
1

Fast Joint Source-Channel Decoding of

Convolutional Coded Markov Sequences with

Monge Property

Sorina Dumitrescu

Abstract

This work addresses the problem of joint source-channel decoding of a Markov sequence which

is first encoded by a source code, then encoded by a convolutional code, and sent through a noisy

memoryless channel. It is shown that for Markov sources satisfying the so-called Monge property, both

the maximum a posteriori probability (MAP) sequence decoding, as well as the soft output Max-Log-

MAP decoding can be accelerated by a factor of K without compromising the optimality, where K is

the size of the Markov source alphabet. The key to achieve a higher decoding speed is a convenient

organization of computations at the decoder combined with a fast matrix search technique enabled by

the Monge property. The same decrease in complexity follows, as a by-product of the development, for

the soft output Max-Log-MAP joint source channel decoding in the case when the convolutional coder

is absent, result which was not known previously.

Key words: Joint source-channel decoding, maximum a posteriori probability sequence estima-

tion, Max-Log-MAP algorithm, Markov sequence, Monge property.

c⃝2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

The author is with the ECE Department at McMaster University, Canada. The author’s e-mail address is so-

rina@mail.ece.mcmaster.ca. This work was presented in part at the 2007 IEEE Information Theory Workshop, Lake Tahoe,

Sept. 2007.

DRAFT

2

I. INTRODUCTION

In traditional communications systems over noisy channels the source coder and channel coder

are designed independently. This separation is motivated by Shannon’s source-channel coding

theorem which states that optimum performance can be achieved asymptotically in the code

block length and complexity, by following this approach. However, in practice, the system’s

design may be constrained by delay and/or complexity. Hence, the separate approach could lead

to severe degradation in performance.

Joint source-channel (JSC) decoding is a way to alleviate this problem, which has received

considerable attention lately. The main idea is that suboptimal design of the source coder fails to

remove completely the redundancy of the source. Thus, some residual redundancy [16] will be

present at the input of the channel coder. This redundancy can be used solely or in addition to the

redundancy provided by the channel coder to correct transmission errors. One way to take into

account the redundancy left after a suboptimal quantization process is by modeling its output

as a discrete Markov source. Many researchers have assumed such a model and investigated the

JSC decoding of a discrete Markov source, which is applied a symbol by symbol source coder,

followed or not by a channel coder, and is sent through a noisy channel. A natural way for

JSC decoding in such systems is by maximum a posteriori probability (MAP) Markov sequence

estimation. In [14], [2] MAP Markov sequence decoders were proposed for the case when the

source codewords have fixed-length and no channel code is applied. In [7], [13], [17], [18] the

case of variable-length source code was treated. MAP Markov sequence decoders for systems

where the fixed-length or variable-length source coder is followed by a convolutional coder were

considered in [12], [6], [8]. Soft output decoders of Markov sequences as components of iterative

JSC decoding schemes have also been investigated [9], [10], [11].

This paper is mainly concerned with JSC decoding of a Markov sequence (MS), which is

first compressed by a source coder (SC), then protected by a convolutional coder (CC), and sent

through a memoryless noisy channel. The problem has been dealt with previously in [12], [10],

[6], [8]. As noted in the previous work the cascaded chain formed by the MS followed by the

SC and the CC (MS→SC→CC) can be modelled as a combined finite-state machine (CFSM),

whose states are all the triples of the states of the three elements in the chain. Then, if the size

DRAFT

3

I of the Markov sequence is not known to the decoder, both the MAP sequence JSC estimation

and the bit-level soft output JSC decoding can be performed on the bit-level trellis generated

by the CFSM in O(TK2N) time, where K is the number of source symbols, N is the number

of states of the CC, and T is the length in bits of the information sequence output by the SC.

[10]. The authors of [12], [6] suggest that the number of states of the CFSM can be reduced

thus decreasing the JSC decoding time. In [8] the case of a feedforward convolutional encoder

is considered. The number of states in the reduced CFSM is quantified to O(K2 + N logN)

as opposed to O(K2N) in the full-size CFSM, which implies that the JSC decoding algorithm

has lower time complexity than the one evaluated in [10] for general CC. Moreover, the authors

of [8] show that the MAP sequence JSC decoding algorithm can be further accelerated without

compromising the optimality, if K > N and if the source satisfies the so-called Monge property.

In this work we address the case of a general convolutional encoder. In the general case a

reduction of the state space of the CFSM is not always possible, hence the results of [8] do not

hold. Therefore, it is desirable to find other means to expedite the decoding. We present in this

work a way to speed up the JSC decoding if the Markov source satisfies the Monge property,

i.e., if

log2 P (ai′2 |ai1) + log2 P (ai′1|ai2) ≤

log2 P (ai′1 |ai1) + log2 P (ai′2 |ai2),

for all 1 ≤ i1 < i2 ≤ K, 1 ≤ i′1 < i′2 ≤ K. (1)

It was shown in [18] that if the discrete Markov source is the output of a scalar quantizer applied

to a continuous source1 whose joint probability density function (pdf) f(u, v) of two consecutive

samples satisfies

log2 f(v
′, u) + log2 f(v, u

′) ≤

log2 f(v
′, u′) + log2 f(v, u), (2)

for any real values u < u′ and v < v′, then the condition (1) holds. Moreover, as proved in

[5], if the second partial derivative ∂2(log f)/∂u∂v exists, then inequality (2) is valid if and

1Although a quantized Markov chain may not necessarily be a Markov chain, here we assume this to be a good approximation.

