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Abstract. In this paper we present a family of new algorithms for rate-fidelity optimal packetization

of scalable source bit streams with uneven error protection. In the most general setting where no

assumption is made on the probability function of packet loss or on the rate-fidelity function of the

scalable code stream, one of our algorithms can find the globally optimal solution to the problem in

O(N2L2) time, compared to a previously obtained O(N3L2) complexity, where N is the number of

packets and L is the packet payload size. If the rate-fidelity function of the input is convex, the time

complexity can be reduced to O(NL2) for a class of erasure channels, including channels for which

the probability function of losing n packets is monotonically decreasing in n and independent erasure

channels with packet erasure rate no larger than N
2(N+1) . Furthermore, our O(NL2) algorithm for

the convex case can be modified to find an approximation solution for the general case. All of our

algorithms do away with the expediency of fractional bit allocation, a limitation of some existing

algorithms.
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1 Introduction

Modern packet switched communication systems such as ATM and the Internet have to overcome

the problems of packet loss and other transmission errors. In the case of streaming a scalable

source sequence of compressed digital media, one can use optimal packetization of the scalable

source sequence with uneven error protection (UEP) to minimize the impact of lost packets on the

quality of network service. The idea is to partition a scalable source sequence into segments of

decreasing importance, and protect these segments by progressively weaker error correction codes

to achieve the best joint economy of source and channel codes. This joint source-channel coding

approach was recently studied by many researchers [2, 4, 5, 7, 8, 9, 10, 12, 13], most of whom were

motivated by the applications of internet media streaming over noisy channels. The technique can

be applied to any scalable (progressively refinable) signal compression methods. Many experiments

with scalable image coding techniques such as SPIHT and JPEG 2000 were reported in the literature

[4, 7, 8, 10, 12, 13, 14].

In this paper, we reexamine the problem of UEP optimal packetization of scalable source sequence

of Reed-Solomon (RS) block codes as formulated and discussed in [5, 7, 8, 9, 14, 16], and develop

new algorithms for it. In particular, we focus on globally optimal solutions to the UEP packetization

problem in more general setting.

Consider transmission of a scalable source sequence using N packets, each of which has a payload

of L symbols (a symbol is a block of a fixed number of bits). In the UEP framework, the source

sequence is divided into L consecutive segments, and each of these segments is protected by RS

code. Let mi be the length (in symbols) of the i-th source segment, then the channel code assigned

to protect the segment is the (N, mi) RS code. The stream of these mi source symbols followed by

the fi = N −mi redundancy symbols constitutes the i-th slice of the joint source-channel code. The

effect of the (N, mi) RS code associated with the i-th source segment is that, if at most fi of N

packets are lost, then all the mi source symbols of the i-th slice can be correctly recovered. However,

since the scalable source sequence is only sequentially refinable, decoding of the i-th source segment

depends on all the previous i − 1 segments, i.e., the complete prefix of the source sequence with

respect to the current segment. Hence the number of redundancy symbols assigned to a slice must
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Figure 1: UEP packetization scheme. The dark rectangles correspond to source symbols and the
white rectangles correspond to the redundancy symbols.

be monotonically non-increasing in the slice index:

f1 ≥ f2 ≥ · · · ≥ fL. (1)

The L-tuple (f1, f2, · · · , fL) above is called L-slice redundancy assignment.

Since no fractional protection symbols can be allocated in practice, we require that all fi, 1 ≤ i ≤

L be integers between 0 and N−1 and that the monotone relation (1) be enforced. Figure 1 illustrates

the UEP packetization scheme. As we will see later, the constraint of decreasing redundancy level

for subsequent segments of the source sequence can be lifted, if the rate-fidelity function of the

scalable source sequence is convex. In this case, the solution of the unconstrained version of the

optimization problem satisfies the constraint anyway. In practice many scalable source codes are

indeed constructed to shape an approximately convex operational rate-fidelity curve. A well-known

example is the EBCOT technique used in JPEG 2000 [17].

Let φ(r) be the rate-fidelity function of the scalable source sequence, which is a monotonically

non-decreasing function in rate r ∈ [0, Rmax], where Rmax is the total number of source symbols.

The efficiency of the redundancy assignment is measured by the expected fidelity of the reconstructed

sequence at the decoder side. If exactly n packets are lost, such that fi ≥ n > fi+1, for some i,

then only the first i source segments can be completely recovered by the RS code. Since the source
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sequence is embedded, the receiver can decode it only up to the first lost symbol. Consequently, the

receiver can decode only the first i source segments plus some few source symbols of the (i + 1)-

th segment that are not lost. As in [7, 8, 9, 14, 16], we round off the effect of decoding these

additional few symbols on fidelity. Hence the achieved fidelity is φ(ri), where ri =
∑i

k=1 mk =

iN − ∑i
k=1 fk. The probability that the receiver achieves this fidelity is

∑fi

n=fi+1+1 pN (n), where

pN (n) is the probability of losing n packets out of N . Hence, the expected fidelity Φ(f1, f2, · · · , fL)

of the reconstructed sequence at the decoder side can be expressed as

Φ(f1, f2, · · · , fL) = φ(0)
N∑

n=f1+1

pN (n) +
L−1∑

i=1

φ(ri)
fi∑

n=fi+1+1

pN (n) + φ(rL)
fL∑

n=0

pN (n). (2)

After straightforward algebraic manipulations we have:

Φ(f1, f2, · · · , fL) = cN (N)φ(0) +
L∑

i=1

cN (fi)(φ(ri)− φ(ri−1)), (3)

where cN (k) =
∑k

n=0 pN (n), k = 0, 1, · · · , N , and ri =
∑i

k=1 mk = iN−∑i
k=1 fk, 1 ≤ i ≤ L, r0 = 0.

The objective of optimal UEP packetization is to find the redundancy assignment (f1, f2, · · · , fL)

that maximizes Φ(f1, f2, · · · , fL), for given N , L, pN (n), and φ(r).

