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Abstract

This paper presents a novel unequal erasure protection (UEP) strategy for the transmission of

scalable data, formed by interleaving independently decodable and scalable streams, over packet erasure

networks. The technique, termed multi-stream UEP (M-UEP), differs from the traditional UEP strategy

by: 1) placing separate streams in separate packets to establish independence and 2) using permuted

systematic Reed-Solomon codes to enhance the distribution of message symbols amongst the packets.

M-UEP improves upon UEP by ensuring that all received source symbols are decoded. The R-D optimal

redundancy allocation problem for M-UEP is formulated and its globally optimal solution is shown

to have a time complexity of O(2NN(L + 1)N+1), where N is the number of packets and L is the

packet length. To address the high complexity of the globally optimal solution, an efficient sub-optimal

algorithm is proposed which runs in O(N2L2) time. The proposed M-UEP algorithm is applied on

SPIHT coded images in conjunction with an appropriate grouping of wavelet coefficients into streams.

The experimental results reveal that M-UEP consistently outperforms the traditional UEP reaching peak

improvements of 0.6 dB. Moreover, our tests show that M-UEP is more robust than UEP in adverse

channel conditions.
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I. INTRODUCTION

Scalable image compression algorithms such as SPIHT [1] and EBCOT [2] provide a means for

efficient representation of images in a successively refinable manner. That is, any prefix of the bit stream

can reconstruct the image to a certain fidelity and the fidelity increases in the length of the decoded prefix.

Moreover, a bit in a scalable bit stream can only be decoded if all previous bits have been decoded. Thus,

the performance of scalable coders is highly susceptible to bit errors, since a single bit error can render

the remainder of the bit stream undecodable.

During the transmission of information over packet switching networks, packets are randomly dropped

when the network becomes over congested. The most typical approach for recovery from data loss is for

the receiver to request retransmission of lost packets. However, this approach incurs additional delay which

might not be acceptable for applications with strict time constraints. A more attractive approach in such

cases is to apply forward error-correction (FEC) which protects against packet erasures by transmitting

additional redundant data that facilitates the ability to reconstruct lost information at the receiver (e.g.,

Reed-Solomon codes).

Since the bits of a scalable bit-stream do not have equal importance, but rather their importance is

related to their location in the bit-stream, unequal erasure protection (UEP) is the most suitable method

of FEC. UEP employs a collection of strict systematic Reed-Solomon (RS) block codes (i.e. where the

source symbols are grouped at the beginning of the codeword) of the same length but decreasing strength,

to protect subsequent segments of the source bit-stream. In order to maximize the UEP performance,

the erasure protection allocation can be optimized in rate distortion (R-D) sense. Multiple solutions to

the UEP optimal redundancy assignment problem have been proposed in [3]-[10]. The packets to be

sent through the lossy network are formed across the channel codewords. Any set of received packets

can be used to reconstruct a prefix of the source stream which is decodable. Moreover, the fidelity of

the reconstruction increases proportionally to the number of received packets. However, source symbols

available at the decoder which do not belong to the reconstructed prefix cannot be decoded.

A key property of scalable coders such as SPIHT and EBCOT is that they produce bit-streams which are

an interleaving of indepedently decodable and scalable streams. We will refer to such bit-streams as multi-

streams. Researchers have exploited the multi-stream characteristic to achieve improved error-resilience

to packet erasures. Creusere [12] employed multi-streams for Shapiro’s embedded zerotree algorithm [13]

by dividing the wavelet coefficients into groups and encoding each group independently. The individual

bit-streams were then interleaved to form the multi-stream. This technique improves robustness since a bit
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error only affects the stream to which it belongs, while all other streams can be fully decoded. Cho and

Pearlman [14] extended the concept of independently decodable streams to scalable video (3D-SPIHT)

and proposed equal error protection (EEP) using RCPC-CRC codes to improve robustness against channel

errors. Alatan et al. [15] presented a UEP method for SPIHT encoded bit-streams which generates three

streams which are protected by varying strength RCPC/CRC codes. Kim et al. [16] also proposed a

UEP method for transmission of video multi-streams over the internet. They generated the streams by

frequency domain partitioning of the wavelet coefficients, and determined the UEP protection for each

stream independently.