DRAFT

4

only if ∂2(log f)/∂u∂v ≥ 0 for all real values u, v. The last relation is clearly true when the

joint pdf f(·, ·) is Gaussian. Consequently, the Monge property (1) holds for a scalar quantized

Gaussian-Markov source.

In this work we show how the Monge property, when satisfied by the Markov source, can

be taken advantage of to accelerate by a factor of K the JSC MAP sequence decoding. This

complexity reduction result holds for both cases when the size of the input Markov sequence

is or is not known to the decoder. Our strategy for increased speed is based on a convenient

organization of the computations combined with the use the fast matrix search algorithm of [1]

for finding all column maxima in a totally monotone matrix.

We mention that this efficient matrix search was also applied in [18] to accelerate the MAP

sequence decoding for Markov sources with the Monge property. However, in [18] no channel

coder was present. Incorporating a convolutional coder in the scheme, as in the present work,

introduces new challenges in applying this technique, whose solution is not straightforward. In

[8] these challenges were overcome in the case of feedforward convolutional encoder, based on

the particularities of such an encoder, without providing an obvious extension to the case of

general CC. In this work we clarify how the Monge property can be exploited to reduce the

MAP sequence JSC decoding complexity in the setting of a general CC.

Furthermore, we show that the complexity reduction by a factor of K can be achieved for

soft output Max-Log-MAP JSC decoding as well. Max-Log-MAP algorithms are suboptimal,

but more efficient algorithms for symbol or bit a posteriori probabilities (APPs) computation

[15], where the processing is performed exclusively in the logarithmic domain. Our complexity

reduction result for soft output Max-Log-MAP JSC decoding is new for the case of feedforward

convolutional encoder as well. Moreover, this result can be trivially extended to the case when

the CC is absent, providing an additional contribution over [18].

The paper is organized as follows. In the next section we present the setting considered in

this work and formulate the problem of JSC decoding by MAP sequence estimation. Section 4

introduces the weighted directed acyclic graph which will be used for JSC decoding. It is shown

that the problem of MAP sequence estimation is equivalent to the maximum-weight path problem

in this graph. Section 5 presents a convenient organization of the computations needed to solve

DRAFT

5

fig1.eps

Fig. 1. The sequential operations of the system.

this problem, which will be further useful toward achieving the speed up in the case of Markov

sources with the Monge property. Section 6 shows how the Monge property can be exploited

to accelerate by a factor of K the MAP sequence JSC decoding. Furthermore, in Section 7 we

demonstrate that an analogous technique can be used to achieve the same complexity reduction

of bit-level soft output Max-Log-MAP JSC decoding.

II. PROBLEM FORMULATION

We consider a first order Markov source (MS) over an alphabet of K symbols {a1, a2, · · · , aK},

with conditional probabilities P (ak|aj), 1 ≤ k, j ≤ K, and initial probabilities P (ak), 1 ≤ k ≤

K. Let u = u1u2 · · ·uI denote the sequence generated by the MS. The Markov sequence u is

encoded by a symbol-by-symbol source coder (SC), which can be a fixed or a variable-length

coder, into the bitstream v = v1v2 · · · vT , vt ∈ {0, 1}, 1 ≤ t ≤ T . Let ck denote the binary

codeword assigned to the source symbol ak, 1 ≤ k ≤ K.

Further a convolutional encoder (CC) is applied to the sequence v, generating a new bitstream

x = x1x2 · · · xM , xm ∈ {0, 1}, 1 ≤ m ≤ M . We assume that the CC has rate 1/β, and memory

order µ. The CC itself can be described by a state transition diagram. We denote the states by

S1, · · · , SN , where N = 2µ and S1 is the initial state. For each state Sn and each bit b ∈ {0, 1},

there is a transition with input bit b and some output sequence of β bits b1b2 · · · bβ , from the

state Sn to some state Sn′ .

Finally, the bitstream x is sent through a noisy memoryless channel. The bit sequence received

at the other end is denoted by y = y1y2 · · · yM . The block diagram of the whole process is shown

in Figure 1.

The problem of joint source-channel (JSC) maximum a posteriori probability (MAP) sequence

decoding is, given the sequence y = y1y2 · · · yM output by the noisy channel, to find the input

Markov sequence u = u1u2 · · · uI of maximal a posteriori probability P (u|y).