Most of the existing algorithms proposed for this problem [7, 8, 9, 14, 16] need the convexity of

the rate-fidelity function to achieve optimality. Stockhammer and Buchner [16] present a dynamic

programming algorithm of O(N2L2) time complexity that can obtain global optimality for convex

rate-fidelity function. The algorithms of Puri and Ramchandran [9] and of Mohr, Ladner and Riskin

[7, 8] provide the globally optimal solution only if the rate-fidelity function is convex and fractional

bit allocation is allowed. The algorithm of Stankovic, Hamzaoui, and Xiong [14] does not need

the additional assumption of fractional bit allocation, but it can find only a local optimum. The

only known globally optimal solution of UEP packetization problem in general setting, with no

assumptions on the rate-fidelity function or on the channel statistics, was given by Sachs, Anand

and Ramchandran [10]. It was a dynamic programming algorithm of O(N3L2) time complexity.

In this paper we reduce the time complexity of the globally optimal UEP packetization to

O(N2L2) for the general case, and to O(NL2) if the rate-fidelity function of the scalable source

is convex and if the probability pN (n) is monotonically non-increasing in n. The condition of mono-

tone pN (n) can be removed for independent packet erasure channels with packet loss rate no larger
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than N
2(N+1) . The paper is structured along this path of complexity reduction from the more gen-

eral setting to the convex case. In the next section we propose an O(N2L2) algorithm for globally

optimal UEP packetization for the general case. In Section 3 we proceed to the case of convex

rate-fidelity function. First we show that the constraint of non-increasing redundancy assignment

(1) can be lifted. Then we prove that the cost function underlying the optimal unconstrained UEP

packetization problem has a strong monotone property called total monotonicity if the probability

pN (n) is monotonically non-increasing in n. This property allows the use of a fast matrix search

technique [1] to reduce the time complexity to O(NL2). Section 4 briefly demonstrates how our

algorithms can also be applied to optimize the product joint source-channel code as proposed by

[10], which takes in consideration both packet loss and intra-packet bit errors. Section 5 presents

experimental results and offers comprehensive comparisons between the proposed algorithms and

existing approximation algorithms.

2 Exact Solution for the General Case

In this section we solve the optimal UEP packetization problem for general φ(r) and pN (n). Note

that in (3) the term cN (N)φ(0) is a constant and hence can be discarded in the optimal UEP design.

In the summation that remains, the i-th term, cN (fi)(φ(ri) − φ(ri−1)), is the contribution of the

i-th slice to the expected fidelity. The contribution of the first k slices to the expected fidelity, which

depends only on the k-slice redundancy assignment (f1, f2, · · · , fk), is denoted by Φk(f1, f2, · · · , fk):

Φk(f1, f2, · · · , fk) =
k∑

i=1

cN (fi)(φ(ri)− φ(ri−1)). (4)

It is obvious that maximizing the expected fidelity Φ(f1, f2, · · · , fL) is equivalent to maximizing

ΦL(f1, f2, · · · , fL), which can be written as

ΦL(f1, f2, · · · , fL) = Φk(f1, f2, · · · , fk) + C, (5)

where C =
∑L

i=k+1 cN (fi)(φ(ri)− φ(ri−1)).

The algorithm development would be considerably simpler if the two terms Φk(f1, f2, · · · , fk)

and C could be maximized separately. Unfortunately, the two expressions are not independent. C

depends on the total number of protection symbols f1 + f2 + · · ·+ fk for the first k slices (because

rk = kN−(f1+f2+· · ·+fk)). Another dependency is imposed by the condition fk ≥ fk+1 that has to
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be satisfied. We can break down these dependencies by fixing the total number of protection symbols

t for the first k slices, t = f1 + f2 + · · ·+ fk, and by also fixing a value n satisfying fk ≥ n ≥ fk+1

(the value n has the significance of minimum redundancy required for the k-th slice and maximum

redundancy admissible for the (k + 1)-th slice). After introducing the new parameters n and t,

consider the sub-problem of maximizing Φk(f1, f2, · · · , fk) over all k-slice redundancy assignments

(f1, f2, · · · , fk) for the first k slices, subject to N − 1 ≥ f1 ≥ · · · ≥ fk ≥ n, f1 + f2 + · · · + fk = t.

We call this sub-problem, the sub-allocation (k, n, t). The sub-allocation (k, n, t) is defined for all

triples (k, n, t) of integers such that 1 ≤ k ≤ L, 0 ≤ n ≤ N − 1 and

kn ≤ t ≤ k(N − 1). (6)

For convenience of denotation, define

A(k, n, t) = max {Φk(f1, f2, · · · , fk)|N − 1 ≥ f1 ≥ · · · ≥ fk ≥ n, f1 + f2 + · · ·+ fk = t} . (7)

In order for such redundancy assignments to exist, the condition (6) has been imposed on the triple

(k, n, t).

In the newly introduced notation the optimal UEP packetization problem can be restated as

finding the L-slice redundancy assignment (f1, f2, · · · , fL) such that

ΦL(f1, f2, · · · , fL) = max
0≤t≤L(N−1)

A(L, 0, t). (8)

In order to obtain the values A(L, 0, t) for all possible t, we need to systematically evaluate A(k, n, t)

for all possible triples (k, n, t). The required computations are organized recursively as follows.

If the k-slice redundancy assignment (f1, f2, · · · , fk) is optimal for the sub-allocation (k, n, t),

then either fk = n or fk ≥ n + 1. If fk = n then the total number of protection symbols on the

first k−1 slices equals t−n and the (k−1)-slice redundancy assignment (f1, f2, · · · , fk−1) has to be

optimal for the sub-allocation (k−1, n, t−n), too. If fk ≥ n+1, then the assignment (f1, f2, · · · , fk)

has to be optimal for the sub-allocation (k, n + 1, t) as well.

