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Abstract

In multiresolution coding a source sequence is encoded into a base layer and a refinement layer.

The refinement layer, constructed using a conditional codebook, is in general not decodable without

the correct reception of the base layer. By relating multiresolution coding with multiple description

coding, we show that it is in fact possible to construct multiresolution codes in certain ways so that

the refinement layer alone can be used to reconstruct the source to achieve a nontrivial distortion.

As a consequence, one can improve the robustness of the existing multiresolution coding schemes

without sacrificing the efficiency. Specifically, we obtain an explicit expression of the minimum distortion

achievable by the refinement layer for arbitrary finite alphabet sources with Hamming distortion measure.

Experimental results show that the information-theoretic limits can be approached using a practical robust

multiresolution coding scheme based on low-density generator matrix codes.

Index Terms

Low-density generator matrix, message-passing algorithm, multiple description coding, multireso-

lution coding, successive refinement.

I. INTRODUCTION

Many important applications require multicast delivery of data from a single user to multiple

receivers with diverse characteristics in terms of bandwidth resources, computational capabilities,
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and fidelity requirements. It is desirable that the reconstruction quality at each receiver is

commensurate with its own demand and capability. As a promising solution to this problem,

multiresolution coding has received significant attention in recent years [1]–[8].

In multiresolution coding a source sequence is encoded into a base layer and a refinement layer;

a coarse reconstruction of the source is possible based on the base layer while the two layers

together can lead to better reconstruction quality. Although it is commonly assumed that the role

of the refinement layer is simply to improve the reconstruction precision upon that achieved by

the base layer, it is of considerable interest to know whether the refinement layer alone can be

used to reconstruct the source. Unfortunately, for most existing multiresolution coding schemes,

the refinement layer is constructed using a conditional codebook, thus is undecodable without

the correct reception of the base layer or is essentially useless for producing any nontrivial

reconstruction. By interpreting multiresolution coding as a special case of multiple description

coding and leveraging relevant multiple description code constructions, we shall show that it is

in fact possible to design multiresolution codes in certain ways so that the refinement layer alone

can be (partially) decoded to produce a nontrivial reconstruction of the source. This is certainly

a desirable feature since it improves the robustness of multiresolution codes without sacrificing

the efficiency.

The remainder of this paper is organized as follows. In Section II, we discuss the connection

between multiresolution coding and multiple description coding. Some existing results on these

two coding problems are reviewed. In Section III, we derive an explicit expression of the

minimum distortion achievable by the refinement layer for arbitrary finite alphabet sources with

Hamming distortion measure. A practical robust multiresolution coding scheme based on low-

density generator matrix (LDGM) codes is proposed in Section IV. The effectiveness of the

proposed scheme is verified in Section V. Finally, we conclude the paper in Section VI.

II. MULTIRESOLUTION CODING AND MULTIPLE DESCRIPTION CODING

We shall first review some basic definitions and results regarding multiresolution coding and

multiple description coding. It will be seen that a key step toward understanding the role of

refinement layer in multiresolution coding is to interpret multiresolution coding as a special

form of multiple description coding.
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A. Multiple Description Coding

In the multiple description problem, a source sequence is encoded into two descriptions, which

are constructed in such a way that an adequate reconstruction of the source is possible based on

each description while the two descriptions together can lead to better reconstruction quality. A

fundamental problem of multiple description coding is to characterize the rate-distortion region,

which determines the information-theoretic limits of multiple description coding.

Consider an i.i.d. process {X(l)}∞l=1 with marginal distribution pX on source alphabet X . Let

d : X ×X̂ → [0,∞) be a distortion measure, where X̂ is the reconstruction alphabet. We assume

that X and X̂ are finite sets.

Definition 1: The quintuple (R1, R2, D0, D1, D2) is said achievable, if for all sufficiently large

n, there exist encoding functions

f
(n)
i : X n → {1, 2, · · · , ⌊2nRi⌋}, i = 1, 2,

and decoding functions

g
(n)
0 : {1, 2, · · · , ⌊2nR1⌋} × {1, 2, · · · , ⌊2nR2⌋} → X̂ n,

g
(n)
i : {1, 2, · · · , ⌊2nRi⌋} → X̂ n, i = 1, 2,

such that

E
[
1

n

n∑
l=1

d(X(l), X̂i(l))

]
≤ Di, i = 0, 1, 2,

where X̂n
0 = g

(n)
0 (f

(n)
1 (Xn), f

(n)
2 (Xn)) and X̂n

i = g
(n)
i (f

(n)
i (Xn)), i = 1, 2. The multiple

description rate-distortion region, denoted by RDMD, is the closure of the set of all achievable

quintuples (R1, R2, D0, D1, D2).

While a computable characterization of RDMD is still unknown, several inner bounds of RDMD

can be found in the literature [9]–[11], among which the EGC inner bound [9] is the one that is

particularly relevant to our setting. Specifically, the EGC inner bound RDEGC is the convex hull

of the set of quintuples (R1, R2, D0, D1, D2) for which there exist auxiliary random variables

Xi, i = 0, 1, 2, jointly distributed with the generic source variable X , such that

Ri ≥ I(X;Xi), i = 1, 2,
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R1 +R2 ≥ I(X;X0, X1, X2) + I(X1;X2),

Di ≥ E[d(X,Xi)], i = 0, 1, 2.

The coding scheme associated with the EGC inner bound can be roughly understood as follows.

Generate codebook 1 and codebook 2 using marginal distributions pX1 and pX2 , respectively.

