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Abstract

Multiple description quantization is a signal compression technique for robust networked
multimedia communication. In this paper we consider the problem of optimally quantizing a
random variable into two descriptions, while each description being produced by a side quantizer
of convex codecells. The optimization objective is to minimize the expected distortion given
the probabilities of receiving either and both descriptions. The problem is formulated as one of
shortest path in a weighted directed acyclic graph with constraints on the number and types
of edges. An O(K1K2N

3) time algorithm for designing the optimal two-description quantizer
is presented, where N is the cardinality of the source alphabet, and K1, K2 are the number
of codewords of the two quantizers respectively. This complexity is reduced to O(K1K2N

2) by
exploiting the Monge property of the objective function. Furthermore, if K1 = K2 = K and the
two descriptions are transmitted through two channels of the same statistics, then the optimal
two-description quantizer design problem can be solved in O(KN2) time.

Key words: Quantization, multiple description signal representation, multimedia communica-

tions, Monge property, matrix search, k-link shortest path.
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1 Introduction

Quantization is a common technique of compressing multimedia signals such as images, video and

audio [5]. Data compression is achieved by quantizing signal samples from a representation of higher

resolution to lower resolution so that fewer bits suffice to code each sample of the quantized signal.

Optimal quantization falls into the class of resource allocation problems in operational research.

The central issue is how to describe a random variable X or a random vector X to the maximum

precision (or minimum distortion) possible using a given number of bits. The problem is called

optimal scalar or vector quantizer design depending on whether the input is a random variable or a

random vector. This paper is restricted to the treatment of scalar quantization.

In conventional single description quantization, a quantized signal is coded and transmitted in a

single bit stream through a communication channel. If the channel fails then the reconstruction of

the signal will be necessarily interrupted or abandoned at the receiver. The modern IP communi-

cation networks, however, offer multiple routes between any two nodes. This design of distributed

communication can be utilized to improve the error resilience of conventional quantizers. Multiple

description or networked quantization is such a technique [4, 8, 9, 10] of robust data communications.

A multiple description quantizer consists of two or more so-called side quantizers, each of which

separately generates a ”partial” or coarse description of the input signal (called side description).

Each side description is self contained in a sense that it can be decoded autonomously to reconstruct

the signal at certain fidelity without the knowledge of other description(s). At the same time the

decoders of multiple side quantizers can collaborate to generate a refined joint description of the

input signal if more or all side descriptions are received. The fidelity of the joint description increases

in general in the number of received descriptions. Figure 1 presents the effect of passing a signal

through a two-description quantizer.

Multiple description quantizers are particularly useful in multimedia streaming over lossy packet-

switched networks like the internet. They offer a graceful degradation in quality of service in adverse

network conditions such as congestions and local outage, as opposed to outright stoppage of network

service in a single description of the multimedia content. Other applications are communications

using antenna diversity or distributed data storage systems. In this paper we focus on two-description
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original signal

output of side quantizer 1

output of side quantizer 2

output of central quantizer

Figure 1: A signal and the corresponding side and joint descriptions as the outputs of a two-
description scalar quantizer.

quantizers (2DQ), i.e., the case of two side descriptions. We will also restrict the side quantizers of

the 2DQ’s to have convex codecells.

This paper is structured as follows. In the next section we present the necessary definitions

and notations, and formulate the problem of optimal two-description scalar quantizer (2DQ) design

for the class of 2DQ’s with convex codecells. In Section 3 we present solutions for this problem.

Subsection 3.1 describes how the problem can be modelled as a weighted shortest path problem with

constraints on the number and type of edges, and then presents an O(K1K2N
3) time algorithm to

solve the problem, where N is the size of the source alphabet, and K1, K2 are the number of code

words of the two side quantizers, respectively. In subsection 3.2 we prove that the time complexity of

the solution can be reduced to O(K1K2N
2). For this we break the problem into multiple instances of

matrix search, and show that each matrix is totally monotone based on the Monge property satisfied

by the cost function. As a result, the fast algorithm SMAWK introduced in [1] can be applied to

solve each instance of matrix search. This leads to the claimed reduction in time complexity. Section

4 addresses the problem of optimal design of symmetric 2DQ. The symmetry means that the two side
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quantizers operate at the same rate (K1 = K2 = K) and have the same probability of contributing

to the reconstruction of the input signal. First it is proved in Subsection 4.1 that there is an optimal

symmetric 2DQ with the thresholds of the two side quantizers interleaved, a property which can be

naturally used to simplify the design algorithm and decrease the time complexity to O(KN2). This

more efficient algorithm is still based on multiple applications of the fast matrix search technique

SMAWK of [1]. Subsection 4.2 shows that the optimal symmetric 2DQ design can be done by a

new simpler algorithm. The new algorithm avoids the procedure of recursive matrix reduction as in

SMAWK, while achieving the same time complexity. This simplified solution hinges again on the

Monge property of the cost function.

2 Definitions, Notations, Problem Formulation

Let X be a random variable over a finite alphabet A = {x1, x2, · · · , xN} ⊂ R, xi < xi+1, 1 ≤ i ≤

N − 1. Let the probability mass function (pmf) of X be pi = p(X = xi), 1 ≤ i ≤ N . A convex

subset of the alphabet A is any set c(a, b] = {xi|a < i ≤ b} for some integers a, b, 0 ≤ a ≤ b ≤ N .

A quantizer can be defined in the most general way as an arbitrary partition of the alphabet

A. However, in this paper we are concerned only with quantizers whose partition consists of convex

subsets of the alphabet A, and we will impose this condition throughout the paper. Consequently,

a quantizer Q is defined as a partition of the alphabet A into convex subsets c(qj , qj+1] (called

codecells), 0 ≤ j ≤ K − 1, where 0 = q0 < q1 < · · · qK−1 < qK = N , for some K, K < N . Note

that the intervals of integers (qj , qj+1], 0 ≤ j ≤ K − 1, form a partition of (0, N ], which we denote

by (q0, q1, · · · , qK−1, qK). The quantizer Q can be identified by the above partition of the interval

of integers (0, N ]. Hence, we write

Q = (q0, q1, · · · , qK−1, qK). (1)

We use interchangeably the terms quantizer and partition. The values qj are called thresholds of

the quantizer (or of the partition). The codecell c(qj , qj+1] is simply denoted by (qj , qj+1].