Note further that, for some triples (k, n, t) one of the two alternatives mentioned above (fk = n

or fk ≥ n + 1) is impossible, hence only the other holds. This is the case when kn ≤ t < k(n + 1),

which implies that fk can not be larger than n, hence we obtain

A(k, n, t) = A(k − 1, n, t− n) + cN (n)(φ(kN − t)− φ((k − 1)N − t + n)). (9)
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The other case happens when n + (k − 1)(N − 1) < t ≤ k(N − 1), which implies that fk can not be

equal to n, and it follows that

A(k, n, t) = A(k, n + 1, t). (10)

In all the other cases, i.e. for k(n + 1) ≤ t ≤ n + (k − 1)(N − 1), the following recursion holds:

A(k, n, t) = max{A(k − 1, n, t− n) +

cN (n)(φ(kN − t)− φ((k − 1)N − t + n)), A(k, n + 1, t)}. (11)

The recursive formulae (9), (10) and (11) show that A(k, n, t) can be computed in constant time

provided that A(k − 1, n, t − n) and A(k, n + 1, t) are known. In order to take advantage of this

result we have to solve the sub-allocations (k, n, t) in such an order as to ensure that sub-allocation

(k, n, t) is computed after sub-allocations (k − 1, n, t− n) and (k, n + 1, t). This can be done if k is

enumerated in increasing order, but n in decreasing order, and for each given pair k, n, all possible

t are considered before going to the next value of k or n.

After computing max0≤t≤L(N−1) A(L, 0, t), we need to restore the optimal L-slice redundancy

assignment. Let B(k, n, t) be the number of protection symbols for the k-th slice in the optimal

k-slice redundancy assignment achieving A(k, n, t) in (7), for each triple (k, n, t). We need to keep

track of the values B(k, n, t). To save space we do not store the actual values of B(k, n, t) for each

triple (k, n, t), but only a binary flag on which value is the maximum in the righthand side of (11).

Thus, we define Z(k, n, t) to be 0 if (9) holds, and 1 otherwise, for all 1 ≤ k ≤ L, N − 1 ≥ n ≥ 0,

and kn ≤ t ≤ k(N − 1). Upon computation of A(k, n, t), the bit Z(k, n, t) is also set and stored.

The binary array Z(·, ·, ·) suffices to reconstruct any quantity B(k, n, t). Namely, B(k, n, t) = n1,

where n1 is the smallest integer satisfying the conditions: n ≤ n1 ≤ t/k, Z(k, n1, t) = 0 and

Z(k, n′, t) = 1 for all n′, n ≤ n′ < n1. Such an integer n1 always exists (indeed, for n” = bt/kc we

have Z(k, n”, t) = 0). Hence, for a given triple (k, n, t), the reconstruction of B(k, n, t) requires at

most O(N) time.

Summarizing the above we present an UEP packetization algorithm to compute globally optimal

L-slice redundancy assignment for arbitrary pN (n) and φ(r).

Algorithm A. Optimal UEP Packetization for General Case.
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Step 1. For k = 1, 2, · · · , L, n = N − 1, N − 2, · · · , 0, and each t, kn ≤ t ≤ k(N − 1), compute

A(k, n, t) and Z(k, n, t) using recursion (9), (10) or (11), depending on t.

Step 2. Find t0 = max−1
0≤t≤L(N−1) A(L, 0, t).

Step 3. Construct the optimal assignment (f1, f2, · · · , fL) in the following way. Set fL = B(L, 0, t0)

and t = t0−fL. For k = L−1, L−2, · · · , 1, set fk = B(k, fk+1, t) and then update t: t = t−fk.

The values B(k, n, t) are determined as explained earlier.

In Appendix A we present a detailed pseudocode of the algorithm.

The time complexity of Step 1 is O(N2L2) because there are O(N2L2) entries of A(k, n, t) and

Z(k, n, t), each of which is computed in O(1) time. Step 2 clearly takes O(NL) operations. Step

3 restores L quantities B(k, n, t) each of which requires O(N) time, taking O(NL) time in all.

Consequently, the overall time complexity of the algorithm is O(N2L2). The previously known

algorithm for the same problem has a time complexity of O(N3L2) [10].

Next we analyze the space complexity. For each triple (k, n, t), Z(k, n, t) has to be stored until

the algorithm is completed. Since there are O(N2L2) such binary entries, O(N2L2) bits suffice to

store Z(·, ·, ·). The values of A(k, n, t) are not needed in the entire duration of Step 1, but only as

long as they are used in (9), (10) or (11). Among the iterations on k, n and t, k is the last one

to vary. Therefore, after all quantities A(k0, n, t), for a fixed k0, have been computed, the values

A(k, n, t) for k < k0 and any n and t, are no longer needed and can be discarded. This means

that only O(N2L) entries of A(k, n, t) need to be stored at any given time. Consequently, the space

complexity of the algorithm is dominated by the memory requirement of Z(·, ·, ·), which is O(N2L2)

in bits.

3 Fast Matrix-search Algorithm for Convex Case

The complexity of Algorithm A is still high. There are two ways to simplify Algorithm A and reduce

its complexity. The first is to remove the constraint of non-increasing redundancy assignment to

subsequent slices of the scalable source sequence in the optimization process, and hopefully without

compromising optimality by doing so (this approach was taken by Stockhammer and Buchner [16],

too). The second is to reduce the search space of the dynamic programming algorithm by the
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technique of fast matrix search [1]. This can be made possible if the underlying cost function

satisfies a so-called total monotonicity. In this section we take these two steps to develop a more

efficient algorithm for optimal UEP packetization.

The algorithm to be presented below finds the globally optimum of the UEP packetization prob-

lem in the case of convex rate-fidelity function, in a similar approach as the algorithm of [16] with

O(N2L2) time complexity. But we go a step further and show that its time complexity can be

reduced to O(NL2) under some mild assumptions about the channel statistics, namely if pN (n) is

monotonically decreasing in n or if the channel is an independent erasure channel with packet loss

rate ε no greater than N
2(N+1) .