For each pair of codewords, one from codebook 1 and the other from codebook 2, generate a

codebook using the conditional distribution pX0|X1X2; such a codebook will be referred to as

a conditional codebook. The source X is encoded into two descriptions, where description 1

contains an index specifying a codeword X1 in codebook 1 and a portion of index specifying

a codeword X0 in the conditional codebook while description 2 contains an index specifying a

codeword X2 in codebook 2 and the remaining portion of index for X0. Here the conditional

codebook itself is specified by X1 and X2 (or equivalently, the indices of X1 and X2). Given a

single description, say, description i, one can decode Xi and use it as the reconstruction of X .

If both descriptions are received, then one can decode X0 and use it as the reconstruction. Note

that given a single description, it is in general impossible to (even partially) decode X0 since

the available information is not enough to specify the conditional codebook from which X0 is

picked; moreover, if such a description only contains a partial index for X0, then the position

of X0 in the conditional codebook is also ambiguous.

B. Multiresolution Coding

It is instructive to view multiresolution coding as a special form of multiple description coding

in which the distortion constraint on the second description (i.e., D2) is not imposed. In this

scenario it is common to refer to the first description as the base layer and the second description

as the refinement layer.

Definition 2: The multiresolution coding rate-distortion region RDMR is given by

RDMR = {(R1, R2, D0, D1) : (R1, R2, D0, D1,∞) ∈ RDMD}.

As shown in [12], RDMR is equal to the set of quadruples (R1, R2, D0, D1) for which there

exist auxiliary random variables X0 and X1, jointly distributed with the generic source variable
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X , such that

R1 ≥ I(X;X1),

R1 +R2 ≥ I(X;X0, X1),

Di ≥ E[d(X,Xi)], i = 0, 1.

It is easy to see that RDMR is equivalent to RDEGC with X2 set to be a constant. Such a

connection is well understood. In fact, most existing multiresolution code constructions are

based on this interpretation of RDMR. However, this interpretation has the following implicit

consequence on the resulting constructions, that is, the refinement layer alone is in general useless

for reconstructing the source. Indeed, in the aforedescribed EGC scheme, if one sets X2 to be

a constant, then the second description alone is in general not (even partially) decodable since

it only contains a portion of index specifying a codeword X0 in the conditional codebook. It

will be seen that there is an alternative way to design the refinement layer based on a deeper

connection between RDMR and RDEGC.

C. Connection

In the most general formulation, if one simply imposes the requirement that the refinement

layer alone can be used to produce a nontrivial reconstruction of the source, then multiresolution

coding becomes equivalent to multiple description coding. In practice, multiresolution coding

often has a more restricted meaning: loosely speaking, the base layer and the refinement layer

should be constructed in a greedy manner to achieve the minimum distortion at each recon-

struction step. This is the case where multiresolution coding is most interesting. Indeed, such a

greedy property can even be viewed as the essential feature of multiresolution coding. We shall

show that in this natural setting it is possible to determine the minimum distortion achievable

by the refinement layer of a multiresolution code.

Let R(D) denote the rate-distortion function, i.e., R(D) = minpX̂|X
I(X; X̂), where the

minimization is over pX̂|X subject to the constraint E[d(X, X̂)] ≤ D. Define

R(R1, D0, D1) = min{R1 +R2 : (R1, R2, D0, D1) ∈ RDMR}.
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It can be shown [12] that

R(R1, D0, D1) = max

{
R1, min

pX0X1|X
I(X;X0, X1)

}
,

where the minimization is over pX0X1|X subject to the constraints E[d(X,X0)] ≤ D0, I(X;X1) ≤

R1, and E[d(X,X1)] ≤ D1. Define

D∗
2(D0, D1) = min

R1=R(D1)
R1+R2=R(R1,D0,D1)

(R1,R2,D0,D1,D2)∈RDMD

D2.

Note that D∗
2(D0, D1) can be interpreted as the minimum distortion achievable by the refinement

layer in the case where R1 = R(D1) and R1 +R2 = R(R(D1), D0, D1). The following result is

a simple consequence of [13, Lemma 3].

Theorem 1: Let Q denote the convex hull of the set of quintuples (R1, R2, D0, D1, D2) for

which there exist auxiliary random variables Xi, i = 0, 1, 2, jointly distributed with the generic

source variable X , such that

I(X1;X2) = 0,

Ri ≥ I(X;Xi), i = 1, 2,

R1 +R2 ≥ I(X;X0, X1, X2),

Di ≥ E[d(X,Xi)], i = 0, 1, 2.

We have

D∗
2(D1, D0) = min

R1=R(D1)
R1+R2=R(R1,D0,D1)
(R1,R2,D0,D1,D2)∈Q

D2. (1)

Remark: This result can also be proved by invoking [14, Theorem 1] if R(R1, D1, D0) = R(D0).

Note that one can obtain Q from RDEGC by imposing an additional constraint I(X1;X2) = 0

(i.e., X1 and X2 are independent). This reveals a new perspective on multiresolution coding.

Roughly speaking, to obtain a multiresolution coding scheme from an EGC scheme, one just

needs to let X2 be independent of X1, instead of setting X2 to be a constant. In this way, the

refinement layer alone is still useful since one can decode X2 and use it as the reconstruction

of the source.
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In principle it is possible to compute D∗
2(D0, D1) by solving the minimization problem in (1)

via numerical methods. In the next section we shall derive an explicit expression of D∗
2(D0, D1)

for arbitrary finite alphabet sources with Hamming distortion measure.

III. FINITE ALPHABET SOURCE WITH HAMMING DISTORTION MEASURE

Let X = X̂ = {0, 1, · · · ,m} for some positive integer m. Let d = dH : X × X̂ → {0, 1} be

the Hamming distortion measure, i.e, dH(x, x̂) = 0 if x = x̂ and dH(x, x̂) = 1 if x ̸= x̂. Note

that E[dH(X, X̂)] = P(X ̸= X̂). Without loss of generality, we shall assume pX(0) ≥ pX(1) ≥

· · · ≥ pX(m) > 0.