To measure the quantizer performance we consider a distortion function d(x, y), d : R × R →

[0,∞), which is monotone, i.e., it observes the following relation

d(x, y1) ≤ d(x, y2), for all real values x, y1, y2 such that x ≤ y1 < y2 or x ≥ y1 > y2, (2)
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Figure 2: Example of 2DQ. Q1 and Q2 are the side quantizers. The central quantizer Q0 is obtained
by intersecting the two side partitions.

which is satisfied by all distortion functions used in practice.

The reproduction codewords assigned to individual codecells are chosen from another finite al-

phabet B = {y1, y2, · · · , yM} ⊂ R, such that yi < yi+1, 1 ≤ i ≤ M − 1, and A ⊆ B. Namely, for any

codecell (a, b], the reproduction codeword µ(a, b] is the one which minimizes the distortion, i.e.

µ(a, b] = arg min
yj∈B

b∑

i=a+1

d(xi, yj)pi. (3)

The distortion of the codecell (a, b] is thus

D(a, b] =
b∑

i=a+1

d(xi, µ(a, b])pi = min
yj∈B

b∑

i=a+1

d(xi, yj)pi. (4)

By convention, D(a, a] = 0. The distortion of the quantizer Q is the sum of distortions of its

codecells, i.e.,

D(Q) =
K−1∑

j=0

D(qj , qj+1]. (5)

A two-description quantizer (2DQ) Q = (Q1, Q2, Q0) is composed of three quantizers Q1, Q2, Q0.

Q1 and Q2 are called side quantizers, and Q0, the central quantizer is obtained by intersecting the

two side partitions. Hence, if Ki is the number of codecells of the side quantizer Qi, i = 1, 2, then

the central quantizer has at most K1 + K2 − 1 codecells. Fig. 2 illustrates an example of 2DQ.

Traditionally, the goal of multiple description quantizer design is to minimize the distortion of

the central description (the one obtained when both side descriptions are available), while meeting

given upper bounds on the side distortions [10]. We formulate the problem as one of minimizing an

expected distortion of the 2DQ. Let ωi denote the probability that only the output of side quantizer

Qi, i = 1, 2, is available to reconstruct the signal. Let further ω0 be the probability that the outputs
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of both side quantizers are available. In the latter case, the two side descriptions can be refined to

the description of Q0. Finally, the probability of no description received is 1− ω1 − ω2 − ω0. Thus,

the expected distortion of the 2DQ can be expressed as

D̄(Q) = (1− ω1 − ω2 − ω0)σ2 +
2∑

i=0

ωiD(Qi), (6)

where σ2 is D(0, N ] (or the variance of X in the case when the distortion function is the squared

distance). The problem of optimal 2DQ design can hence be stated as follows.

Problem 1. Construct a 2DQ Q = (Q1, Q2, Q0), where each side quantizer Qi has Ki codecells,

i = 1, 2, such that the expected distortion D̄(Q) is minimized.

Note that in our definition of 2DQ the codecells of the side quantizers are convex. This convexity

restriction does not preclude optimality in single description scalar quantization [5] but it may in

two-description quantization [10]. However, optimal 2DQ can have convex codecells if the weights

ω1 and ω2 of the side distortions are much larger than the weight ω0 of the central distortion. In

this case, the emphasis in the minimization of (6) is on lowering the side distortions. Since low side

distortions can be achieved with convex codecells, there is no loss of optimality under the convexity

constraint when the ratios ω1/ω0, ω2/ω0 become large enough. To avoid tedious terminology, in the

sequel we will simply use 2DQ to refer to 2DQ’s with convex codecells.

The problem of optimal scalar 2DQ design was studied by others [6, 7, 9, 10]. The authors of

[10] seek to minimize the distortion of the central quantizer while meeting some constraints on the

side distortions. The codecells of the side quantizers are not restricted to be convex. However, once

an index assignment is chosen, the design algorithm is confined to that assignment. The constrained

optimization problem is transformed into a Lagrangian form. The Lagrangian minimization is done

by an iterative gradient descent algorithm.

Closer to our formulation is the treatment of [6, 7]. Muresan and Effros [6] addressed the case

of convex codecells in the side quantizers, too. They introduced a weighted directed acyclic graph

WDAG, called partial RD graph, and mapped the problem of optimal entropy-constrained 2DQ

design to one of the shortest path in the partial RD graph. The cost to be minimized is a weighted

sum of distortions and rates of the side and central quantizers. Since the graph has O(N2) vertices

and O(N3) edges, the solution can be obtained in O(N3) time, assuming that the proper Lagrangian

6



multiplier can be found in a constant number of iterations. In [7] Muresan and Effros also treated

the case of fixed-rate 2DQ (Problem 1). They showed that the problem was again equivalent to a

shortest path problem, but in a more complex WDAG, with O(K1K2N
2) vertices and O(K1K2N

3)

edges. Consequently, the solution can be computed in O(K1K2N
3) time.

3 Optimal Scalar 2DQ Design

In this section we first describe the graph model and sketch a simple O(K1K2N
3) time algorithm

to solve the problem. Then we proceed to reduce the time complexity to O(K1K2N
2) by exploiting

a monotonicity of the cost function.

3.1 Solution Based on The Graph Model

We map Problem 1 to a constrained shortest path problem in a WDAG simpler than the one of [7].

This WDAG has O(N2) vertices and O(N3) edges. Actually, this WDAG has the same structure

as the partial RD graph of [6], i.e., the same vertices and edges, only the weights of the edges are

different, according to our cost function (they are only weighted sum of distortions, not of distortions

and entropies). The constraint on the number of codecells (i.e., on the data rate of the quantizer)

becomes a constraint on the number and type of edges, as explained in what follows. Let us construct

a WDAG G = (V, E). Each member (a node) of the vertex set V is an ordered pair of integers u

and v, 0 ≤ u, v ≤ N . Such a node, labelled by uv (the order of u and v matters), corresponds to a

pair of thresholds of the two side partitions: u is a threshold of Q1 and v a threshold of Q2. The

edges of G are of two types. The edges of type I are those from the node uv to the node u′v for

all 0 ≤ u ≤ v ≤ N and u < u′ ≤ N . The edges of type II are those from the node uv to the node

uv′ for all 0 ≤ v < u ≤ N and v < v′ ≤ N . Note that the outgoing edges of some vertex uv are all

either of type I or of type II, depending on whether u ≤ v or u > v. The source of the graph is the

node 00 and the final node is NN . By a path in the graph G we will understand in the sequel any

path from the source to the final node, unless otherwise specified.