The solution presented in the previous section for optimal UEP packetization problem is found

by recursively solving the sub-problems associated with parameters k, n, t. The parameter n was

introduced to enforce the decreasing redundancy assignment, i.e., f1 ≥ f2 ≥ · · · ≥ fL. If this

condition is removed, then the parameter n can be dropped. In order to solve the problem of

maximizing (3) without the constraint of (1), we recursively solve sub-problems associated with

pairs of integers (k, t) with 1 ≤ k ≤ L, 0 ≤ t ≤ k(N − 1). For each such pair (k, t) denote by C(k, t)

the analog of A(k, 0, t) without the constraint (1). Namely,

C(k, t) = max{Φk(f1, · · · , fk) | 0 ≤ f1, · · · , fk ≤ N − 1, f1 + · · ·+ fk = t} (12)

It is clear that C(1, t) = Φ1(t) for all t, 0 ≤ t ≤ N − 1.

The computation of C(k, t) can be done according to the recursive formula

C(k, t) = max
0≤t−j≤N−1

(C(k − 1, j) + cN (t− j)(φ(kN − t)− φ((k − 1)N − j))) (13)

for all 2 ≤ k ≤ L, 0 ≤ t ≤ k(N − 1).

Denote by (k, t) the largest value of j for which C(k, t) is achieved in (13), for 2 ≤ k ≤ L, 0 ≤

t ≤ k(N − 1), and set by convention (1, t) = 0 for 0 ≤ t ≤ N − 1. If there are more than one

k-slice redundancy assignments (f1, · · · , fk) achieving C(k, t) in (12), then we choose the one for

which f1 + · · ·+fk−1 = (k, t), hence for which the number of redundancy symbols on the k-th slice,

fk, is the smallest.

Consequently, the unconstrained version of the optimal UEP packetization problem can be solved

by recursively computing the values C(k, t) and (k, t) for all 1 ≤ k ≤ L and 0 ≤ t ≤ k(N − 1).
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Then t0 = max−1
0≤t≤L(N−1) C(L, t) is found and the optimal L-slice redundancy assignment for t0 is

reconstructed. We call this algorithm Algorithm B, and present a pseudocode of it in Appendix A.

Next we state a proposition that governs the optimality of Algorithm B for the UEP packetization

problem in the convex case. For not interrupting the flow of our exposition we defer its proof to

Appendix B.

Proposition 1. If the rate-fidelity function φ(r) is convex, then the L-slice redundancy assignment

computed by Algorithm B satisfies the constraint f1 ≥ f2 ≥ · · · ≥ fL.

Algorithm B computes O(NL2) instances of C(k, t). If the computation of each value C(k, t)

is done by a full search, then it requires O(N) time and the complexity of the algorithm becomes

O(N2L2). However, one can do much better. This complexity can be reduced to O(NL2) by applying

an elegant matrix-search technique introduced by Aggarwal et al. [1]. (A detailed description of

this technique can be found in [3]). For each k, 2 ≤ k ≤ L, consider the upper triangular matrix Gk

with the elements Gk(j, t), 0 ≤ j ≤ t ≤ k(N − 1), where Gk(j, t) is defined by

Gk(j, t) = C(k − 1, j) + cN (t− j)(φ(kN − t)− φ((k − 1)N − j)) (14)

for t − N + 1 ≤ j ≤ t, and Gk(j, t) = −∞ for 0 ≤ j < t − N + 1. Then relation (13) becomes

equivalent to

C(k, t) = max
0≤j≤k(N−1)

Gk(j, t). (15)

In other words, for a given k, the search required by (13) corresponds to finding the maximum

element in the column t of Gk. Matrix Gk is said to be totally monotone with respect to column

maxima if for j < j′ and t < t′, the following implication holds:

Gk(j′, t) ≥ Gk(j, t) ⇒ Gk(j′, t′) ≥ Gk(j, t′). (16)

As demonstrated by Aggarwal et al. in [1], all the m column maxima of an m ×m matrix can be

found in O(m) time if the matrix is totally monotone. Very encouragingly, we can indeed show that

the matrix Gk defined in (14) is totally monotone if pN (n) is monotonically non-increasing. This

result is stated by the following proposition, whose proof is presented in Appendix B.

Proposition 2. If the packet loss probability pN (n) is decreasing in n, then the upper triangular

matrix Gk is totally monotone with respect to column maxima.
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The total monotonicity of Gk for non-increasing pN (n) enables us to apply the matrix-search

technique of Aggarwal et al. [1] to compute all column maxima of Gk for given k, in O(NL) time.

Therefore, computing all values of C(k, t) takes O(NL2) time. Consequently, the time complexity of

optimal UEP packetization is reduced to O(NL2) when φ(r) is convex and pN (n) is non-increasing.

In the case the maximum value of column t is not unique, the matrix search algorithm chooses the

one of the largest row index j = (k, t). This tie break rule is the same as in Algorithm B, which is

also a condition that we need in the proof of Proposition 1.

To assess the space complexity, we note that O(NL) entries of C(k, t) have to be stored at any

given time for applying the recursion (13). Moreover the algorithm needs to store O(NL2) entries

of (k, t) in order to reconstruct the optimal redundancy assignment. The latter space requirement

dominates, hence the overall space complexity is O(NL2).

The fast matrix search algorithm can also be applied to a wider class of erasure channels that

do not even have non-increasing pN (n), as long as the rate-fidelity function is convex. Consider an

independent erasure channel with the packet loss rate ε. The probability of losing n packets out of

N is pN (n) = (N
n )εn(1 − ε)N−n. The probability mass function pN (n) is not monotone, but it is

a unimodal function with its peak at n0 = bε(N + 1)c. We have pN (n) ≤ pN (n + 1) for n < n0

and pN (n) ≥ pN (n + 1) for n ≥ n0. This result is stated (as Lemma 1) and proved in Appendix B.

Since pN (n) is decreasing for n ≥ n0, the fast matrix search technique can still be applied, if the

algorithm restricts to redundancy assignments with at least n0 protection symbols to each slice. In

other words we narrow the search range for j in (13) to

n0 ≤ t− j ≤ N − 1. (17)

According to Proposition 1, the assignment output by Algorithm B with this modification satisfies

the constraint (1), too. Moreover, this assignment is still optimal for the UEP packetization problem,

in spite of the restriction (17), if the packet loss rate ε is at most N
2(N+1) , as stated by the following

proposition.