Let R(D) and D(R) denote the rate-distortion function and the distortion-rate function,

respectively, of source X with Hamming distortion measure. The following facts are well known

[15]–[17].

F1) D(R)|R=0 = 1−maxx∈X pX(x) = 1− pX(0).

F2) R(D) is a strictly convex function of D for D ∈ [0, D(R)|R=0].

F3) For 0 ≤ D0 ≤ D1 < D(R)|R=0, we have

I(X;X1) = R(D1),

I(X;X0, X1) = R(D0),

P(X ̸= Xi) = Di, i = 0, 1,

if and only if X −X0 −X1 form a Markov chain, and pXX0X1 is specified by

pXi
(x) =

(pX(x)− λi)
+∑

x′∈X (pX(x
′)− λi)+

, x ∈ X , i = 0, 1, (2)

pX|X0(x|x0)

=


1−D0, x = x0 ∈ X+

0

λ0, x ̸= x0, x ∈ X+
0 , x0 ∈ X+

0

pX(x) x /∈ X+
0 , x0 ∈ X+

0

, (3)

pX0|X1(x0|x1)
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=


1−D1−λ0

1−D0−λ0
, x0 = x1 ∈ X+

1

λ1−λ0

1−D0−λ0
, x0 ̸= x1, x0 ∈ X+

1 , x1 ∈ X+
1

pX(x0)−λ0

1−D0−λ0
x0 ∈ X+

0 , x0 /∈ X+
1 , x1 ∈ X+

1

, (4)

where λ0 ∈ [0, λ1] and λ1 ∈ [0, pX(1)) are uniquely determined by∑
xi∈X+

i

pXi
(xi)pX|Xi

(x|xi) = pX(x), x ∈ X , i = 0, 1,

and X+
i = {x ∈ X : pX(x)− λi > 0}, i = 0, 1.

F4) R(R(D1), D0, D1) = R(D0) for 0 ≤ D0 ≤ D1 ≤ D(R)|R=0.

The following theorem is the main result of this section.

Theorem 2: D∗
2(D1, D0) = D(R)|R=0 +D0 −D1 for 0 ≤ D0 ≤ D1 ≤ D(R)|R=0.

Remark: For the special case of a binary symmetric source with Hamming distortion measure,

Theorem 2 reduces to [13, Theorem 5]. Moreover, it is interesting to note that Theorem 2 also

holds for the quadratic Gaussian case [18].

We shall prove Theorem 2 by establishing a series of lemmas. It is clear that Theorem 2 is true

when D1 = D(R)|R=0. Therefore, we shall only consider the case 0 ≤ D0 ≤ D1 < D(R)|R=0.

For 0 ≤ D0 ≤ D1 < D(R)|R=0, let pXX0X1 be the probability distribution specified by (2)-(4)

and the Markov chain constraint X −X0 −X1; define D̃2(D0, D1) = minpX2|XX0X1
P(X ̸= X2),

where the minimization is over pX2|XX0X1 subject to the constraints I(X;X1, X2|X0) = 0 (i.e.,

X−X0− (X1, X2) form a Markov chain) and I(X1;X2) = 0 (i.e., X1 and X2 are independent).

Lemma 1: D∗
2(D0, D1) = D̃2(D0, D1) for 0 ≤ D0 ≤ D1 < D(R)|R=0.

Proof: For any X2 such that I(X;X1, X2|X0) = 0 and I(X1;X2) = 0, let

R1 = I(X;X1),

R2 = I(X,X1;X2) + I(X;X0|X1, X2),

Di = P(X ̸= Xi), i = 0, 1, 2.

Note that R2 ≥ I(X;X2) and

R1 +R2 = I(X;X1) + I(X,X1;X2) + I(X;X0|X1, X2)

= I(X;X1) + I(X1;X2) + I(X;X2|X1)
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+ I(X;X0|X1, X2)

= I(X;X1) + I(X;X2|X1) + I(X;X0|X1, X2)

= I(X;X0, X1, X2).

Therefore, we have (R1, R2, D0, D1, D2) ∈ Q. Moreover, since

R1 = I(X;X1) = R(D1),

R1 +R2 = I(X;X0, X1, X2) = I(X;X0, X1) = R(D0),

Di = P(X ̸= Xi), i = 0, 1,

it follows from F4) and Theorem 1 that D∗
2(D0, D1) ≤ P(X ̸= X2), which further implies that

D∗
2(D0, D1) ≤ D̃2(D0, D1).

Now we proceed to show that D∗
2(D0, D1) ≥ D̃2(D0, D1). In view of F4) and Theorem 1,

we have (R(D1), R(D0)−R(D1), D0, D1, D
∗
2(D0, D1)) ∈ Q. By the definition of Q, there exist

p
XX

(j)
0 X

(j)
1 X

(j)
2

and µj > 0, j = 1, 2, · · · , r, for some positive integer r such that

I(X
(j)
1 ;X

(j)
2 ) = 0, j = 1, 2, · · · , r, (5)

r∑
j=1

µj = 1, (6)

r∑
j=1

µjI(X;X
(j)
1 ) ≤ R(D1), (7)

r∑
j=1

µjI(X;X
(j)
0 , X

(j)
1 , X

(j)
2 ) ≤ R(D0), (8)

r∑
j=1

µjP(X ̸= X
(j)
i ) ≤ Di, i = 0, 1, (9)

r∑
j=1

µjP(X ̸= X
(j)
2 ) ≤ D∗

2(D0, D1). (10)

It can be shown by leveraging F2) that

I(X;X
(j)
i ) = R(Di), i = 0, 1, j = 1, 2, · · · , r, (11)

P(X ̸= X
(j)
i ) = Di, i = 0, 1, j = 1, 2, · · · , r. (12)
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By (8) and (11), we must have

I(X;X
(j)
0 , X

(j)
1 , X

(j)
2 ) = I(X;X

(j)
0 , X

(j)
1 ) = I(X;X

(j)
0 ),

j = 1, 2, · · · , r, (13)

i.e., I(X;X
(j)
1 , X

(j)
2 |X(j)

0 ) = 0, j = 1, 2, · · · , r. In view of (11), (12), and (13), one can readily

show by invoking F3) that p
XX

(j)
0 X

(j)
1

= pXX0X1 , j = 1, 2, · · · , r. Therefore, it follows from (10)

and the definition of D̃2(D0, D1) that

D∗
2(D0, D1) ≥ min

j∈{1,2,··· ,r}
P(X ̸= X

(j)
2 ) ≥ D̃2(D0, D1).