Any 2DQ is mapped to a distinct path of G in the following way. Let Q1 = (u0, u1, · · · , uK1) and

Q2 = (v0, v1, · · · , vK2) be the side quantizers of the 2DQ Q. The path is incrementally constructed

by starting from the source 00 (i.e., u0v0) and adding one edge at a time. Let the current vertex be
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0= v0

u1 u2 u3
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1

22−Kv NvK =
212 −Kv

Figure 3: A path in the WDAG G corresponding to a 2DQ, in which dashed lines connecting
thresholds of the two side partitions represent the graph nodes; arrowed arcs represent edges whose
types are labelled.

uivj (i.e., the path has been constructed up to uivj) for some i, j, 0 ≤ i ≤ K1,0 ≤ j ≤ K2. Then the

next edge to be added is (uivj , ui+1vj) if ui ≤ vj , or it is (uivj , uivj+1) if ui > vj . Note that only

one of these two situations is possible. Thus, the path constructed this way is unique. Note that

for any threshold ui (resp. vj) of the first (resp. second) side quantizer, there is a vertex uiv (resp.

uvj) visited by the path. Also note that this path has K1 edges of type I and K2 edges of type II.

Figure 3 illustrates a path in the graph G corresponding to a 2DQ.

Conversely, each path of G generates by this construction a distinct 2DQ in the following way.

The thresholds of the first side partition are the elements of the set S1 = {u|uv is a vertex in the path}.

If the path has K1 edges of type I, then the above set has K1 + 1 elements, which means that the

first side quantizer has K1 codecells. On the other side, the thresholds of the second side partition

are the elements of the set S2 = {v|uv is a vertex in the path}. If the path has K2 edges of type II,

then the second side partition has K2 + 1 thresholds or K2 codecells.

Note that an edge of type I, (uv, u′v), appears in a path corresponding to a 2DQ if and only

if (u, u′] is a codecell of the first side partition, v is a threshold of the second side partition, and

moreover, v is the smallest threshold of Q2 that is larger or equal to u (the last condition can be

proved by contradiction). Hence (u, min(v, u′)] is a codecell of the central partition. Based on these

observations, the weight assigned to the edge (uv, u′v) is the contribution to the expected distortion

of these two codecells:

w(uv, u′v) = ω1D(u, u′] + ω0D(u, min(v, u′)]. (7)

Symmetrically, an edge of type II, (uv, uv′) appears in a path corresponding to a 2DQ if and only
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if (v, v′] is a codecell of the side quantizer Q2 and u is the smallest threshold of Q1 that is strictly

larger than v. This implies that (v, min(v′, u)] is a codecell of the central quantizer. Therefore, the

weight assigned to this edge is

w(uv, uv′) = ω2D(v, v′] + ω0D(v, min(v′, u)]. (8)

We call the WDAG constructed above coupled quantizer graph. As we have seen the coupled quantizer

graph associates any 2DQ Q with a path from the source node 00 to the final node NN . It is easy

to verify that the total weight of this path equals D̄(Q) − (1 − ω1 − ω2 − ω0)σ2. Moreover, the

number of codecells of the side quantizer Qi is Ki for i = 1, 2, if and only if the corresponding path

consists of K1 edges of type I and K2 edges of type II. Consequently, Problem 1 can be equivalently

formulated as follows.

Problem 2. Find a minimum-weight path among all paths in the coupled quantizer graph G with

K1 edges of type I and K2 edges of type II.

A solution to Problem 2, without using any properties of the cost function, is to find recursively,

for each node uv and each pair of integers s, t, 0 ≤ s ≤ K1, 0 ≤ t ≤ K2, a path from the source 00

to uv, with s edges of type I and t edges of type II, whose weight is minimal. Denote by Ws,t(uv)

the weight of this path. Also denote by W I
s,t(uv) (W II

s,t(uv), respectively) the minimal path weight

among all paths ending at uv, with s edges of type I and t edges of type II, which have the last edge

of type I (type II, respectively). Then the recursions to solve the problem are:

Ws,t(uv) = min{W I
s,t(uv),W II

s,t(uv)}, (9)

W I
s,t(uv) = min

0≤u′′<u,u”≤v
{Ws−1,t(u′′v) + w(u′′v, uv)}, (10)

W II
s,t(uv) = min

0≤v′′<u,v′′<v
{Ws,t−1(uv′′) + w(uv′′, uv)}. (11)

The above computations can be organized by a dynamic programming process such that all pairs

s and t (corresponding to the number of edges of the two types) are processed in lexicographical

order. Given s and t, the value Ws,t(u, v) is found for all nodes uv of the graph. For a given node

uv, Ws,t(uv) is computed by applying recursions (10), (11) and then (9). This can be done since

the values Ws−1,t(u′′v) and Ws,t−1(uv′′) have already been computed (the pairs s−1, t, and s, t−1,

precede s, t in the lexicographical order).
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The search in each of equations (10) and (11) requires O(N) time, while the search in (9) takes

constant time. Hence computing Ws,t(uv) for a given pair s, t and a given node uv takes O(N)

time. Since the graph G has O(N2) nodes, and there are O(K1K2) pairs of s and t, the total time

complexity becomes O(K1K2N
3). The time complexity achieved is the same as in [7], but we can

show that it can be further reduced.

3.2 Fast Design Algorithm Aided by Monge Property

In this section we reduce the time complexity of optimal 2DQ design thanks to a property of the

underlying cost function, called total monotonicity [1].