DRAFT

6

By Bayes’ Theorem we have P (u|y) = P (u)P (y|u)/P (y). Thus, maximizing P (u|y) is

equivalent to maximizing P (u)P (y|u), since y is fixed. On the other hand, the bitstream x is

completely determined by the Markov sequence u and vice versa, thus P (y|u) equals the channel

transition probability Pch(y|x). Since the channel is memoryless, it follows that Pch(y|x) =

ΠM
m=1Pch(ym|xm). Moreover, because u is generated by a first order MS, we obtain that P (u) =

P (u1)Π
I
i=2P (ui|ui−1). Thus, the problem of MAP sequence JSC decoding becomes equivalent to

finding the Markov sequence u = u1u2 · · ·uI and/or the corresponding bitstream x = x1x2 · · · xM

such that the product

P (u1)Π
I
i=2P (ui|ui−1)Π

M
m=1Pch(ym|xm) (3)

is maximized, given the bitstream y = y1y2 · · · yM output by the noisy channel. Note that the

number of source symbols I cannot be inferred from M in the case of a variable-length SC. We

assume for now that I is not made available to the decoder by any other means. Therefore, the

maximization of (3) has to be performed over all sequences u which generate a bitstream v of

length T . Further, notice that maximizing (3) is equivalent to maximizing its base 2 logarithm,

i.e.,

log2 P (u1) +
I∑

i=2

log2 P (ui|ui−1) +
M∑

m=1

log2 Pch(ym|xm) (4)

As noted in [12], [10], [6], the generation of the bitstream x, which is produced by the composite

action of MS, SC and CC, can be modeled by a stochastic finite-state machine, called the

combined finite-state machine (CFSM) in [8], whose states are all the triples (ck, Lj, Sn), 1 ≤

k ≤ K, 1 ≤ j ≤ K − 1, 1 ≤ n ≤ N , where L1, L2, · · · , LK−1 denote the internal nodes of the

binary tree describing the source code.

Therefore, as observed in [12], [10], [6], the JSC MAP sequence decoding can be performed

by running the Viterbi algorithm on the bit-level trellis obtained by expanding in time the state

diagram of the CFSM. Since the total number of states of the CFSM is K(K − 1)N (omitting

those states which can be reached only once in a sequence of transitions), this leads to an

O(TK2N) time decoding algorithm. In [12], [6] it was suggested that the state-space size of

the CFSM can be reduced by eliminating those states unreachable from the initial one, thus

decreasing the decoding time. In [8] the state-space size of the reduced CFSM was evaluated to

O(K2+N logN) for the case of feedforward convolutional encoder, result which establishes to

DRAFT

7

O(TK2 + TN logN) the time complexity of the Viterbi decoding on the reduced CFSM-based

trellis.

However in the setting of a general convolutional coder such a reduction of the CFSM is

not always possible, consequently other means to speed up the JSC decoding are desirable.

The contribution of this work is a strategy to accelerate the JSC decoding for Markov sources

satisfying the Monge property (1). To proceed toward our goal we need to introduce a different

weighted directed acyclic graph (WDAG) G for the joint source-channel decoding. This is

accomplished in the following section. Note that for the development in the next two sections

to hold, the Markov source does not need to satisfy the Monge property.

III. DECODER GRAPH

In this section we describe the WDAG G used for decoding. This graph can be regarded as

a modification of the bit-level trellis. While every branch in the trellis corresponds to decoding

a single bit, in order to obtain this graph we contract every path corresponding to decoding

of a source codeword into a single edge. Intermediate nodes on such a path are not needed

anymore and are therefore eliminated. As a result, our graph has roughly K times less nodes

than the trellis, this reduction leading to a decrease in decoding space complexity. We mention

that the idea of aggregating bit-level branches into codeword-level branches has been used in the

prior literature, for example in [13], [18], for the JSC decoding of variable-length coded Markov

sequences when the CC is absent.

We also point out that the decoder graph considered here differs from the graph used in [8]

for efficient JSC decoding of Markov sources with Monge property, in the case of a feedforward

convolutional encoder. The graph of [8] is also obtained starting from the bit-level trellis by

contracting some paths into edges, but only a subset of the paths corresponding to decoding a

source codeword of minimum size µ (the memory size of the CC). Consequently, the decoder

graph in the present work is less complex.

The WDAG G contains T + 1 layers labelled from 0 to T , where T is the length of the bit

sequence v output by the SC, hence T = M/β. Each layer t, t ≥ 1, corresponds to the t-th bit

of this sequence. The basic idea is to have for each pair (ck, Sn) a corresponding node on each

layer. Such a node corresponds to the state (ck, L1, Sn) in the CFSM, where L1 denotes the root

DRAFT

8

fig2.eps

Fig. 2. Decoder graph G: all transitions starting at layer t and corresponding to source codeword 0.

of the source code tree. In order to take into account the cases when the CFSM can be reduced

as well, we consider only pairs (ck, Sn) such that (ck, L1, Sn) is reachable from the initial state

in the CFSM, and denote by C the set of all these pairs. The nodes on layer t of the graph G

are denoted by (ck, Sn, t) for all 1 ≤ t ≤ T , 1 ≤ k ≤ K and 1 ≤ n ≤ N such that (ck, Sn) ∈ C.

Layer 0 contains only a single node, (c0, S1, 0), which is the source node of the graph. The final

nodes of the graph are all nodes on layer T .