The proof is complete.

It is easy to see from the definition of X+
0 and X+

1 that X+
i = {0, 1, · · · ,mi}, i = 0, 1, for

some positive integers m0 and m1; moreover, we have X+
1 ⊆ X+

0 (i.e., m1 ≤ m0). Let P(X+
0 )

denote the set of probability distributions defined on X+
0 .

Lemma 2: With no loss of generality one can assume pX2 ∈ P(X+
0 ) in the definition of

D̃2(D0, D1).

Proof: See Appendix A.

Lemma 3: For any X2 such that pX2 ∈ P(X+
0 ) and I(X;X2|X0) = 0, we have

P(X ̸= X2) = D0 + (1−D0 − λ0)P(X0 ̸= X2).

Proof: See Appendix B.

Define D̄2(D0, D1) = minpX2|X0X1
P(X0 ̸= X2), where the minimization is over pX2|X0X1

subject to the constraints pX2 ∈ P(X+
0 ) and I(X1;X2) = 0. It is obvious that D̄2(D0, D1) is

unaffected if the constraint pX2 ∈ P(X+
0 ) is removed.

Lemma 4: D̃2(D0, D1) = D0 + (1−D0 − λ0)D̄2(D0, D1).

Proof: In view of the fact that D0 ≤ D(R)|R=0 = 1 − pX(0) (see F1)) and λ0 ≤ λ1 ≤

pX(1) ≤ pX(0) (see F3)), we have 1−D0−λ0 ≥ 0. Therefore, this result is a direct consequence

of Lemma 2 and Lemma 3.

Lemma 5: D̄2(D0, D1) = 1− pX0(0)− P(X0 ̸= X1).

Proof: See Appendix C.
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Combining Lemmas 1, 4, and 5, we have

D∗
2(D0, D1)

= D0 + (1−D0 − λ0)(1− pX0(0)− P(X0 ̸= X1))

= D0 + (1−D0 − λ0)

(
1− pX0(0)− 1 +

1−D1 − λ0

1−D0 − λ0

)
(14)

= 1− (1−D0)pX0(0)− λ0(1− pX0(0)) +D0 −D1

= 1− pX(0) +D0 −D1 (15)

= D(R)|R=0 +D0 −D1, (16)

where (14), (15), and (16) follow from (4), (3), and F1), respectively. This completes the proof

of Theorem 2.

IV. PRACTICAL ROBUST MULTIRESOLUTION CODING SCHEME

We shall present a robust multiresolution coding scheme based on LDGM codes.

It is instructive to first explain the underlying ideas using random codes and joint typicality

encoding.

1) Codebook Generation: Generate two random codebooks C1 = {xn
1,k1

}2n(I(X;X1)+ϵ1)

k1=1 and C2 =

{xn
2,k2

}2n(I(X,X1;X2)+ϵ2)

k2=1 according to
∏n

l=1 pX1(·) and
∏n

l=1 pX2(·), respectively. For each

pair of codewords xn
1,k1

∈ C1 and xn
2,k2

∈ C2, generate a random codebook C0(k1, k2) =

{xn
0,k0,k1,k2

}n(I(X;X0|X1,X2)+ϵ0)
k0=1 according to

∏n
l=1 pX0|X1X2(·|x1,k1(l), x2,k2(l)).

2) Encoding: Given the source sequence xn, first find k∗
1 such that xn

1,k∗1
is jointly strongly

typical with xn, then find k∗
2 such that xn

2,k∗2
is jointly strongly typical with (xn, xn

1,k∗1
),

finally find k∗
0 such that xn

0,k∗0 ,k
∗
1 ,k

∗
2

is jointly strongly typical with (xn, xn
1,k∗1

, xn
2,k∗2

). The

base layer of the multiresolution code contains the index k∗
1 while the refinement layer

contains k∗
2 and k∗

0.

3) Decoding: The decoder uses xn
1,k∗1

as the reconstruction if the base layer is received, uses

xn
2,k∗2

as the reconstruction if the refinement layer is received, and uses xn
0,k∗0 ,k

∗
1 ,k

∗
2

as the

reconstruction if both layers are received.

Notice that the encoder can be regarded as the cascade of three encoders E1, E2, and E3
outputting indices k∗

1 , k∗
2, and k∗

0, respectively. Following the above theoretical coding system
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ldgm2.eps

Fig. 1. Factor graph of a multilevel LDGM code.

we propose a practical coding scheme, which employs a multilevel LDGM code to generate

the codebook, in conjunction with a message passing algorithm, at each component encoder.

Multilevel LDGM codes were introduced in [19] to generate codebooks with codewords of

non-uniform empirical distribution. They were shown to achieve the rate-distortion bound for

single description coding of general finite alphabet sources, when used with the strong typicality

encoding rule.

We mention that a three-stage successive coding scheme based on LDGM codes for the

multiple description problem was proposed in [20]. However, the purpose of the three component

encoders in [20] differs from our case. Precisely, in [20], the first stage generates a common

part of the two descriptions, while the second and third stages produce the remaining part of

description 1, respectively description 2.