Let us first reexamine recursion (10). For fixed s, t and v, consider the (v + 1) × N matrix

Ms,t,v with rows indexed by u′′, 0 ≤ u′′ ≤ v, columns indexed by u, 1 ≤ u ≤ N , and with elements

Ms,t,v(u′′, u) defined by

Ms,t,v(u′′, u) =
{

Ws−1,t(u′′v) + w(u′′v, uv) if u′′ < u
∞ otherwise. (12)

Then relation (10) becomes

W I
s,t(uv) = min

0≤u′′≤v
Ms,t,v(u′′, u). (13)

In other words, the minimization problem of (10) for fixed s, t, v and each u, 1 ≤ u ≤ N , is to find

the minimum element of every column u of the matrix Ms,t,v (or all column minima of the matrix

Ms,t,v).

Exhaustive search can complete this task in O(N2) time. But the time complexity can be

drastically reduced if the matrix is totally monotone [1]. An m×n rectangular matrix with elements

M(i, j), a ≤ i ≤ a+m− 1, b ≤ j ≤ b+n− 1, is said to be totally monotone (with respect to column

minima) if and only if for all a ≤ i1 < i2 ≤ a + m − 1 and b ≤ j1 < j2 ≤ b + n − 1, the following

implication holds:

M(i1, j1) ≥ M(i2, j1) ⇒ M(i1, j2) ≥ M(i2, j2). (14)

Aggarwal et al. [1] showed that if an m× n rectangular matrix is totally monotone, then all its

column minima can be computed in O(m+n) time, comparing to the O(mn) time of the exhaustive

search.
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The matrix Ms,t,v does not actually satisfy the property of total monotonicity, but it can be split

into two sub-matrices As,t,v and Bs,t,v each of which satisfies it. The sub-matrix As,t,v contains the

columns 1 through v of the matrix Ms,t,v, and the sub-matrix Bs,t,v contains the columns v + 1

through N . Finding all column minima of Ms,t,v is equivalent to finding all column minima of the

two sub-matrices As,t,v and Bs,t,v.

A sufficient condition for the total monotonicity of a matrix is the Monge condition [2]. Let f be a

real valued function defined on a set Z of ordered pairs of integers. It is said that f satisfies the Monge

condition if and only if for all integers i1 < i2, j1 < j2 such that (i1, j1), (i2, j2), (i1, j2), (i2, j1) ∈ Z

the following inequality holds:

f(i1, j1) + f(i2, j2) ≤ f(i1, j2) + f(i2, j1). (15)

The above property of a function can be extended to matrices as well by considering a matrix as a

function of two integer variables.

Proposition 1. Both sub-matrices As,t,v and Bs,t,v are totally monotone.

Proof. We will show that both sub-matrices As,t,v and Bs,t,v satisfy the Monge condition, which

implies that they are totally monotone [2]. For the sub-matrix As,t,v the Monge condition is

Ms,t,v(u′′1 , u1) + Ms,t,v(u′′2 , u2) ≤ Ms,t,v(u′′1 , u2) + Ms,t,v(u′′2 , u1), (16)

for all integers u′′1 , u′′2 , u1, u2 with 0 ≤ u′′1 < u′′2 ≤ v and 1 ≤ u1 < u2 ≤ v. The above inequality

is trivially satisfied when u′′2 ≥ u1 because Ms,t,v(u′′2 , u1) = ∞ by (12), hence the right hand side

becomes ∞. Consequently, it remains to prove it for the case u′′2 < u1. In this case, by (12) and by

(7), relation (16) becomes

Ws−1,t(u′′1v) + (ω1 + ω0)D(u′′1 , u1] + Ws−1,t(u′′2v) + (ω1 + ω0)D(u′′2 , u2] ≤

Ws−1,t(u′′1v) + (ω1 + ω0)D(u′′1 , u2] + Ws−1,t(u′′2v) + (ω1 + ω0)D(u′′2 , u1]. (17)

After subtracting Ws−1,t(u′′1v) and Ws−1,t(u′′2v) from both sides, and dividing by ω1 + ω0 when

ω1 + ω0 6= 0 (when ω1 + ω0 = 0 relation (17) is trivially true), (17) becomes

D(u′′1 , u1] + D(u′′2 , u2] ≤ D(u′′1 , u2] + D(u′′2 , u1]. (18)
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Since the function D(a, b] satisfies the Monge condition for all monotone distortion functions d(·, ·),

as proved by Wu and Zhang [11], it follows that (18) is valid for all 0 ≤ u′′1 < u′′2 < u1 < u2 ≤ v.

Thus, the proof that the Monge condition is satisfied by the sub-matrix As,t,v is completed.

In the case of the sub-matrix Bs,t,v, the Monge condition is equivalent to

Ms,t,v(u′′1 , u1) + Ms,t,v(u′′2 , u2) ≤ Ms,t,v(u′′1 , u2) + Ms,t,v(u′′2 , u1), (19)

for all integers u′′1 , u′′2 , u1, u2 with 0 ≤ u′′1 < u′′2 ≤ v and v + 1 ≤ u1 < u2 ≤ N . By (12) and by (7),

(19) becomes

Ws−1,t(u′′1v) + ω1D(u′′1 , u1] + ω0D(u′′1 , v] + Ws−1,t(u′′2v) + ω1D(u′′2 , u2] + ω0D(u′′2 , v] ≤

Ws−1,t(u′′1v) + ω1D(u′′1 , u2] + ω0D(u′′1 , v] + Ws−1,t(u′′2v) + ω1D(u′′2 , u1] + ω0D(u′′2 , v]. (20)

The inequality is trivially satisfied when ω1 = 0. When ω1 6= 0 the inequality is equivalent to

D(u′′1 , u1] + D(u′′2 , u2] ≤ D(u′′1 , u2] + D(u′′2 , u1]. (21)

Since the function D(a, b] satisfies the Monge condition it follows that (21) holds for all integers

u′′1 , u′′2 , u1, u2 with 0 ≤ u′′1 < u′′2 ≤ v and v+1 ≤ u1 < u2 ≤ N . Consequently, the proof of the Monge

condition for the sub-matrix Bs,t,v is completed, too. ¤

As a consequence of Proposition 1, the algorithm proposed by Aggarwal et al. [1] can be applied

to compute all column minima of the sub-matrices As,t,v and Bs,t,v in O(N) time. In other words,

given s, t, and v, the values W I
s,t(uv) over all u, 1 ≤ u ≤ N , can be found in O(N) time. Therefore,

the evaluation of W I
s,t(uv) over all nodes uv when s and t are given takes O(N2) time.