Proposition 3. If the rate-fidelity function φ(r) is convex and the channel is an independent erasure

channel with packet loss rate ε ≤ N
2(N+1) , then there is an L-slice redundancy assignment maximizing

(3) with at least n0 protection symbols on each slice, where n0 = bε(N + 1)c.
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We again defer the proof of this result to the appendix for not interrupting the flow of the

presentation. Note that the assumption ε ≤ N
2(N+1) is very reasonable in practice since the threshold

N
2(N+1) is very close to the value 0.5.

The fast matrix search algorithm can also be used as an approximation algorithm when the rate-

fidelity function φ(r) is not convex. We only need a slight modification to ensure that the output

L-slice redundancy assignment satisfies the constraint (1). The modification is made in the matrix

Gk for all k. The value Gk(j, t) is set to −1 if t − j > j − (k − 1, j). In other words, the value j

will not be a candidate at the selection of (k, t) if it introduces a reverse of the order in the final

redundancy assignment. Note that this artificially imposed order may miss the globally optimal

solution to the problem if φ(r) is not convex. But in practice, this seldom happens. Even if it does,

the loss of optimality by using matrix search instead of the exact Algorithm A is negligible as we

will see in Section 5.

The algorithms proposed by Mohr, Ladner, and Riskin [8] and by Puri and Ramchandran [9]

work on convex hull of operational rate-fidelity function φ(r) of the source sequence, and both can

obtain optimal solution to the UEP packetization problem, if φ(r) is convex and if fractional redun-

dancy bit allocation is allowed. Under the practical constraint of integer redundancy assignment,

however, these two algorithms are still suboptimal even if φ(r) is strictly convex. The algorithm

in [8] has the complexity O(hN log N), where h is the number of points on the convex hull of

the rate-fidelity function. If φ(r) is convex, then its complexity becomes O(N2L log N), which is

asymptotically higher than our O(NL2) algorithm, since typically N log N > L for reasonably long

scalable sequences. The algorithm in [9] uses a Lagrangian multiplier λ. The algorithm is linear in

the number of packets (N) for a given λ, and the value of λ to meet the target rate is found using

a fast bisection search (it was usually found within 32 iterations according to [10]). The algorithm

of Stankovic, Hamzaoui, and Xiong [14] is an O(NL) time local search algorithm that starts from a

solution that maximizes the expected number of source bits and iteratively improves the solution.

It is the fastest among all UEP algorithms and offers very good approximation solution in practice.
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4 Optimization of the Product Code

The algorithms proposed above can also be used to optimize the product code introduced by Sachs,

Anand, and Ramchandran in [10], for the case when both packet loss and bit errors within packets

can happen simultaneously. The idea of [10] is to use Reed-Solomon block codes of different strengths

to protect the subsequent source slice as described in Section 1, and then to additionally protect all

columns with the same RCPC+CRC code. The column code provides protection against bit errors

inside each packet. If the length of a packet is L then the number of slices containing source and

RS symbols is L(r) = brLc, where r is the rate of the RCPC+CRC column code. For a given rate

r, the problem of maximizing the expected fidelity of the product code is equivalent to the optimal

UEP packetization problem as defined in Section 1 but with some changed parameters. Namely,

L and pN (n) have to be replaced by L(r), respectively, pN,r(n), where pN,r(n) is the probability

that exactly n packets out of N can not be recovered by the receiver (i.e. they are either lost or

corrupted after RCPC decoding). This probability depends on both packet erasure statistics and

on error correction capability of the RCPC+CRC column code used to protect data inside each

packet. For instance, if the channel is a concatenation of a BSC (binary symmetric channel) and an

independent packet erasure channel with packet erasure rate ε, then pN,r(n) can be evaluated as in

[15]:

pN,r(n) = (N
n )ε′n(1− ε′)N−n, (18)

where ε′ = ε + (1 − ε)q(r) and q(r) is the probability that a packet can not be correctly decoded

with the RCPC decoder.

The product code of UEP packetization and RCPC+CRC can be optimized by solving the

optimal UEP packetization problem for each possible rate r of the column code, and selecting the

rate r0 corresponding to the largest expected fidelity. Consequently, if Algorithm A is used for

computing the optimal assignment of RS redundancy for each rate r, the globally optimal product

code can be obtained. Similarly, the use of matrix search algorithm achieves global optimality for

convex rate-fidelity functions and provides approximate solutions in general case.
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Inputs Alg. [8] Alg. A Alg. B

barboon 20.7643 20.7687 20.7687

zelda 32.7260 32.7432 32.7417

lena 29.4156 29.4360 29.4358

convex 28.0874 28.1060 28.1060

concave 18.8518 22.1725 19.9004

Table 1: The expected PSNR in dB of different UEP packetization algorithms for an exponential
packet loss probability function.

5 Experimental Results

We implemented Algorithms A and B, and tested them on various scalable source sequences of

different operational rate-fidelity curves. The results of our algorithms were compared with those

of other algorithms in the literature. Table 1 presents average PSNR results of our algorithms and

the algorithm of [8]. The average was computed using (3) for a packet erasure channel whose packet

loss probability pN (n) is exponentially decreasing in n with a mean loss rate of 0.2. Note that this

is the same experimental condition as in [8]. In Table 1 we compare the three algorithms on five

scalable source sequences. Three of the sequences ”barboon”, ”zelda” and ”lena” are real embedded

data streams of well-known test images compressed by SPIHT [11]. The sequences ”convex” and

”concave” are synthesized data generated to evaluate the performance of different algorithms in

extreme cases. The input sequence ”convex” has a strictly convex rate-fidelity function φ(r) (i.e.,

every operational point of φ(r) is on the convex hull), whereas the input sequence ”concave” has a

rate-fidelity function φ(r) consisting of three concatenated concave pieces (i.e., the convex hull of

φ(r) has only four vertices). In the experiments we allocated a transmission budget of 147 packets

with 48 symbols per packet, where each symbol consists of 8 bits.

