,U1,U2; V1)

= I (X1, X2,Y1,Y2; V1)

≤ κ(q2)[I (1)(P0)]2, (32)

where (31) and (32) follow from Lemma 5 with W chosen to
be the channel from Z to (X,Y ).

Note that the rate of description i is R̂i � n−|Fi |
n �i ,

i = 1, 2. We have

lim
n→∞ R̂1 = lim

n→∞
n − |F1|

n
�1

= lim
k→∞

[
1 − Pr

(
I (2)(Pk) ≤ 2−2kβ

)]
�1

=
[
1 − Pr

(
lim

k→∞ I (2)(Pk) = 0
)]
�1 (33)

=
[
Pr

(
lim

k→∞ I (0)(Pk) = �1

)

+ Pr
(

lim
k→∞ I (0)(Pk) = �1 +�2

)]
�1, (34)

where (33) is due to (30), and (34) follows from (1) as well
as Theorem 2. Similarly,

lim
n→∞ R̂2 =

[
Pr

(
lim

k→∞ I (0)(Pk) = �2

)

+ Pr
(

lim
k→∞ I (0)(Pk) = �1 +�2

)]
�2.

Therefore,

lim
n→∞ R̂1 + R̂2

= Pr
(

lim
k→∞ I (0)(Pk) = �1

)
�1

+ Pr
(

lim
k→∞ I (0)(Pk) = �2

)
�2

+ Pr
(

lim
k→∞ I (0)(Pk) = �1 +�2

)
(�1 +�2)

= lim
k→∞ E[I (0)(Pk)]

= I (0)(P), (35)

where (35) is due to (9).
Thus, for any δ > 0 and β ∈ (0, 1

2 ), when n is sufficiently
large, the proposed scheme achieves rate-distortion tuple
(R∗

1 + δ, R∗
2 + δ, D∗

0 + ε(β), D∗
1 + ε(β), D∗

2 + ε(β)),
where ε(β) is of order O(2−nβ ) and (R∗

1 , R∗
2 ) is on the

dominant line of the EGC rate region.

APPENDIX B
PERFORMANCE ANALYSIS: q1 = q2

Now we proceed to bound the excess distortions |D̂ j − D∗
j |,

j = 0, 1, 2. Recall that

|D̂ j − D∗
j | ≤ dmax

n∑

i=1

Ei , j = 0, 1, 2,

where

Ei =
q−1∑

ui =0

q−1∑

vi=0

Ep|p(ui , vi |Xn,Ui−1, V i−1)

− p̂(ui , vi |Xn,Ui−1, V i−1)|.
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For the case η(i) = 0, one can readily show by following the
analysis in Appendix A that

Ei ≤ 2
√
(2 log−1 e)ε.

For the case η(i) = 1, we have

Ei =
q−1∑

ui=0

Ep

∣∣∣∣
1

q
− p(ui |Xn,Ui−1, V i−1)

∣∣∣∣

≤
√
(2 log−1 e)I (1)(P(i))

≤
√
(2 log−1 e)ε.

Therefore,

|D̂ j − D∗
j | ≤ 2dmaxn

√
(2 log−1 e)ε, j = 0, 1, 2,

Choosing ε = 2−nβ with β ∈ (0, 1
2 ) yields that

|D̂ j − D∗
j | = O(2−nβ

′
), j = 0, 1, 2,

for any β ′ ∈ (0, β).
Finally, we shall compute the limiting rates. Note that

lim
n→∞ R̂1 = lim

n→∞
n − |F1|

n
�

= lim
k→∞ Pr

(
‖K(Pk)− (�, 0, 0)‖ > 2−2kβ

,

I (2)(Pk) > 2−2kβ
)
�,

lim
n→∞ R̂2 = lim

n→∞
n − |F2|

n
�

= lim
k→∞ Pr

(
‖K(Pk)− (�, 0, 0)‖ ≤ 2−2kβ

)
�

+ Pr
(
‖K(Pk)− (�, 0, 0)‖ > 2−2kβ

,

I (1)(Pk) > 2−2kβ
)
�.

It then follows by (30) and Theorem 3 that

lim
n→∞ R̂1 = Pr

(
lim

k→∞K(Pk) 
= (�, 0, 0),

lim
k→∞ I (2)(Pk) 
= 0

)
�,

lim
n→∞ R̂2 = Pr

(
lim

k→∞K(Pk) = (�, 0, 0)
)
�

+ Pr
(

lim
k→∞K(Pk) 
= (�, 0, 0),

lim
k→∞ I (1)(Pk) 
= 0

)
�.

In light of Theorem 2,

Pr
(

lim
k→∞K(Pk) 
= (�, 0, 0), lim

k→∞ I (2)(Pk) 
= 0
)

= Pr
(

lim
k→∞K(Pk) ∈ {(�,�, 0), (2�,�,�)}

)
,

Pr
(

lim
k→∞K(Pk) 
= (�, 0, 0), lim

k→∞ I (1)(Pk) 
= 0
)

= Pr
(

lim
k→∞K(Pk) ∈ {(�, 0,�), (2�,�,�)}

)
.

Therefore, we have

lim
n→∞ R̂1 + R̂2 = Pr

(
lim

k→∞ I (0)(Pk) = �
)
�

+Pr
(

lim
k→∞ I (0)(Pk) = 2�

)
2�

= lim
k→∞ E[I (0)(Pk)]

= I (0)(P).
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