The edges of the graph are all ordered pairs ((ck, Sn, t), (ck′ , Sn′ , t+ |ck′|)) such that there is

a sequence of transitions in the state diagram of the CC from the state Sn to the state Sn′ , with

sequence of input bits ck′ and some sequence of output bits b1b2 · · · bβ|ck′ |. The weight assigned

to such an edge is defined as

log2 Pch(ytβ+1 · · · ytβ+β|ck′ ||b1b2 · · · bβ|ck′ |) +

log2 P (ak′|ak). (5)

Figures 2 and 3 illustrate the transitions starting at some layer t in the decoder graph G

DRAFT

9

fig3.eps

Fig. 3. Decoder graph G: all transitions starting at layer t and corresponding to source codewords 10 or 11.

corresponding to Example 1. To avoid the picture agglomeration we have broken this set of

transitions into two: those corresponding to the codeword 0 (depicted in Figure 2 and those

corresponding to codewords 10 and 11 illustrated in Figure 3.

Example 1. Consider a Markov source over a three-symbol alphabet, the SC with codewords

c1 = 0, c2 = 10, c3 = 11, and a rate 1/2 recursive systematic CC with memory order µ = 2.

Table 1 shows the transition matrix of the CC, where the states are denoted as follows: S1 = 00,

S2 = 01, S3 = 10, S4 = 11.

It is easy to see that any path in the graph G from the source (the node at layer 0) to a final

node can be mapped uniquely to a sequence of Markov source symbols u = u1u2 · · ·uI which

results in a T -length bit sequence after the SC is applied. Moreover, the weight of the path

equals the quantity (4). Therefore the problem of JSC MAP sequence decoding is equivalent

to finding the maximum-weight path from the source to the final node in G. The number of

nodes of this graph is clearly O(T |C|), and the number of edges is O(TK|C|) since there are

K edges starting from each node. Consequently, the maximum-weight path problem can be

DRAFT

10

S1 S2 S3 S4

S1 0/00 1/11

S2 1/11 0/00

S3 1/10 0/01

S4 0/01 1/10

TABLE I

TRANSITION MATRIX OF THE CC OF EXAMPLE 1. THE ENTRIES b/b′1b
′
2 MARK VALID TRANSITIONS WITH INPUT b AND

OUTPUT b′1b
′
2 .

solved in O(TK|C|) time and O(T |C|) space. If the CFSM cannot be reduced then |C| = KN ,

thus leading to the same decoding time complexity as for the bit-level trellis, i.e., O(TK2N).

However, the graph G has fewer nodes, only O(TKN) versus O(TK2N) of the trellis, thus

yielding a space complexity reduced by a factor of K.

In order to achieve the time complexity reduction for Markov sources with the Monge

property we have to further organize the computations for finding the maximum-weight path

in a convenient way. This is the topic of the next section.

IV. NEW ORGANIZATION OF COMPUTATIONS

Before exposing our strategy we need to introduce some notations. For this note that, given

n and k′, there is a unique n′ such that there is a sequence of transitions in the CC diagram

from Sn to Sn′ with input ck′ . We denote this value of n′ by α(n, k′). On the other hand, given

k′ and n′, there may be more values n such that there is a sequence of transitions from Sn to

Sn′ with input ck′ . We denote by α−1(n′, k′) the set of these values of n. Further, note that the

first term in (5) does not depend on k, and since n′ is completely determined by n and k′, it

follows that this term is completely determined by t, n and k′. Therefore we will denote it by

ω(t, n, k′), i.e.,

ω(t, n, k′) ,

log2 Pch(ytβ+1 · · · ytβ+β|ck′ ||b1b2 · · · bβ|ck′ |). (6)

DRAFT

11

For any node ν of G we denote by W (ν) the weight of the maximum-weight path from the

source to that node. Notice that any edge ending in some node (ck′ , Sn′ , t + |ck′|) has to start

from some node on layer t, more specifically, it can start from any node (ck, Sn, t) such that

n ∈ α−1(n′, k′) and (ck, Sn) ∈ C. Therefore the following relation holds

W (ck′ , Sn′ , t+ |ck′|) =

max
n∈α−1(n′,k′),(ck,Sn)∈C

{W (ck, Sn, t) + ω(t, n, k′) +

log2 P (ak′ |ak)}.

Because the term ω(t, n, k′) does not depend on ck we further obtain the following equality

W (ck′ , Sn′ , t+ |ck′|) = max
n∈α−1(n′,k′)

{ω(t, n, k′) +

max
k,(ck,Sn)∈C

(W (ck, Sn, t) + log2 P (ak′|ak))}. (7)

Denote now for all k′, n′ and n ∈ α−1(n′, k′),

Wn(ck′ , Sn′ , t+ |ck′|) , max
k,(ck,Sn)∈C

(W (ck, Sn, t) +

log2 P (ak′|ak)). (8)

Then relation (7) is equivalent to

W (ck′ , Sn′ , t+ |ck′|) = max
n∈α−1(n′,k′)

{ω(t, n, k′) +

Wn(ck′ , Sn′ , t+ |ck′|)}. (9)

Now we are ready to present our strategy to solve the maximum-weight path problem in G. We

proceed in stages from stage 0 to stage T . At each stage t we do not compute the maximum-

weight paths ending at the nodes on layer t, but rather the maximum-weight paths ending at

nodes on later layers, whose last visited node is on layer t. In other words, at stage t we compute

the values W (ck′ , Sn′ , t + |ck′|) for all k′, n′ such that (ck′ , Sn′) ∈ C. These computations are

organized in the following three steps:

1) Compute Wn(ck′ , Sn′ , t+ |ck′ |) according to (8) for all 1 ≤ n′ ≤ N , 1 ≤ k′ ≤ K, such that

(ck′ , Sn′) ∈ C, and n ∈ α−1(n′, k′). Note that the quantities W (ck, Sn, t) needed in (8) are

known because they have been computed at previous stages.