One can observe from Table 1 that Algorithm A outperforms the other two algorithms on all

test data as it should, although the margin is quite slim on SPIHT scalable code streams of natural

images. If the rate-fidelity function φ(r) is strictly convex, Algorithm B and Algorithm A produce
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N Alg. A Alg. B Alg. [7] Alg. [8] Alg. [9] Alg. [14]

100 28.27 28.27 28.26 28.26 28.24 28.26

200 30.99 30.99 30.95 30.97 30.95 30.93

Table 2: The expected PSNR in dB of different UEP packetization algorithms on SPIHT bitstream of
Lenna image, transmitted over a packet erasure channel with an exponentially decreasing probability
function pN (n), with mean loss rate 0.2.

identical redundancy assignment and hence the same PSNR, verifying our theoretical result that

Algorithm B is globally optimal for convex φ(r). We point out, for the sake of completeness, that

our globally optimal algorithm can outperform the algorithm of [8] by as much as 3.3 dB if φ(r) is

highly non-convex. Also, in this case, the suboptimality of Algorithm B is clearly exhibited with a

PSNR value 2.27 dB lower than the optimal. However, Algorithm B is still superior to the algorithm

of [8] by a margin of 1.05 dB.

For more comprehensive comparisons, we also provided Stankovic, Hamzaoui, and Xiong [14, 15]

with the source programs that implemented our algorithms. They conducted a thorough empirical

study on all existing UEP algorithms including their own. On their courtesy we present some of

their relevant findings. In this experiments the allocated transmission budget is of 100 or 200 packets

with 48 symbols per packet, where each symbol consists of 8 bits.

Tables 2 and 3 tabulate the expected PSNR of our algorithms in comparison with the algorithms

of [7, 8, 9, 14] on SPIHT and JPEG 2000 bitstreams of Lenna image, respectively. The experiments

were carried out for a simulated packet erasure channel whose packet loss probability function pN (n)

was exponentially decreasing with mean loss rate 0.2.

Table 4 presents the expected PSNR of the SPIHT bitstream of Lenna image for a two-state

packet loss model where the average packet loss probability is 0.1 and the average length of burst

errors is 9.57. The probability function pN (n) is computed with the method of [6].

Tables 5, 6 and 7 show the results for the optimization of the product code [10]. A 16-bit CRC

code with generator polynomial 0 × 15935 is used. The generator polynomials of the RCPC codes

are (0117, 0127, 0155, 0171), the mother code rate is 1/4 and the puncturing rate is 8. Thus the
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N Alg. A Alg. B Alg. [7] Alg. [8] Alg. [9] Alg. [14]

100 28.00 27.72 27.13 27.98 27.80 27.94

200 30.80 30.77 27.77 30.79 30.74 30.76

Table 3: The expected PSNR in dB of different UEP packetization algorithms on JPEG 2000
bitstream of Lenna image transmitted over a packet erasure channel with an exponentially decreasing
probability function pN (n), with mean loss rate 0.2.

N Alg. A Alg. B Alg. [7] Alg. [8] Alg. [9] Alg. [14]

100 29.68 29.68 29.65 29.67 29.66 29.67

200 33.03 33.03 33.00 33.03 33.03 33.02

Table 4: The expected PSNR in dB of different UEP packetization algorithms on SPIHT bitstream
of Lenna image, for a two-state packet loss model with average packet loss probability 0.1 and
average length of burst errors 9.57.

set of RCPC rates is {8/32, · · · , 8/9}. The strategy used for optimization is the one described in

Section 4, namely, the optimal, respectively approximately optimal, RS redundancy assignment for

each RCPC code rate r is computed by using, respectively, our algorithms A, B and the algorithms

of [8] and [9]. Then the code rate which yields the maximum expected PSNR is selected. Also

the results obtained by the local search strategy of [15] are presented. The results of Tables 5 and

6 are for a concatenation between a packet erasure channel with packet loss rate 0.05 and a BSC

(binary symmetric channel) with bit error rate 0.1. Table 5 presents the test results for the SPIHT

bitstream of Lenna image, and Table 6 for the JPEG 2000 bitstream of the same image. The test

results of Table 7 are for the SPIHT bitstream and for a Rayleigh fading channel with SNR=10 dB

and fD = 10−5.

In summary, for most scalable source sequences in practice the difference in rate-fidelity perfor-

mance between our UEP packetization algorithms and others is quite small. But at least theoretically

this difference can be large if the rate-fidelity function is highly non-convex. This paper offers exact

solutions to the problem at reduced complexity than the previously known globally optimal algo-

16



N Alg. A Alg. B Alg. [8] Alg. [9] Alg. [15]

100 26.16 26.14 26.14 26.15 26.14

200 28.53 28.53 28.50 28.51 28.51

Table 5: The expected PSNR in dB of the product code of intra-packet RCPC+CRC and UEP
packetization optimized by different algorithms for the SPIHT bitstream of Lenna image transmitted
over a packet erasure channel with packet loss rate 0.05, concatenated with a BSC with bit error
rate 0.1.

N Alg. A Alg. B Alg. [8] Alg. [9] Alg. [15]

100 25.80 25.53 25.77 25.78 25.74

200 28.27 28.27 28.14 28.21 28.18

Table 6: The expected PSNR in dB of the product code of intra-packet RCPC+CRC and UEP
packetization optimized by different algorithms for the JPEG 2000 bitstream of Lenna image trans-
mitted over a packet erasure channel with packet loss rate 0.05, concatenated with a BSC with bit
error rate 0.1.

N Alg. A Alg. B Alg. [8] Alg. [9] Alg. [15]

200 31.01 31.01 30.98 31.00 30.95

Table 7: The expected PSNR in dB of the product code of intra-packet RCPC+CRC and UEP
packetization optimized by different algorithms for the SPIHT bitstream of Lenna image transmitted
over a Rayleigh fading channel with SNR=10 dB and fD = 10−5.
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rithm [10]. More importantly, it constructively quantifies the efficacy of other fast, good, and more

practical approximation algorithms [7, 8, 9, 14].