Next we briefly review the design of multilevel LDGM codes under a uniform framework

and clarify the specifics for each encoding stage. Notice that the design requirements for each

codebook specify the output alphabet Z of the codewords, the size 2nR of the codebook and

n probability distributions p1(·), · · · , pn(·) over Z . The requirement for the codebook is to be

randomly generated according to
∏n

l=1 pl(·). Precisely, we have pl(·) = pX1(·) for E1, pl(·) =

pX2(·) for E2, and pl(·) = pX0|X1X2(·|x1,k∗1
(l), x2,k∗2

(l)) for E3, 1 ≤ l ≤ n.

To approximately satisfy the above requirement, we select an integer ω > 0 and n mappings

ϕl : {0, 1}ω → Z such that |ϕ−1
l (z)| ≈ 2ωpl(z) for all 1 ≤ l ≤ n and z ∈ Z . Based on these

mappings, the function Φ : {0, 1}nω → Zn is defined as follows: the l-th symbol of Φ(cnω) equals

ϕl(c(l), c(n + l), · · · , c(n(ω − 1) + l)) for all cnω ∈ {0, 1}nω. Further, a low-density generator

matrix G of dimension nω ×m, over the binary field GF (2) is chosen, where m = nR. Then
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the codebook generated by the multilevel LDGM code is defined as

C = {zn ∈ Zn|zn = Φ(Gvm), vm ∈ {0, 1}m},

where the matrix multiplication is performed over GF (2).

The multilevel LDGM code is associated with a factor graph as illustrated in Figure 1. The

graph consists of n source nodes {S1, · · · , Sn}, corresponding to the sequence input to the

encoder, m variable nodes {V1, · · · , Vm}, nω check nodes {C1, · · · , Cnω}, and n network nodes

{N1, · · · , Nn}. Each variable node Vk is associated with information bit v(k) and is connected

by an edge to every check node Cq such that G(q, k) = 1. Every check node Cq is assigned a bit

value c(q) computed as the modulo 2 summation of the bit values at adjacent variables nodes.

Finally, each network node Nl is connected by an edge to check nodes Cl, Cl+n, · · · , Cl+(ω−1)n,

and to the source node Sl. Nl is associated with the l-th symbol z(l) of the codeword, computed

by applying the mapping ϕl(·) to the bit values at the adjacent check nodes. The construction

of the mapping ϕl(·) ensures that the marginal distribution of symbol z(l) approximates pl(·).

Notice that encoder E3 needs multiple conditional codebooks. However, by choosing a common

value of the integer ω and a common low-density generator matrix G for all these codes, the

associated graphs become identical. What differs from one codebook to another are only the

functions ϕl(·). Since the number of different mappings ϕl(·) is small, the storage space needed

at E3 is comparable with that for a single LDGM code.

Each encoder is associated with a pair of random variables Y and Z jointly distributed over

the alphabets Y and Z , respectively. The encoder requirement is, given the input sequence yn,

to select a codeword zn jointly strongly typical with yn. The input sequence yn is the source

sequence xn combined with the codeword(s) selected by previous encoder(s), if any. Thus, the

alphabet Y is the cartesian product of X and the codeword alphabets of previous encoder(s), if

any. Precisely, for E1 we have (Y, Z) = (X,X1) and yn = xn. For E2 we have Y = (X,X1),

Z = X2, and y(l) = (x(l), x1,k∗1
(l)), 1 ≤ l ≤ n. Finally, for E3, we have Y = (X,X1, X2),

Z = X0, and y(l) = (x(l), x1,k∗1
(l), x2,k∗2

(l)), 1 ≤ l ≤ n.

As in prior work on LDGM-based coding [19]–[22], we use a message passing algorithm over

the associated factor graph as a heuristic to solve the encoder problem. Our algorithm of choice

is belief propagation with decimation. It proceeds in a series of rounds. Each round consists of a
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message passing phase where messages are transmitted between every adjacent nodes in a series

of iterations, followed by a decimation phase where some variable nodes are fixed and removed

from the factor graph. The algorithm stops when all variable nodes are fixed.

At each message passing iteration, every node A passes a message to each adjacent non-source

node B. If A is not a source node then the message consists of two components: MA→B(0) and

MA→B(1). If A is a source node, the message consists of |Z| components: MA→B(z), z ∈ Z .

MSl→Nl
(z) = exp(−λ(y(l), z)),

for all z ∈ Z, 1 ≤ l ≤ n,

MNl→Cl+sn
(b) =

∑
z∈Z

MSl→Nl
(z)

∑
bω∈{0,1}ω
b(s+1)=b
ϕl(b

ω)=z

∏
j=0
j ̸=s

ω−1
MCl+jn→Nl

(b(j))

MCl+sn→Nl
(b) =

1

2
+

(−1)b

2

∏
k∈Bv(l+sn)

(MVk→Cl+sn
(0)−MVk→Cl+sn

(1))

for all b ∈ {0, 1}, 1 ≤ l ≤ n, 0 ≤ s ≤ ω − 1,

MCl+sn→Vk
(b) =

1

2
+

(−1)b

2
(MNl→Cl+sn

(0)−MNl→Cl+sn
(1))

∏
i∈Bv(l+sn)\{k}

(MVi→Cl+sn
(0)−MVi→Cl+sn

(1))

MVk→Cl+sn
(b) =

∏
q∈Ac(k)\{l+sn}

MCq→Vk
(b)

for all b ∈ {0, 1}, k ∈ Bv(l + sn), 1 ≤ l ≤ n, 0 ≤ s ≤ ω − 1.

Fig. 2. Message passing equations. After applying these equations, the components of each message are normalized to sum
up to 1.