DRAFT

12

2) Compute ω(t, n, k′) defined in (6), for all 1 ≤ n′ ≤ N , 1 ≤ k′ ≤ K, and n ∈ α−1(n′, k′).

3) Compute W (ck′ , Sn′ , t+ |ck′|) for all 1 ≤ n′ ≤ N , and 1 ≤ k′ ≤ K, using relation (9).

Next we evaluate the number of operations required at each step.

Step 1) In order to solve (8) for given k′, n′, n, we need O(|{k|(ck, Sn) ∈ C}|) time. Summing

over all n′, k′, n, and using the fact that n′ is determined when n and k′ are given, we obtain

the total time complexity

O(
K∑

k′=1

N∑
n=1

|{k|(ck, Sn) ∈ C}|) = O(
K∑

k′=1

|C|) = O(K|C|).

Step 2) At this step we need to compute ω(t, n, k′) defined in (6), for all 1 ≤ n ≤ N , 1 ≤ k′ ≤ K.

Recall that the bit sequence b1b2 · · · bβ|ck′ | appearing in (6) is the output of the sequence of

transitions of the CC, starting in state Sn, with sequence of input bits ck′ . Since the channel is

memoryless it follows that:

ω(t, n, k′) =
∑β|ck′ |

j=1 log2 Pch(ytβ+j|bj) =

H(ytβ+1 · · · ytβ+β|ck′ |, b1b2 · · · bβ|ck′ |)×

log2(pe/(1− pe)) + β|ck′| log2(1− pe),

where H(·, ·) denotes the Hamming distance between two bit sequences of the same length

(i.e., the number of positions where the bits differ), and pe denotes the channel bit error rate

(assuming the channel is a binary symmetric channel). In order to find the Hamming distance

in the above expression, O(β|ck′|) bit-level operations are needed. Therefore, to compute all the

values ω(t, n, k′), for , 1 ≤ k′ ≤ K,1 ≤ n ≤ N , the number of operations required is

O(
∑K

k′=1

∑N
n=1 β|ck′|) = O(βN

∑K
k′=1 |ck′|).

This quantity can amount to O(NK2) if the source code tree is very unbalanced (for example

for the Golomb-Rice code). We show however that all the values ω(t, n, k′) can be computed

more efficiently by using the source code tree structure.

Let L be some arbitrary node in the source code tree. Hence L can be an internal node, i.e., a

prefix Lj of some source codeword, or L could be a leaf, i.e., some codeword ck. Let b′1b
′
2 · · · b′β|L|

be the sequence of bits output by the sequence of transitions in the state diagram of the CC start-

ing from the state Sn with input bits L. Denote by h(t, n, L) , H(ytβ+1 · · · ytβ+β|L|, b
′
1b

′
2 · · · b′β|L|).

DRAFT

13

By convention, h(t, n, L) = 0 if L is the root of the source code tree (hence L corresponds to

the empty bit sequence). If L′ is the parent of the node L, then clearly |L′| = |L| − 1 and

b′1b
′
2 · · · b′β(|L|−1) is the sequence of bits output by the sequence of transitions in the state diagram

of the CC starting from the state Sn with input bits L′. It follows that

h(t, n, L) = h(t, n, L′) +

H(ytβ+β(|L|−1)+1 · · · ytβ+β|L|, b
′
β(|L|−1)+1 · · · b′β|L|).

Consequently, h(t, n, L) can be computed from h(t, n, L′) with β bit-level operations. Therefore,

in order to obtain the values h(t, n, ck′) for given n, we compute h(t, n, L) for all nodes of the

tree L, starting from the root L1 and proceeding level by level until all nodes are exhausted.

Thus, the total number of operations to find h(t, n, ck′) for given n and all k′ is proportional to

the number of nodes of the tree, i.e., O(K). Summing up for all n, 1 ≤ n ≤ N , we obtain the

time complexity of Step 2 to be O(KN).

Step 3. The number of operations required to solve equation (9) is proportional to the size of

the set α−1(n′, k′). Therefore the total number of operations at Step 3 is in the order of∑
(n′,k′)∈C |α−1(n′, k′)| =

|{(n, k′, n′)|(n′, k′) ∈ C, n ∈ α−1(n′, k′)}| =

|{(n, k′, n′)|(n′, k′) ∈ C, n′ = α(n, k′)}| ≤

|{(n, k′)|1 ≤ n ≤ N, 1 ≤ k′ ≤ K}| = KN.

Consequently, the time complexity of Step 3 becomes O(KN).

From the above evaluation we see that the time complexity to process each stage is dominated

by the complexity of Step 1. In the next section we prove that Step 1 can be sped up by a factor

of K for Markov sources with the Monge property.

V. EFFICIENT DECODING USING FAST MATRIX SEARCH

The complexity reduction of Step 1) presented in this section is based on the fast matrix

search technique introduced in [1] for finding all column maxima in a totally monotone matrix.