6 Conclusion

In this paper we investigated discrete optimization approach to uneven error-protected packetiza-

tion of scalable code streams, an important problem in multimedia streaming over noisy channels.

Two new algorithms were proposed to compute globally optimal solutions of the problem, one for

the general case of arbitrary source and channel statistics, and the other for convex rate-fidelity

functions. These new algorithms have lower asymptotical complexity or/and fewer constraints than

the algorithms of [7, 8, 9, 10, 16].

Appendix A

Algorithm A. Optimal UEP Packetization for General Case.

for n := 0 to N − 1 do
A(0, n, 0) := 0

end for
for k := 1 to L do

for n := N − 1 downto 0 do
for t := kn to k(N − 1) do

Z(k, n, t) := 0;
if t ≤ n + (k − 1)(N − 1) then

A(k, n, t) := A(k − 1, n, t− n) + cN (n)(φ(kN − t)− φ((k − 1)N − t + n));
if t ≥ k(n + 1) then

if A(k, n, t) < A(k, n + 1, t) then
A(k, n, t) := A(k, n + 1, t); Z(k, n, t) := 1

end if
end if

else
A(k, n, t) := A(k, n + 1, t); Z(k, n, t) := 1

end if
end for

end for
end for
t0 := max−1

0≤t≤L(N−1) A(L, 0, t);
n := 0; t := t0;
for k := L downto 1 do

j := n;
while Z(k, n, t) = 1 do

j := j + 1
end while
fk := j; t := t− j; n := j

end for
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Algorithm B. UEP packetization without constraint of decreasing redundancy assignment.

for t := 0 to N − 1 do
C(1, t) := Φ1(t); (1, t) := 0

end for
for k := 2 to L do

for t := 0 to k(N − 1) do
C(k, t) := maxj,0≤t−j≤N−1{C(k − 1, j) + cN (t− j)(φ(kN − t)− φ((k − 1)N − j))};
(k, t) := max{max−1

j,0≤t−j≤N−1{C(k − 1, j) + cN (t− j)(φ(kN − t)− φ((k − 1)N − j))}}
end for

end for
t0 := max−1

0≤t≤L(N−1) C(L, t)
fL := t0 − (L, t0); t := t0 − fL

for j := 1 to L− 1 do
k := L− j; fk := t− (k, t); t := t− fk

end for

Appendix B

Proposition 1. If the rate-fidelity function φ(r) is convex, then the L-slice redundancy assignment

computed by Algorithm B satisfies the constraint (1) (i.e. f1 ≥ f2 ≥ · · · ≥ fL).

Proof. Let F = (f1, · · · , fL) be the L-slice redundancy assignment computed by Algorithm B.

Assume that there is some k, 1 ≤ k ≤ L− 1, such that

fk < fk+1. (19)

Let F ′ be the L-slice redundancy assignment obtained from F by interchanging the redundancy

assignments for the k-th and the (k + 1)-th slice. We will show that

ΦL(F ′) > ΦL(F ), (20)

which contradicts the optimality of Algorithm B for the unconstrained version of the optimal UEP

packetization problem. For this note first that the two assignments F and F ′ incur the same

disposition of the source symbols on all the slices excepting the k-th and the (k +1)-th slices. Hence

only the contribution of the k-th and the (k + 1)-th slice to the expected fidelity differ for the two

assignments. It follows that the relation (20) we aim to prove, is equivalent to

cN (fk+1)(φ(r′k)− φ(rk−1)) + cN (fk)(φ(rk+1)− φ(r′k)) >

cN (fk)(φ(rk)− φ(rk−1)) + cN (fk+1)(φ(rk+1)− φ(rk)), (21)

19



where r′k denotes the number of source symbols on the first k-th slices according to the assignment

F ′. The above inequality is further equivalent to

(cN (fk+1)− cN (fk))(φ(r′k)− φ(rk−1)− φ(rk+1) + φ(rk)) > 0. (22)

Since r′k − rk−1 = rk+1 − rk = N − fk+1 and rk−1 < rk, the convexity of the function φ(r) implies

that

φ(r′k)− φ(rk−1) ≥ φ(rk+1)− φ(rk), (23)

which, together with the relation cN (fk+1) > cN (fk), leads to the conclusion

(cN (fk+1)− cN (fk))(φ(r′k)− φ(rk−1)− φ(rk+1) + φ(rk)) ≥ 0. (24)

We have to show now that the above relation cannot hold with equality. Indeed, the equality in

relation (24) implies that the (k + 1)-slice redundancy assignment (f1, · · · fk−1, fk+1, fk) achieves

the same value for the expected fidelity for the first k + 1 slices as (f1, · · · fk−1, fk, fk+1) and this

value is the maximal one corresponding to the first k + 1 slices and t = f1 + · · ·+ fk−1 + fk + fk+1

protection symbols (according to the algorithm):

Φk+1(f1, · · · , fk−1, fk, fk+1) = Φk+1(f1, · · · , fk−1, fk+1, fk) = C(k, t). (25)

When such a situation occurs the algorithm chooses the assignment with the smallest number of

protection symbols on the (k + 1)-th slice. Since (f1, · · · , fk, fk+1) is the redundancy assignment

chosen by the algorithm, it follows that fk+1 ≤ fk, which contradicts the inequality (19).¤

Proposition 2. If the packet loss probability pN (n) is decreasing in n, then the upper triangular

matrix Gk is totally monotone with respect to column maxima.

Proof. If t′ − j > N − 1, then Gk(j, t′) = −∞ and relation (16) trivially holds.