Given s and t, the values of W II
s,t(uv) over all nodes uv can also be computed in O(N2) time. To

see this we consider the u×N rectangular matrix M ′
s,t,u for each triple s, t, u, with rows indexed by

v′′, 0 ≤ v′′ ≤ u− 1, columns indexed by v, 1 ≤ v ≤ N , and with elements M ′
s,t,u(v′′, v) defined by

M ′
s,t,u(v′′, v) =

{
Ws,t−1(uv′′) + w(uv′′, uv) if v′′ < v
∞ otherwise. (22)

Then for fixed u, computing W II
s,t(uv) over all v, 1 ≤ v ≤ N , requires finding all column minima for

the matrix M ′
s,t,u. This matrix also can be split into two sub-matrices, one containing the columns

1 through u, and the other containing the columns u + 1 through N . Using the same idea as in the
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proof of Proposition 1, it can be shown that these two sub-matrices are totally monotone, hence the

complexity claim.

Finally, since there are O(K1K2) pairs of s and t the overall time complexity of the proposed

optimal 2DQ design algorithm is O(K1K2N
2).

4 Symmetric 2DQ

An interesting case is when the two side quantizers operate at the same rate (K1 = K2 = K), and

their distortions are equally weighted in the total expected distortion, i.e., ω1 = ω2 = ω. We call

such a two-description quantizer symmetric 2DQ. This situation arises in practice. For instance, in

diversity communication systems, the outputs of the two quantizers are transmitted through two

independent channels that operate at the same data rate log2 K and have the same probability q of

successful transmission. The probability that the receiver gets only one of the two descriptions is

q(1 − q), hence ω1 = ω2 = ω = q(1 − q). The probability that both descriptions arrive successfully

is ω0 = q2. In conclusion, the expected distortion of the 2DQ becomes

D̄(Q) = (1− q)2σ2 + q(1− q)(D(Q1) + D(Q2)) + q2D(Q0). (23)

4.1 Property of Optimal Symmetric 2DQ

We next show that in order to find an optimal symmetric 2DQ we may restrict our attention to

a special class of highly structured 2DQ’s. This will allow for the further reduction of the time

complexity O(K2N2) of the design algorithm by a factor of K.

Proposition 2. There is an optimal symmetric 2DQ with interleaved thresholds of the side quan-

tizers:

u0 ≤ v0 ≤ u1 ≤ v1 ≤ u2 ≤ v2 ≤ ≤ uK−1 ≤ vK−1 ≤ uK ≤ vK , (24)

where Q1 = (u0, u1, u2, · · · , uK) and Q2 = (v0, v1, v2, · · · , vK) are the side partitions.

Proof. There are 2K + 1 inequalities in the sequence above. The proof is through induction on i

that an optimal 2DQ satisfies the first i inequalities. For i = 1 the statement is obvious because

u0 = 0 = v0.

The next is to prove the inductive step i → i + 1. The nontrivial situations are 2 ≤ i ≤ 2K − 2.

13
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Figure 4: Interchange and modification of codecells in Case 1.

Let Q be an optimal 2DQ for which the first i inequalities hold. We proceed for even and odd i

separately.

Case 1. Consider an even index i = 2j for some 1 ≤ j ≤ K−1. The (i−1)th and the ith inequalities

are, respectively, uj−1 ≤ vj−1, vj−1 ≤ uj . If the (i + 1)th inequality in the sequence of (24) does

not hold, then uj > vj . Also, uj−1 ≤ vj−1 and vj−1 < vj imply that uj−1 ≤ vj . We construct a

new 2DQ Q′ = (Q′1, Q
′
2, Q

′
0), by interchanging the last K − j codecells between the side quantizers,

and modifying the j-th codecell accordingly. This is effected by interchanging the last K − j + 1

thresholds between the side quantizers (i.e., uk is interchanged with vk, for all k, j ≤ k ≤ K). In

other words, Q′
1 has the codecells (u0, u1], · · · (uj−2, uj−1], (uj−1, vj ], (vj , vj+1], · · · (vK−1, vK ], and

Q′2 has the codecells (v0, v1], · · · (vj−2, vj−1], (vj−1, uj ], (uj , uj+1], · · · (uK−1, uK ]. This construction

is illustrated in Figure 4, for K = 4 and j = 2. Note that the central partitions of the two 2DQ’s

remain the same. The codecells which have been interchanged between the two side partitions do not

affect the expected distortion because the side quantizers have the same weighting in the expected

distortion. Hence any difference in expected distortions is only due to the modification in the jth

codecell of each side partition:

D̄(Q′)− D̄(Q) = ω(D(uj−1, vj ] + D(vj−1, uj ]−D(uj−1, uj ]−D(vj−1, vj ]). (25)

Since the function D(a, b] satisfies the Monge condition [11, 3], the relations uj−1 ≤ vj−1 < vj < uj

imply that

D(uj−1, vj ] + D(vj−1, uj ] ≤ D(uj−1, uj ] + D(vj−1, vj ]. (26)

Consequently, D̄(Q′) ≤ D̄(Q). Hence, the 2DQ Q′ is optimal, too. But the new 2DQ satisfies the
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Figure 5: Interchange and modification of codecells in Case 2.

first i + 1 inequalities. Indeed, the first i− 1 inequalities are identical to the previous ones and the

ith and (i + 1)th are equivalent, respectively, to vj−1 ≤ vj and vj ≤ uj . Hence the proof of Case 1

is completed.