For each n, we compute together the values Wn(ck′ , Sα(n,k′), t+ |ck′|) for all k′, 1 ≤ k′ ≤ K.

Let us fix some n. Assume first the case when the state-space size of the CFSM cannot be

DRAFT

14

reduced, hence, all pairs (ck, Sn), 1 ≤ k ≤ K, are in C. Consider now the K ×K matrix An,t

with elements An,t(k, k
′) defined as follows

An,t(k, k
′) , W (ck, Sn, t) + log2 P (ak′|ak) (10)

for all 1 ≤ k, k′ ≤ K. Then relation (8) is equivalent to

Wn(ck′ , Sα(n,k′), t+ |ck′|) = max
1≤k≤K

An,t(k, k
′), (11)

in other words, Wn(ck′ , Sα(n,k′), t+ |ck′|) is the maximum element on the (k′)-th column of the

matrix An,t. Solving relation (11) for all pairs (k′, α(n, k′)) is equivalent to finding the maxima

of all columns of the matrix An,t. The straightforward solution to this problem requires a number

of operations proportional to the number of matrix elements, i.e. O(K2). However, if the matrix

An,t is so-called totally monotone, then the problem of all column maxima can be solved in

O(K) time by the fast matrix search algorithm, nicknamed SMAWK, introduced in [1].

The matrix An,t is said to be totally monotone [1] with respect to the column maxima if the

following relation holds:

An,t(k1, k
′
1) ≤ An,t(k2, k

′
1) ⇒

An,t(k1, k
′
2) ≤ An,t(k2, k

′
2),

for all k1 < k2, k
′
1 < k′

2.

A sufficient condition for the total monotonicity of the matrix An,t is [1]

An,t(k1, k
′
2) + An,t(k2, k

′
1) ≤

An,t(k1, k
′
1) + An,t(k2, k

′
2),

for all k1 < k2, k
′
1 < k′

2, (12)

also known as the concave Monge condition [3]. By replacing the matrix elements from (10) in

the above inequality we obtain that (12) is equivalent to

W (ck1 , Sn, t) + log2 P (ak′2 |ak1) +W (ck2 , Sn, t) +

log2 P (ak′1 |ak2) ≤ W (ck1 , Sn, t) + log2 P (ak′1 |ak1) +

W (ck2 , Sn, t) + log2 P (ak′2 |ak2),

for all k1 < k2, k
′
1 < k′

2,

DRAFT

15

which, after making the cancelations, becomes identical to relation (1). In conclusion, if the

Markov source satisfies the Monge property (1), then all matrices An, 1 ≤ n ≤ N , are totally

monotone, hence the computations at Step 1 (for all n) complete in O(KN) time.

Let us treat now the case when the number of pairs (ck, Sn) ∈ C for given n, is less than

K. Denote this number by mn and assume that mn < K. Then the matrix An has dimension

mn×K, but it is still totally monotone if condition (1) is satisfied. As proved in [1], the matrix

search problem can then be solved in O(mn(1 + log(K/mn))) time. Summing over all n we

obtain ∑N
n=1mn(1 + log2

K
mn

) =∑N
n=1mn(1 + log2

K
|C| + log2

|C|
mn

) =

(
∑N

n=1mn)(1 + log2
K
|C|) + |C|

∑N
n=1

mn

|C| log2
|C|
mn

.

Since we have
∑N

n=1mn = |C|, it follows that
∑N

n=1
mn

|C| log2(|C|/mn) ≤ log2 N . Consequently,

the time complexity of Step 1 is O(|C|(1+log(KN/|C|)). Now Step 1 becomes the less extensive

and the time complexity at each stage is dominated by Steps 2 and 3, hence it is O(KN).

In conclusion, for Markov sources with the Monge property (1) the computations at each

stage of the algorithm can be performed in O(KN) time. Since there are O(T) stages in total,

it follows that the JSC MAP sequence decoding completes in O(TKN) time.

VI. ACCELERATED SOFT OUTPUT MAX-LOG-MAP DECODING

In some applications the decoder might need to provide the reliability information for each

decoded symbol or bit. These soft outputs could either accompany the hard decisions or constitute

the only output of the decoder, as is the case in constituent decoders in iterative JSC decoding

schemes.

In this section we consider the case when bit-level soft outputs are desired. Note that the bit

sequence v = v1 · · · vT output by the SC is completely determined by the Markov sequence

u and vice-versa. Optimum bit-level soft output decoders provide the a posteriori probabilities

(APPs) P (Vt = b|y) =
∑

v,vt=b P (v|y), for all 1 ≤ t ≤ T and b ∈ {0, 1}, where Vt denotes

the random variable representing the t-th bit input to the CC. These APPs can be obtained by

DRAFT

16

running the BCJR algorithm [4] on the bit-level trellis obtained by expanding in time the state

diagram of the CFSM which describes the chain MS→SC→CC.