Suppose now that t′ − j ≤ N − 1. Since j < j′ ≤ t < t′, it follows that

N − 1 ≥ t′ − j > t− j > t− j′ ≥ 0, (26)

N − 1 ≥ t′ − j > t′ − j′ > t− j′ ≥ 0. (27)

Hence, all quantities appearing in (16) can not be −∞. For proving (16), it is enough to show that

Gk(j, t)−Gk(j′, t) ≥ Gk(j, t′)−Gk(j′, t′) (28)
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Denote x = φ(kN − t), y = φ((k − 1)N − j), u = φ(kN − t′), v = φ((k − 1)N − j′), α =

cN (t−j)−cN (t−j′), β = cN (t′−j)−cN (t−j), γ = cN (t′−j)−cN (t′−j′), δ = cN (t′−j′)−cN (t−j′).

Thus the inequality (28) is equivalent to

αx + βy ≥ γu + δv. (29)

Inequalities (26) and(27) imply that kN − t > (k − 1)N − j > (k − 1)N − j′ and kN − t > kN − t′.

Since the rate-fidelity function φ(r) is increasing, it follows that x ≥ y ≥ v and x ≥ u. Also, the

function cN (n) is increasing, being a cumulative distribution function. Thus we conclude, aided

again by inequalities (26) and (27), that the values α, β, γ, and δ are nonnegative.

Note that β =
∑t′−t

i=1 pN (t− j + i) and δ =
∑t′−t

i=1 pN (t− j′+ i). Since t− j > t− j′ and pN (n) is

decreasing, it follows that pN (t− j + i) ≤ pN (t− j′ + i) for all 1 ≤ i ≤ t′ − t. In conclusion, β ≤ δ.

Furthermore, since x ≥ y and δ − β ≥ 0, we obtain (δ − β)x ≥ (δ − β)y. Using the equality

α−γ = δ−β, the relation (α−γ)x ≥ (δ−β)y follows, which is equivalent to αx+βy ≥ γx+δy. Also

the inequalities x ≥ u, y ≥ v, together with γ, δ ≥ 0 lead to the conclusion that γx + δy ≥ γu + δv.

Now the validity of equation (29) is established. ¤

Lemma 1. Let ε be a positive value smaller than 1 and pN (n) = (N
n )εn(1− ε)N−n for all n, 0 ≤ n ≤

N . Also let n0 = bε(N + 1)c. Then pN (n) ≤ pN (n + 1) for all n, 0 ≤ n < n0 and pN (n) ≥ pN (n + 1)

for all n, n0 ≤ n < N .

Proof. By straightforward algebraic computations the equivalence between the relations pN (n) ≤

pN (n + 1) and n ≤ (N + 1)ε − 1 is obtained. If n < n0 it follows that n ≤ (N + 1)ε − 1, hence

pN (n) ≤ pN (n + 1). If n ≥ n0, then n > (N + 1)ε− 1, hence pN (n) > pN (n + 1). ¤

Proposition 3. If the rate-fidelity function φ(r) is convex and the channel is an independent erasure

channel with packet loss rate ε ≤ N
2(N+1) , then there is an L-slice redundancy assignment maximizing

(3) with at least n0 protection symbols on each slice, where n0 = bε(N + 1)c.

Proof. It is enough to show that if an L-slice redundancy assignment F = (f1, · · · , fL) has fk < n0

for some k, 1 ≤ k ≤ L, then the assignment F ′ obtained by replacing fk with n0 yields an expected

fidelity no smaller. For each slice i, 1 ≤ i ≤ L denote by ri, respectively r′i, the number of source

symbols situated on the first i slices according to the assignment F , respectively F ′. Note first that
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the two assignments F and F ′ imply the same disposition of the source symbols on the first k − 1

slices, hence the contribution to the expected fidelity due to the first k−1 slices is the same for the two

assignments. Also note that for each slice i, i > k, we have ri > r′i and ri−ri−1 = r′i−r′i−1 = N−fi.

Then the convexity of the function φ(r) implies that

φ(ri)− φ(ri−1) ≤ φ(r′i)− φ(r′i−1). (30)

Since both F and F ′ provide the same protection to each slice i, i > k, we conclude using the above

relation, that the contribution to the expected fidelity of the slices from k + 1 to L is smaller or

equal for assignment F than for assignment F ′.

To complete the proof it is now sufficient to show that the contribution of the k-th slice to the

expected fidelity for assignment F is at most equal to that for assignment F ′, i.e.

cN (fk)(φ(rk)− φ(rk−1)) ≤ cN (n0)(φ(r′k)− φ(r′k−1)). (31)

Since rk − rk−1 = N − fk and r′k − r′k−1 = N − n0, the above relation is equivalent to

cN (fk)(N − fk)
φ(rk)− φ(rk−1)

rk − rk−1
≤ cN (n0)(N − n0)

φ(r′k)− φ(r′k−1)
r′k − r′k−1

. (32)

Because the function φ(r) is convex and non-decreasing, the relations rk−1 = r′k−1, rk − rk−1 >

r′k − r′k−1, imply that

0 ≤ φ(rk)− φ(rk−1)
rk − rk−1

≤ φ(r′k)− φ(r′k−1)
r′k − r′k−1

. (33)

Consequently, for proving (32) it is sufficient to additionally show that

cN (fk)(N − fk) ≤ cN (n0)(N − n0). (34)

This inequality is equivalent to

(N − fk)
fk∑

i=0

pN (i) ≤ (N − n0)
n0∑

i=0

pN (i), (35)

further equivalent to

(n0 − fk)
fk∑

i=0

pN (i) ≤ (N − n0)
n0∑

i=fk+1

pN (i). (36)

It is very easy to check that for i < n0 we have pN (i) ≤ pN (i + 1). This implies that the left hand

expression in the above inequality is at most equal to (n0 − fk)(fk + 1)pN (fk + 1), while the right
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hand expression is larger or equal than (N − n0)(n0 − fk)pN (fk + 1). Hence for proving (36) it is

enough to show that

(n0 − fk)(fk + 1)pN (fk + 1) ≤ (N − n0)(n0 − fk)pN (fk + 1). (37)

The condition in the hypothesis that ε ≤ N
2(N+1) implies that n0 ≤ N

2 , hence N − n0 ≥ n0 ≥ fk + 1,

which yields the inequality (37) thus completing the proof. ¤
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