During the first iteration in the first round, only the source nodes and check nodes pass

messages, the messages sent by check nodes being (0.5, 0.5). After that, at each iteration the

schedule of message transmission is: 1) from network nodes and variable nodes to check nodes;

2) from source nodes and check nodes to their adjacent nodes. Every non-source node computes

the message to pass along an edge using the messages received along its other adjacent edges

at the previous iteration. The equations to calculate the messages are presented in Figure 2. We

have denoted by Ac(k) the set of indices q such that Cq is adjacent to node Vk, and by Bv(q)

the set of of indices k such that Vk is adjacent to Cq. The quantities λ(y, z) ≥ 0, y ∈ Y , z ∈ Z ,
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Pi E1 E2 E3
P1 0.7 1.6 1.6
P2 0.7 1.6 1.6
P3 0.7 4 4

TABLE I
VALUES OF PARAMETER δ USED IN SIMULATIONS.

used in defining the source messages, are parameters tuned during code design phase based on

simulations. As a guideline for selecting these parameters we use the intuition that λ(y, z) should

be (roughly speaking) inverse proportional to pZ|Y (z|y).

The message passing phase ends when all the messages MVk→Cq(0) converge or a maximum

number of iterations, typically 100, is reached. At the decimation phase, the marginal distributions

at variable nodes are computed and the variable nodes whose bias is greater than a threshold

η > 0 are fixed. If no such variable node exists then the one with highest bias is fixed. After

that the fixed variables are removed from the graph. The check node whose all adjacent variable

nodes are fixed will send to the adjacent network node the following message: M(0) = 1
γ
((1−

c) exp(δ)+c exp(−δ)) and M(1) = 1
γ
(c exp(δ)+(1−c) exp(−δ)), where c equals to the modulo-

2 summation of the values of all adjacent variable nodes. Finally, after all variable nodes are

fixed, the output codeword is determined on network nodes by mapping the connected check

nodes values.

Notice that the design of the proposed scheme does not depend on the distortion measure, but

only on the joint distribution pXX1X2X0 . Therefore, although we have tested this scheme only

for Hamming distortion measure, we hypothesize that it is applicable to any distortion function.

To support this claim it is worth mentioning that the simulation results in [19] show very good

performance of multilevel LDGM codes in the case of single description source coding with a

non-Hamming distortion measure.

V. EXPERIMENTAL RESULTS

We have tested the proposed robust multiresolution coding scheme for the binary uniform

source with Hamming distortion measure, targeting three distortion triples (D0, D1, D
∗
2(D1, D0)):

P1 = (0.1, 0.3, 0.3), P2 = (0.05, 0.3, 0.25) and P3 = (0, 0.3, 0.2). In all three cases, R1 = R(D1)
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x, x1, x2 P1 P2 P3

0, 0, 0 0 0.6 0
0, 0, 1 0 0 0
0, 1, 0 0 0 0
0, 1, 1 2.0 2.2 8
1, 0, 0 2.8 2.8 8
1, 0, 1 0 0 0
1, 1, 0 2.8 2.8 9
1, 1, 1 0 0 0

TABLE II
VALUES OF PARAMETERS λ((x, x1), x2) AT ENCODER E2 .

x, x1, x2, x0 P1 P2 P3

0, 0, 1, 0 0 0 0
0, 0, 1, 1 2.8 2.8 10
1, 0, 1, 0 1.8 2.6 10
1, 0, 1, 1 0 0 0

TABLE III
VALUES OF PARAMETERS λ((x, x1, x2), x0) AT ENCODER E3 .

and R2 = R(D0)−R(D1) hold. The degree distributions of the LDGM codes used in our tests

are taken from the website (http://lthcwww.epfl.ch.research/ldpcopt) or obtained by implementing

the algorithm in [23]. We use damping as in [20], [22] in our message passing algorithm, if the

messages do not converge after 30 iterations.

(R1, R2) (D0, D1, D
∗
2(D1, D0)) D̂0 D̂1 D̂2

(0.1187, 0.4122) (0.10, 0.30, 0.30) 0.109 0.308 0.304
(0.1187, 0.5955) (0.05, 0.30, 0.25) 0.066 0.308 0.258
(0.1187, 0.8813) (0.00, 0.30, 0.20) 0.012 0.309 0.206

TABLE IV
TEST RESULTS: (D0, D1, D

∗
2(D1, D0)) IS A TARGET DISTORTION TRIPLE; R1 AND R2 ARE THE RATES OF THE BASE,

RESPECTIVELY, REFINEMENT LAYER; D̂0 , D̂1 , AND D̂2 ARE THE EMPIRICAL DISTORTIONS.
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The length of the input sequences in our tests is n = 10, 000. We use η = 0.9 and ω = 4.

The values of parameter δ are listed in Table I. To define the source messages for E1, we use

λ(0, 0) = λ(1, 1) = 0 and λ(0, 1) = λ(1, 0) = 0.7. The values of λ(y, z) for encoders E2, and

E3 are presented in Tables II and III, respectively. It is worth mentioning that for all three cases

P1, P2, P3, variable X0 is a deterministic function of X1 and X2 when (X1, X2) ̸= (0, 1). Thus,

at encoder E3, for l such that (x1,k∗1
(l), x2,k∗2

(l)) ̸= (0, 1), the network node Nl always sends

the uniform message (0.5, 0.5), irrespective of the message received from Sl. Therefore, we set

λ((x, x1, x2), x0) = 0 for all binary quadruples (x, x1, x2, x0) with (x1, x2) ̸= (0, 1).

Table IV presents the experimental results. The first column contains the rates R1, R2 of

the base, respectively, refinement layer. The second column contains the target distortion triple

(D0, D1, D2). The remaining three columns present the empirical values of the three distortions,

respectively, averaged over 100 runs. As observed from Table IV, the distortions are very close

to the theoretical limits.