Soft output decoders based on the approximation log2(γ1 + · · · + γm) ≈ max1≤i≤m log2 γi,

also known as Max-Log-MAP algorithms, are suboptimal, but more efficient alternatives for the

calculation of the APPs [15]. The values to be computed are

Zt(b) , max
v,vt=b

log2 P (v,y), (13)

for all b ∈ {0, 1} and 1 ≤ t ≤ T . Then the APPs are approximated as

P (Vt = b|y) ≈ Zt(b)

Zt(0) + Zt(1)
,

The quantities (13) can be evaluated in a Viterbi-like decoding manner in a forward and a

backward pass through the bit-level trellis. Thus the asymptotical time complexity of the JSC

decoding algorithm becomes O(TK2N). We show next that for Markov sources satisfying the

Monge property, the running time can be reduced again by a factor of K by using the fast matrix

search of [1].

Toward our goal note first that the quantity Zt(b) equals the weight of the maximum-weight

path in the graph G among all paths corresponding to bit sequences v whose t-th bit is b. In

order to characterize such paths we need to introduce some more notations. For any t and any

internal node Lj of the SC tree, other than the root, define N (t, Lj) as the set of all graph

nodes (ck, Sn, t + |ck| − |Lj|), for all n and all k such that Lj is a prefix of ck. Moreover, let

N (t, ck) denote the set of all nodes (ck, Sn, t). It is easy to see that a path P in G corresponds

to a sequence v whose t-th bit is b, if and only if the path visits some node n ∈ N (t, Ljb) for

some internal node Lj in the SC tree. Recall that Ljb denotes the concatenation between the

bitsequence describing Lj and the bit b. Thus Ljb is either an internal node different from the

root, or a codeword. Moreover, the maximum-weight path among all paths visiting some node ν

is the concatenation of the maximum-weight path from the source to ν and the maximum-weight

path from ν to a final node. For any node ν, let W̄ (ν) denote the weight of the maximum-weight

path among all paths in the graph from node ν to a final node. Then we have

Zt(b) = max
1≤j≤K−1

max
ν∈N (t,Ljb)

(W (ν) + W̄ (ν)). (14)

DRAFT

17

For any t and any L corresponding to a codeword or an internal node of the SC tree other

than the root, define γ(t, L) as

γ(t, L) , max
ν∈N (t,L)

(W (ν) + W̄ (ν)).

Hence, (14) becomes

Zt(b) = max
1≤j≤K−1

γ(t, Ljb). (15)

Notice that for 2 ≤ j ≤ K − 1, we have N (t, Lj) = N (t + 1, Lj0) ∪ N (t + 1, Lj1), which

implies that

γ(t, Lj) = max{γ(t+ 1, Lj0), γ(t+ 1, Lj1)}. (16)

On the other hand,

γ(t, ck) = max
n,(ck,Sn)∈C

(W (ck, Sn, t) + W̄ (ck, Sn, t)). (17)

We are ready now to present the efficient Max-Log-MAP JSC decoding for Markov sequences

with the Monge property. The algorithm consists of two passes, a forward pass and a backward

pass. The forward pass proceeds as in the MAP sequence decoding, computing and storing the

values W (ν) for all graph nodes ν. Using the strategy described in Sections 5 and 6, this pass

completes in O(TKN) operations.

During the backward pass, the values W̄ (ν) and Zt(b) are calculated, processing the graph

layers t, 1 ≤ t ≤ T , in decreasing order. Precisely, the computations associated to each layer t,

are divided into the following steps

1) Find W̄ (ν) for all nodes ν at layer t.

2) Compute the quantities γ(t, L) for all L = Lj , 2 ≤ j ≤ K − 1 using (16), and for all

L = ck, 1 ≤ k ≤ K, using (17).

3) Evaluate Zt(b) according to (15).

Step 2 completes in O(C) time since solving (16) for all Lj needs O(K) operations, while

solving (17) for all ck necessitates O(C) operations. The running time of step 3 is clearly O(K).

Step 1 can be performed efficiently in O(KN) time by exploiting the Monge property, using

a similar idea to the one developed in Section 6. Precisely, we form the K ×mn matrix Bn,t,

DRAFT

18

with elements Bn,t(k
′, k) defined as follows

Bn,t(k
′, k) , W̄ (ck′ , Sα(n,k′), t+ |ck′|) +

log2 P (ak′|ak) + ω(t, n, k′),

for all 1 ≤ k′ ≤ K and ck such that (ck, Sn) ∈ C. Then, finding all W̄ (ck, Sn, t) for given t and

n, reduces to the problem of finding all column maxima of the matrix Bn,t. Moreover, it can be

easily verified that matrix Bn,t satisfies the Monge property (12) when (1) holds. Therefore the

SMAWK algorithm of [1] can be applied to find all its column maxima in O(K) time. Thus,

the total time to perform Step 1 is O(KN) as we claimed. This leads to an O(TKN) running

time of the backward pass, and hence of the Max-Log-MAP JSC decoding algorithm as well.

Before ending this section we point out that the complexity reduction result extends trivially

to the case when the CC is not present, by considering N = 1. In this case the efficient bit-level

soft output Max-Log-MAP JSC decoding algorithm for Markov source satisfying the Monge

property, completes in O(TK) time, compared to O(TK2) decoding time when the Monge

property is not exploited.