Case 2. Consider an odd index i = 2j + 1 for some 1 ≤ j ≤ K − 2. The (i − 1)th and the ith

inequalities in the sequence (24) are, respectively, vj−1 ≤ uj , uj ≤ vj . If the next inequality in

the sequence does not hold, then vj > uj+1. Let l be the smallest positive integer (l ≥ 1) such

that vj+l ≤ uj+l+1. Such an integer always exists because vj+(K−j−1) < N = uj+(K−j−1)+1. It

follows that vj+l−1 > uj+l. We construct a new 2DQ Q′ = (Q′1, Q
′
2, Q

′
0) by interchanging some

thresholds between the side partitions. Namely, the thresholds uj+1, · · · , uj+l, are interchanged

with vj , · · · , vj+l−1, respectively. Consequently, Q′1 has the codecells (u0, u1], · · · ,(uj−1, uj ], (uj , vj ],

(vj , vj+1], · · · ,(vj+l−2, vj+l−1], (vj+l−1, uj+l+1],(uj+l+1], uj+l+2],· · · (uK−1, uK ]. Quantizer Q′2 has

the codecells (v0, v1], · · · ,(vj−2, vj−1],(vj−1, uj+1], (uj+1, uj+2],· · · , (uj+l−1, uj+l], (uj+l, vj+l], (vj+l,

vj+l+1], · · · (vK−1, vK ]. This construction is illustrated in Figure 5, for K = 4, j = 1 and l = 2.

Although some codecells have been interchanged between the side partitions, they do not affect the

expected distortion. Also note that the central partition Q′0 is identical to Q0. In order to evaluate

the difference in expected distortion between the two 2DQ’s we only have to examine the change in

the (j + 1)th and the (j + l + 1)th codecells of the first side quantizer, and the jth and the (j + l)th

codecells of the second side quantizer; namely

D̄(Q′)− D̄(Q) = ω(D(uj , vj ] + D(vj−1, uj+1]−D(uj , uj+1]−D(vj−1, vj ]) +

ω(D(uj+l, vj+l] + D(vj+l−1, uj+l+1]−D(uj+l, uj+l+1]−D(vj+l−1, vj+l]). (27)
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Figure 6: Alternating path in the coupled quantizer graph.

Since the function D(a, b] satisfies the Monge condition, and since vj−1 ≤ uj < uj+1 < vj , and

uj+l < vj+l−1 < vj+l ≤ uj+l+1, it follows that D̄(Q′) − D̄(Q) ≤ 0. Hence the 2DQ Q′ is optimal,

too. Also in the new 2DQ the first i + 1 inequalities in the sequence (24) are satisfied, proving Case

2 as well. ¤

A symmetric 2DQ with interleaved thresholds of the side quantizers corresponds to a path in

the coupled quantizer graph of edges of alternating types I and II, which we call alternating path.

Specifically, an alternating path (Figure 6) is of the form:

00, u10, u1v1, u2v1, u2v2, · · · , uK−1vK−1, NvK−1, NN. (28)

Proposition 2 implies that in order to construct an optimal symmetric 2DQ with K codecells in each

side quantizer, it is sufficient to find a 2K-link minimum-weight alternating path in G.

This problem can be solved by using a similar idea as the one described in Section 3. The

main difference is that instead of considering all O(K2) pairs of s and t (the number of edges of

type I and type II, respectively), only O(K) combinations (s with s − 1, and s with s) need to be

processed. This is because for any alternating path ending at some node uv, that has s edges of

type I, the number of edges of type II is either s (if u ≤ v) or s − 1 (if u > v). Consequently, the

number of subproblems to be solved in the dynamic programming process is reduced. For each such

combination the problem is converted into O(N) problems of matrix search in a totally monotone

matrix of dimension O(N)×O(N). Using the algorithm of [1] to solve these matrix search problems,

we arrive at the total time of O(KN2). Note that the complexity of optimal symmetric 2DQ design

is asymptotically as low as that of globally optimal single-description scalar quantizer design [11].
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4.2 Simplified Algorithm for the Symmetric Case

Although the use of Proposition 2 in conjunction with the fast matrix search technique of [1] can

reduce the complexity of optimal symmetric 2DQ design to O(KN2), the algorithm of [1] has a

quite complex structure, requiring a recursive reduction of the underlying matrix (see the original

paper for detail). In this section we propose instead a much simpler nonrecursive algorithm whose

implementation is more suitable for engineering practice. Furthermore, due to its unrecursive nature,

our algorithm is faster in practice even though its asymptotical complexity is also O(KN2).

We show first that the coupled quantizer graph can be simplified in the symmetric case. Indeed,

Proposition 2 reveals that the edges of the minimum-weight path in the coupled quantizer graph for

symmetric 2DQ are highly structured. Specifically, the only edges of type I to be possibly included

in the shortest path are those from node uv to node u′v such that 0 ≤ u ≤ v ≤ u′ ≤ N and u < u′

(hence, those with u < u′ < v are unnecessary and can be removed); the only edges of type II to

be included in the desired path are those from uv to uv′ such that 0 ≤ v < u ≤ v′ ≤ N (likewise,

those with v < v′ < u can be removed). Removing the unused edges results in a graph in which any

path from the source to the final node is necessarily an alternating path. Moreover, since the side

descriptions are symmetrical (namely, their distortions are equally weighted in the total expected

distortion), it is no longer necessary to distinguish between the edge types.

Based on the above observations, we further simplify the coupled quantizer graph G to G
¯

=

(V
¯
,E
¯
). The set of vertices V

¯
consists of all ordered pairs of integers a and b (denoted by ab) with

0 ≤ a ≤ b ≤ N . Such a pair ab corresponds to a pair of consecutive thresholds of the central

partition, hence a represents a threshold of one side partition and b represents a threshold of the

other side partition, but it does not matter which of Q1 and Q2. The source node is 00 and the

final node is NN . The edges of G
¯

connect any node ab to any node bc with a < c. Such an edge

corresponds to the case when a, b and c are three consecutive thresholds of the central partition; or

equivalently, a and c are two consecutive thresholds of a side partition and b is a threshold of the

other side partition. The weight assigned to such an edge is

w
¯
(ab, bc) = ωD(a, c] + ω0D(a, b]. (29)

There is a one-to-one correspondence between the symmetric 2DQ’s with the property (24) of inter-
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leaved side partitions’ thresholds, and the paths in the WDAG G
¯
, from 00 to NN , with exactly 2K

edges. This correspondence associates to a 2DQ as in Proposition 2, the path:

00, 0u1, u1v1, v1u2, u2v2, v2u3, u3v3 · · · , uK−1vK−1, vK−1N, NN. (30)

Moreover, the weight of this path equals D̄(Q)− (1− ω1 − ω2 − ω0)σ2. Consequently, the problem

of optimal 2DQ design in the symmetric case is equivalent to the minimum-weight 2K-link path

problem for the WDAG G
¯
.