VI. CONCLUSION

This work derives an explicit expression of the minimum distortion achievable by the re-

finement layer of a multiresolution code for arbitrary finite alphabet sources with Hamming

distortion measure. A practical robust multiresolution coding scheme based on LDGM codes is

proposed, which shows promising performance.

APPENDIX A

PROOF OF LEMMA 2

For any X2 such that I(X;X1, X2|X0) = 0 and I(X1;X2) = 0, define X̃2 = X2 if X2 ∈ X+
0

and X̃2 = 0 if X2 /∈ X+
0 . It is clear that I(X;X1, X̃2|X0) = 0 and I(X1; X̃2) = 0. Note that for

x0 ∈ X+
0

pX|X0(0|x0) ≥ min(1−D0, λ0)

≥ min(1− D(R)|R=0 , λ0)

= min(pX(0), λ0)

= λ0
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≥ max
x/∈X+

0

pX|X0(x|x0),

where the first equality follows from F1), and the second equality follows from the fact that

λ0 ≤ λ1 ≤ pX(1) ≤ pX(0) (see F3)). Therefore, we have

P(X = X2) =
∑

x0∈X+
0

∑
x2∈X

pXX0X2(x2, x0, x2)

=
∑

x0∈X+
0

∑
x2∈X

pX|X0(x2|x0)pX0X2(x0, x2)

=
∑

x0∈X+
0

( ∑
x2∈X+

0

pX|X0(x2|x0)pX0X2(x0, x2)

+
∑

x2 /∈X+
0

pX|X0(x2|x0)pX0X2(x0, x2)

)

≤
∑

x0∈X+
0

( ∑
x2∈X+

0

pX|X0(x2|x0)pX0X2(x0, x2)

+ pX|X0(0|x0)
∑

x2 /∈X+
0

pX0X2(x0, x2)

)

=
∑

x0∈X+
0

(
pX|X0(0|x0)

(
pX0X2(x0, 0)

+
∑

x2 /∈X+
0

pX0X2(x0, x2)

)

+
∑

x2∈X+
0 ,x2 ̸=0

pX|X0(x2|x0)pX0X2(x0, x2)

)

=
∑

x0∈X+
0

∑
x̃2∈X+

0

pX|X0(x̃2|x0)pX0X̃2
(x0, x̃2)

= P(X = X̃2).

APPENDIX B

PROOF OF LEMMA 3

Note that

P(X = X2)

DRAFT



19

=
∑

x0∈X+
0

∑
x2∈X+

0

pXX0X2(x2, x0, x2)

=
∑

x0∈X+
0

∑
x2∈X+

0

pX|X0(x2|x0)pX0X2(x0, x2)

=
∑

x0∈X+
0

(
pX|X0(x0|x0)pX0X2(x0, x0)

+
∑

x2∈X+
0 ,x2 ̸=x0

pX|X0(x2|x0)pX0X2(x0, x2)

)

=
∑

x0∈X+
0

(
(1−D0)pX0X2(x0, x0)

+
∑

x2∈X+
0 ,x2 ̸=x0

λ0pX0X2(x0, x2)

)
(17)

= (1−D0)P(X0 = X2) + λ0P(X0 ̸= X2),

where (17) is due to (3). Therefore, we have

P(X ̸= X2) = 1− P(X = X2)

= 1− (1−D0)P(X0 = X2)− λ0P(X0 ̸= X2)

= D0 + (1−D0 − λ0)P(X0 ̸= X2).

APPENDIX C

PROOF OF LEMMA 5

It is easy to see that

D̄2(D0, D1)

= min
pX0X1X2

1−
∑

x0∈X+
0

∑
x1∈X+

1

pX0X1X2(x0, x1, x0) (18)

subject to the constraints

− pX0X1X2(x0, x1, x2) ≤ 0,

x0 ∈ X+
0 , x1 ∈ X+

1 , x2 ∈ X+
0 , (19)
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20∑
x2∈X+

0

pX0X1X2(x0, x1, x2) = pX0X1(x0, x1),

x0 ∈ X+
0 , x1 ∈ X+

1 , (20)

pX1(x1)
∑

x0∈X+
0

pX0X1X2(x0, 0, x2)

− pX1(0)
∑

x0∈X+
0

pX0X1X2(x0, x1, x2) = 0,

x1 ∈ X+
1 \ {0}, x2 = X+

0 \ {0}, (21)

where (19) and (20) are due to the fact that pX0X1X2 is a probability distribution and that pX0X1

is fixed while (21) is due to the independence of X1 and X2.

Since (18) is a linear programming problem, the Karush-Kuhn-Tucker conditions are sufficient

for global optimality. Now introduce Lagrangian multipliers µ = (µx0,x1,x2)x0∈X+
0 ,x1∈X+

1 ,x2∈X+
0

,

α = (αx0,x1)x0∈X+
0 ,x1∈X+

1
, and β = (βx1,x2)x1∈X+

1 \{0},x2∈X+
0 \{0} for (19), (20), and (21), respec-

tively. Define

G(pX0X1X2 , µ, α, β)

= 1−
∑

x0∈X+
0

∑
x1∈X+

1

pX0X1X2(x0, x1, x0)

−
∑

x0∈X+
0

∑
x1∈X+

1

∑
x0∈X+

0

µx0,x1,x2pX0X1X2(x0, x1, x2)

+
∑

x0∈X+
0

∑
x1∈X+

1

αx0,x1

∑
x2∈X+

0

pX0X1X2(x0, x1, x2)

+
∑

x1∈X+
1 \{0}

∑
x2∈X+

0 \{0}

βx1,x2

∑
x0∈X+

0

(pX1(x1)

× pX0X1X2(x0, 0, x2)− pX1(0)pX0X1X2(x0, x1, x2)).