The strategy highlighted in this work easily extends to the case when the source codewords

have variable length and the Markov sequence size I is known to the decoder. The decoder graph

is more complex since each node is attached a symbol counter too, leading to an O(TIK2N) time

MAP sequence JSC decoding algorithm when the Monge property is not exploited. Knowledge

of the number of input symbols to the decoder facilitates the symbol-by-symbol soft output JSC

decoding, too. Both bit-level and symbol-level Max-Log-MAP JSC decoding require O(TIK2N)

operations as well. However, for Markov sequences satisfying the Monge property, the complexity

reduction technique used in the previous sections can be adapted to the new decoder graph,

leading to a decrease by a factor of K in the time complexity of the JSC decoding.

VII. CONCLUSION

This paper addresses the problem of joint source-channel (JSC) decoding of a Markov sequence

which is encoded by a source code followed by a convolutional code, and sent through a noisy

memoryless channel. It is proved that for Markov sources satisfying the so-called Monge property,

both the maximum a posteriori probability (MAP) sequence decoding, as well as the soft output

DRAFT

19

Max-Log-MAP decoding can be expedited by a factor of K without penalizing the performance,

where K is the size of the Markov source alphabet. The strategy used to increase the speed is

a convenient organization of computations at the decoder combined with a fast matrix search

technique enabled by the Monge property. Moreover, the same complexity reduction holds in

the case of soft output Max-Log-MAP JSC decoding in the case when the convolutional coder

is absent, result which was not known previously.

REFERENCES

[1] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, ”Geometric applications of a matrix-searching algorithm”,

Algorithmica, 2(1987), pp.195-208.

[2] F. Alajaji, N. Phamdo, N. Farvardin and T. Fuja, ”Detection of binary Markov sources over channels with additive Markov

noise”, IEEE Trans. Inform. Th., vol. 42, no. 1, pp. 230-239, Jan. 1996.

[3] A. Apostolico and Z. Galil(eds.), Pattern Matching Algorithms, New York 1997.

[4] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, ”Optimal decoding of linear codes for minimizing symbol error rate”, IEEE

Trans. Inform. Theory, vol. 20, no. 2, pp. 284-287, Mar. 1974.

[5] R. E. Burkard, B. Klinz, and R. Rudolf, Perspectives of Monge properties in optimization, Discrete Applied Mathematics

70, 1996, pp. 95-161.

[6] Q. Chen and K. P. Subbalakshmi, ”An Integrated Joint Source-Channel Decoder for MPEG-4 Coded Video”, Proc. IEEE

Vehicular Tech. Conf. 2003, pp. .

[7] N. Demir, K. Sayood, “Joint source/channel coding for variable length codes”, Proc. DCC’98 Data Compression

Conference, pp. 139-148, 1998.

[8] S. Dumitrescu and X. Wu, ”On the complexity of joint source-channel decoding of Markov sequences over memoryless

channels”, to appear in IEEE Trans. Communications. An extended abstract appeared in Proc. ISIT’05.

[9] J. Garcia-Frias and J. D. Villasenor, ”Joint turbo decoding and estimation of Hidden Markov sources”, IEEE J. on Selected

Areas in Communications, vol. 19, no. 9, pp. 1671-1679, Sept. 2001.

[10] A. Guyader, E. Fabre, C. Guillemot, and M. Robert, ”Joint source-channel turbo decoding of entropy-coded sources”,

IEEE Journal on Selected Areas in Comm., vol. 19, no. 9, pp. 1680-1696, Sept. 2001.

[11] J. Hagenauer and N. Gortz, ”The Turbo Principle in Joint Source-Channel Coding”, IEEE ITW 2003, pp. 275-278, April

2003.

[12] A. H. Murad and T. E. Fuja, ”Joint source-channel decoding of variable-length encoded sources”, IEEE ITW’98, June

1998, pp. 94-95.

[13] M. Park and D. J. Miller, “Joint source-channel decoding for variable-length encoded data by exact and approximated

MAP sequence estimation”, IEEE Trans. Comm., vol. 48, no. 1, pp. 1-6, Jan. 2000.

[14] N. Phamdo and N. Farvardin, ”Optimal Detection of Discrete Markov Sources over Discrete Memoryless Channels -

Applications to Combined Source-Channel Coding”, IEEE Trans. Inf. Th., vol. 40, no.1, pp. 186-193, Jan. 1994.

[15] P. Robertson, E. Villebrun and P. Hoeher, ”A comparison of optimal and sub-optimal MAP decoding algorithms operating

in the log domain”, Proc. IEEE Int. conf. Commun., Seattle, WA, pp.1009-1013, Jun. 1995.

DRAFT

20

[16] K. Sayood and J. C. Borkenhagen, ”Use of Residual Redundancy in the Design of Joint Source/Channel Coders”, IEEE

Trans. Comm., vol. 39, no. 6, pp. 835-846, June 1991.

[17] K. P. Subbalakshmi and J. Vaisey, “On the Joint Source-Channel Decoding of Variable-Length Encoded Sources: The BSC

Case”, IEEE Trans. Comm., vol. 49, no. 12, pp. 2052-2055, Dec. 2001.

[18] X. Wu, S. Dumitrescu, and Z. Wang, ”Monotonicity-based fast algorithm for MAP estimation of Markov sequences over

noisy channels”, IEEE Trans. Inf. Theory, vol. 50, pp. 1539-1544, July 2004.

DRAFT