For each i, 1 ≤ i ≤ 2K, and each node ab, denote by W
¯ i(ab) the weight of the minimum-weight

i-edge path from the source to the node ab. W
¯ 0(ab) = 0 by convention; and for i = 1, W

¯ i(ab) is

defined only for the nodes ab with a = 0. Clearly, the following recursion holds:

W
¯ i(ab) = min

0≤ξ≤a,ξ<b
{W

¯ i−1(ξa) + w
¯
(ξa, ab)}. (31)

We denote by ξi(a, b) the optimal threshold ξ where the minimum in the right hand side of (31) is

realized (in the case of multiple solutions, the largest is picked).

The following algorithm can be used to solve the problem. For each 2 ≤ i ≤ 2K compute W
¯ i(ab)

for all nodes ab using (31). The search in (31) requires O(N) time. Multiplying by the number of

nodes (O(N2)) and the number of different i values, the time complexity amounts to O(KN3). This

value does not yet support our claim. We need another property of the graph G
¯

to reduce the time

complexity.

Proposition 3. For all 1 ≤ i ≤ 2K, and a ≤ a′, b ≤ b′, a ≤ b, a′ ≤ b′, (if i = 1 then a = a′ = 0),

the following inequality holds

ξi(a, b) ≤ ξi(a′, b′). (32)

We defer the proof of Proposition 3 to Appendix in order not to interrupt the presentation flow.

The following corollary is a direct consequence of Proposition 3 and relation (31).

Corollary. For all 0 ≤ a < b ≤ N , and 2 ≤ i ≤ 2K, the following relation holds:

W
¯ i(ab) = min

ξi(a,b−1)≤ξ≤ξi(a+1,b),ξ≤a
{W

¯ i−1(ξa) + w
¯
(ξa, ab)}. (33)

Now we are ready to present a new simple algorithm to solve the optimal symmetric 2DQ design

problem. Treat the values of W
¯ i(ab) for a given i, and all a, b, 0 ≤ a ≤ b ≤ N , as the elements of
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an upper triangular matrix W
¯ i. The computations are organized such that the entries of the matrix

are filled column by column from left to right, and inside each column from the bottom to the top.

When proceeding to the position (a, b), a < b, the entries of the matrix W
¯ i, situated left to below

(a, b) are already known, hence, ξi(a, b−1) and ξi(a+1, b) are also known. Consequently, the relation

(33) can be used to compute W
¯ i(ab). The elements situated on the main diagonal are evaluated by

applying (31). The main diagonal needs O(N2) time since each element takes O(N) time. But any

of the other N diagonals above the main diagonal needs only O(N) time. We call the set of entries

W
¯ i(ab) with b = a+ j, 0 ≤ a ≤ N − j, the jth superdiagonal. Each element on the jth superdiagonal

is computed in O(ξi(a + 1, a + j) − ξi(a, a + j − 1)) time. Hence the total time spent on the jth

superdiagonal is O(
∑N−j

a=0 (ξi(a+1, a+j)−ξi(a, a+j−1))) = O(ξi(N−j+1, N)−ξi(0, j−1)) = O(N).

Over N superdiagonals, the time requirement amounts to O(N2). Multiplying by the number of

instances 2K, we obtain the total time complexity of O(KN2).

When evaluating the time complexity of the algorithms proposed in this work, we have consis-

tently assumed that each value D(a, b] can be accessed in constant time. For monotone distortion

functions d(·, ·) all values D(a, b], 0 ≤ a ≤ b ≤ N , can be precomputed in O(MN) time, where M

is the size of the alphabet B, as shown in [11, 3]. Since usually M = O(N), this preprocessing step

takes O(N2) time, not affecting the time complexity of the proposed algorithms.

5 Conclusion

We developed an O(K1K2N
2) time algorithm for designing optimal two-description scalar quantizers

of convex codecells for the very large family of monotone distortion functions, where K1 and K2 are

the number of code words of the two side quantizers, and N is the size of symbol alphabet. This

complexity can be reduced to O(KN2) if both side quantizers have the same channel statistics and

K1 = K2 = K.
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Appendix

In this appendix we present the Proof of Proposition 3. For this we need first to prove two

lemmas. Lemma 1 describes some situations in which two edges can be replaced by other two edges

such that the total weight decreases. These situations are illustrated in Figure 7. An edge (µa, ab)

is represented by the union of the two segment lines connecting the points µ,a and b. µ and b

correspond to thresholds of one side partition, hence they are represented on the same horizontal,

and a corresponds to a threshold of the other side partition hence it is drawn on another horizontal.

Lemma 1. Let µa, ab, µ′a′ and a′b′ be nodes in the WDAG G
¯
, such that µ ≤ µ′, a ≤ a′, b ≤ b′,

µ < b and µ′ < b′. Then the following assertions hold:

i) if µ′ ≤ a and µ′ < b, then

w
¯
(µ′a, ab) + w

¯
(µa′, a′b′) ≥ w

¯
(µa, ab) + w

¯
(µ′a′, a′b′); (34)

ii) if a′ ≤ b and µ′ < b, then

w
¯
(µa, ab′) + w

¯
(µ′a′, a′b) ≥ w

¯
(µa, ab) + w

¯
(µ′a′, a′b′); (35)

iii) if µ′ ≤ a and a′ ≤ b, then

w
¯
(µ′a, ab′) + w

¯
(µa′, a′b) ≥ w

¯
(µa, ab) + w

¯
(µ′a′, a′b′). (36)

Proof. i) By replacing the weights of the edges according to (29), relation (34) becomes equivalent

to

ωD(µ′, b]+ω0D(µ′, a]+ωD(µ, b′]+ω0D(µ, a′] ≥ ωD(µ, b]+ω0D(µ, a]+ωD(µ′, b′]+ω0D(µ′, a′]. (37)