The Karush-Kuhn-Tucker conditions are given by

∂G(pX0X1X2 , µ, α, β)

∂pX0X1X2(x0, x1, x2)
= 0, x0 ∈ X+

0 , x1 ∈ X+
1 , x2 ∈ X+

0 , (22)

− pX0X1X2(x0, x1, x2) ≤ 0, x0 ∈ X+
0 , x1 ∈ X+

1 , x2 ∈ X+
0 ,
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21∑
x2∈X+

0

pX0X1X2(x0, x1, x2) = pX0X1(x0, x1),

x0 ∈ X+
0 , x1 ∈ X+

1 ,

pX1(x1)
∑

x0∈X+
0

pX0X1X2(x0, 0, x2)

− pX1(0)
∑

x0∈X+
0

pX0X1X2(x0, x1, x2) = 0,

x1 ∈ X+
1 \ {0}, x2 = X+

0 \ {0},

µx0,x1,x2 ≥ 0, x0 ∈ X+
0 , x1 ∈ X+

1 , x2 ∈ X+
0 ,

µx0,x1,x2pX0X1X2(x0, x1, x2) = 0,

x0 ∈ X+
0 , x1 ∈ X+

1 , x2 ∈ X+
0 ,

where (22) is equivalent to

dH(x0, x2)− 1− µx0,x1,x2 + αx0,x1

+
∑

x′
1∈X

+
1 \{0}

βx′
1,x2

pX1(x
′
1) = 0,

x0 ∈ X+
0 , x1 = 0, x2 ∈ X+

1 \ {0},

dH(x0, x2)− 1− µx0,x1,x2 + αx0,x1 − βx1,x2pX1(0) = 0,

x0 ∈ X+
0 , x1 ∈ X+

1 \ {0}, x2 ∈ X+
0 \ {0},

dH(x0, x2)− 1− µx0,x1,x2 + αx0,x1 = 0,

x0 ∈ X+
0 , x1 ∈ X+

1 , x2 = 0.

Let

pX0X1X∗
2
(x0, x1, x2)

=


pX0X1(x1, x1)− pX0X1(0, x1), x0 = x1 ̸= x2 = 0

pX0X1(x0, x1), x0 = x2 ̸= x1

pX0X1(0, x1), x0 = x1 = x2

0, otherwise
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for x0 ∈ X+
0 , x1 ∈ X+

1 , and x2 ∈ X+
0 . Let

µ∗
x0,x1,x2

= 0, x0 = x2 ∈ X+
0 , x1 ∈ X+

1 ,

µ∗
x0,x1,x2

= 0, x0 = x1 ∈ X+
1 \ {0}, x2 = 0,

µ∗
x0,x1,x2

= α∗
x0,x1

,

x0 ̸= x1, x2 = 0, x0 ∈ X+
0 \ {0}, x1 ∈ X+

1 ,

µ∗
x0,x1,x2

= α∗
x0,x1

+
∑

x′
1∈X

+
1 \{0}

β∗
x′
1,x2

pX1(x
′
1),

x0 ̸= x2, x1 = 0, x0 ∈ X+
0 , x2 ∈ X+

0 \ {0},

µ∗
x0,x1,x2

= α∗
x0,x1

− β∗
x1,x2

pX1(0),

x0 ̸= x2, x0 ∈ X+
0 , x1 ∈ X+

1 \ {0}, x2 ∈ X+
0 \ {0},

α∗
x0,x1

= 0, x0 = x1 ∈ X+
1 \ {0},

α∗
x0,x1

= 1, x0 = 0, x1 ∈ X+
1 ,

α∗
x0,x1

= 1, x0 ̸= x1, x0 ∈ X+
0 \ {0}, x1 ∈ X+

1 \ {0},

α∗
x0,x1

=
1−

∑
x′
1 ̸=x0,x′

1∈X
+
1 \{0} pX1(x

′
1)

pX1(0)
,

x0 ∈ X+
0 \ {0}, x1 = 0,

β∗
x1,x2

=
α∗
x2,x1

− 1

pX1(0)
, x1 ∈ X+

1 \ {0}, x2 ∈ X+
0 \ {0}.

It can be verified that the Karush-Kuhn-Tucker conditions are satisfied by the constructed

(pX0X1X∗
2
, µ∗, α∗, β∗). Moreover, note that

1−
∑

x0∈X+
0

∑
x1∈X+

1

pX0X1X∗
2
(x0, x1, x0)

= 1−
∑

x0∈X+
1

∑
x1∈X+

1

pX0X1X∗
2
(x0, x1, x0)

−
∑

x0∈X+
0 \X+

1

∑
x1∈X+

1

pX0X1X∗
2
(x0, x1, x0)

= 1−
∑

x0∈X+
1

(
pX0X1X∗

2
(x0, x0, x0)
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+
∑
x1 ̸=x0

pX0X1X∗
2
(x0, x1, x0)

)
−

∑
x0∈X+

0 \X+
1

∑
x1∈X+

1

pX0X1X∗
2
(x0, x1, x0)

= 1−
∑

x0∈X+
1

(
pX0X1(0, x0) +

∑
x1 ̸=x0

pX0X1(x0, x1)

)

−
∑

x0∈X+
0 \X+

1

∑
x1∈X+

1

pX0X1(x0, x1)

= 1− pX0(0)−
∑

x0∈X+
1

∑
x1 ̸=x0

pX0X1(x0, x1)

−
∑

x0∈X+
0 \X+

1

∑
x1∈X+

1

pX0X1(x0, x1)

= 1− pX0(0)− P(X0 ̸= X1).

The proof is complete.
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