A sufficient condition for the above inequality to hold is that the following two relations to be valid:

D(µ, b] + D(µ′, b′] ≤ D(µ, b′] + D(µ′, b] (38)

D(µ, a] + D(µ′, a′] ≤ D(µ, a′] + D(µ′, a]. (39)

The inequalities (38) and (39) are indeed valid because the function D(·, ·] satisfies the Monge

condition [11]. Hence the proof of point i) is completed. For proving the conclusions of points
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Figure 7: Illustration of Lemma 1. By replacing the two edges to the left by the two edges to the
right, the total weight decreases. a) Lemma 1 i); b) Lemma 1 ii); c) Lemma 1 iii).

ii) and iii), again the weights of the edges are replaced in the relations (35) and (36). Thus, (35)

becomes equivalent to (38), and (36) becomes equivalent to (39). As we have seen, both (38) and

(39) are true. ¤

Lemma 2. For all i, 1 ≤ i ≤ 2K, W
¯ i(ab) (as a function of two integer variables: a and b) satisfies

the Monge condition.

Proof. We prove this result by induction on i. For i = 1, the conclusion trivially follows because a

and a′ can only take the value 0. Assume now that the conclusion of the lemma is true for some

fixed value of i and let us prove it for i + 1. Consequently, we have to show that

W
¯ i+1(ab) + W

¯ i+1(a
′b′) ≤ W

¯ i+1(ab′) + W
¯ i+1(a

′b) (40)
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for any a, a′, b, b′ such that a ≤ a′ ≤ b ≤ b′. Denote by ξ, the value ξi+1(a, b′] and by ξ′, the value

ξi+1(a′, b]. Hence, ξ ≤ a, and ξ < b′, ξ′ ≤ a′, and ξ′ < b. Applying the definition of ξi+1(a, b′] and

ξi+1(a′, b], we obtain that

W
¯ i+1(ab′) = W

¯ i(ξa) + w
¯
(ξa, ab′), (41)

W
¯ i+1(a

′b) = W
¯ i(ξ

′a′) + w
¯
(ξ′a′, a′b). (42)

Farther we need to distinguish between the cases ξ ≥ ξ′ and ξ < ξ′.

Case ξ ≥ ξ′. Since ξ ≤ a ≤ a′, it follows that ξ′ ≤ a and ξ ≤ a′. The definitions of W
¯ i+1(ab) and

W
¯ i+1(a′b′) imply, respectively, that

W
¯ i+1(ab) ≤ W

¯ i(ξ
′a) + w

¯
(ξ′a, ab), (43)

W
¯ i+1(a

′b′) ≤ W
¯ i(ξa

′) + w
¯
(ξa′, a′b′). (44)

According to the inductive hypothesis, W
¯ i(·, ·) satisfies the Monge condition. Hence, since ξ′ ≤ ξ ≤

a ≤ a′, it follows that

W
¯ i(ξ

′a) + W
¯ i(ξa

′) ≤ W
¯ i(ξa) + W

¯ i(ξ
′a′). (45)

Also Lemma 1, iii) can be applied for µ = ξ′ and µ′ = ξ. Combining these two results, we obtain

that the sum of the righthand sides of inequalities (43) and (44) is smaller or equal to the sum of

the righthand sides of equalities (41) and (42). This implies that (40) is satisfied.

Case ξ < ξ′. Since ξ′ < b ≤ b′, it follows that ξ < b and ξ′ < b′. We also have ξ ≤ a and ξ′ ≤ a′.

Consequently, the following inequalities hold:

W
¯ i+1(ab) ≤ W

¯ i(ξa) + w
¯
(ξa, ab), (46)

W
¯ i+1(a

′b′) ≤ W
¯ i(ξ

′a′) + w
¯
(ξ′a′, a′b′). (47)

Applying Lemma 1, ii) for µ = ξ and µ′ = ξ′, we obtain that the sum of the righthand sides of

inequalities (46) and (47) is smaller or equal to the sum of the righthand sides of equalities (41) and

(42). This implies that (40) is satisfied.¤

Proposition 3. For all 1 ≤ i ≤ 2K, and a ≤ a′, b ≤ b′, a ≤ b, a′ ≤ b′, (if i = 1 then a = a′ = 0),

the following inequality holds

ξi(a, b) ≤ ξi(a′, b′). (48)
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Proof. Assume that

ξi(a, b) > ξi(a′, b′). (49)

We will show that this assumption leads to a contradiction. Let µ = ξi(a′, b′) and µ′ = ξi(a, b).

Then

W
¯ i(ab) = W

¯ i−1(µ
′a) + w

¯
(µ′a, ab), (50)

W
¯ i(a

′b′) = W
¯ i−1(µa′) + w

¯
(µa′, a′b′). (51)

Note that µ ≤ a′ and µ < b′. Also µ′ ≤ a and µ′ < b. Using the inequality µ < µ′, we obtain that

µ ≤ a and µ < b. Furthermore, µ′ ≤ a′ and µ′ < b′. These imply that

W
¯ i(ab) ≤ W

¯ i−1(µa) + w
¯
(µa, ab), (52)

W
¯ i(a

′b′) < W
¯ i−1(µ

′a′) + w
¯
(µ′a′, a′b′). (53)

The inequality in (53) is strict by the definition of of ξi(a′, b′) in conjunction with of ξi(a′, b′) < µ′

(49). Since the function W
¯ i−1(·, ·) satisfies the Monge condition, it further follows that

W
¯ i−1(µa) + W

¯ i−1(µ
′a′) ≤ W

¯ i−1(µ
′a) + W

¯ i−1(µa′). (54)

Moreover, Lemma 1, i) can be applied, and combining these two observations, yields that the sum

of the righthand sides of inequalities (52) and (53), which we denote by S1, is smaller or equal than

the sum of the righthand sides of equalities (50) and (51), which we denote by S2. Relations (50),

(51), (52) and (53) further imply that

W
¯ i(ab) + W

¯ i(a
′b′) < S1 ≤ S2 ≤ W

¯ i(ab) + W
¯ i(a

′b′), (55)

which is a contradiction. ¤
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