Another method to achieve robustness was proposed by Rogers and Cosman in [17]. Error resilience

was improved by grouping the streams into packets of fixed length. This method, which was tailored

to transmission over packet erasure networks, ensured that all packets were independently decodable,

and thus errors could not propagate beyond the packet in which they occurred. Wu et al. [18] further

investigated rate-distortion optimal packetization with alignment constraints.

In this paper, in order to improve upon the traditional UEP technique, we also exploit the multi-stream

characteristic of scalable code streams, while applying the concept of independently decodable packets

to ensure that all received source symbols can be decoded. Packet independence is accomplished by

assigning source symbols from a particular stream to a single packet. Additionally, we propose the use

of permuted systematic RS codes (i.e., where the source symbols are interleaved with the redundancy

symbols to form the codeword) instead of strict systematic codes, in order to maximize the flexibility of

the erasure protection allocation. We will refer to the proposed technique as multi-stream UEP (M-UEP).

Note that transmission of separate streams in separate packets, in conjunction with UEP based on

systematic RS codes has been proposed by Thomos et al. in [19]. However, the authors of [19] maintain

the constraint of RS codes to be strict systematic. M-UEP eliminates this restriction, and thus allows

for more flexibility in the erasure protection allocation. The same authors also present a product code

technique (LDPC and RS codes) in [20], which employs symbol interleaving but does not consider

independently decodable packets. In their scheme, random symbol interleaving is performed within each

packet to randomize the errors and improve the efficiency of the LDPC decoding.

We formulate the R-D optimal redundancy allocation (RD-ORA) problem for M-UEP as a constrained

integer non-linear optimization problem. We evaluate its time complexity to be O(2NN(L + 1)N+1),

where N is the number of packets and L is the packet length. This is done by converting the problem to

a maximum-weight path problem in a weighted directed acyclic graph. Since the globally optimal solution

is intractable, we propose a faster, sub-optimal solution algorithm, which runs in O(N2L2) time. Our tests
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on several SPIHT coded images show that the proposed M-UEP algorithm (with appropriate grouping

of coefficients to obtain the streams), outperforms traditional UEP, reaching peak improvements of 0.6

dB. Moreover, in our experiments the advantage of M-UEP over UEP increases when channel mismatch

occurs, fact which demonstrates the improved robustness of M-UEP in variable channel conditions.

The paper is structured as follows. Section II reviews the traditional UEP and introduces the proposed

M-UEP strategy Section III formulates the R-D optimal redundancy allocation problem and discusses

the globally optimal solution. An efficient sub-optimal algorithm is proposed in Section IV. Section V

analyzes the overhead due to the side information needed at the decoder. An experimental comparison

between the two UEP techniques is provided in Section VI and Section VII concludes the paper.

II. UEP STRATEGIES

This section begins with a review of the traditional UEP strategy and then introduces the proposed

M-UEP technique. Both schemes are described in the context of a scalable multi-stream. We assume that

the multi-stream is obtained by interleaving N independently decodable and scalable streams. For both

strategies, we consider transmission over a lossy network, using N packets, of L symbols each, where

a symbol is a sequence of a fixed number of bits (e.g., 8 bits). This structure can be envisioned as an

array of L×N symbols which we will refer to as a packetization array.

A. Traditional UEP

In traditional UEP, a prefix of the scalable source sequence is partitioned into L consecutive segments

of non-decreasing lengths, i.e., 1 ≤ m1 ≤ m2 ≤ . . . ≤ mL ≤ N , where mi denotes the number of source

symbols in segment i. The i-th segment is protected by a strict systematic (N,mi) RS code. We use the

term strict systematic to emphasize the fact that all the source symbols are placed at the beginning of

the channel codeword. The key property of an (N, k) RS code is that, if at least k channel symbols are

received at the decoder, then all lost symbols can be recovered. The i-th channel codeword consisting

of mi source symbols, followed by N −mi redundancy symbols fills the i-th row in the packetization

array. Each column of the packetization array forms a packet, and all rows with RS channel codewords

of equivalent strength form a layer. More formally, layer j (1 ≤ j ≤ N ) is the set of rows with (N, j) RS

channel codewords. Figure 1 illustrates a UEP packetization array for N = 4, L = 8. In this example,

all layers are allocated a non-zero number of rows, however this is not a requirement.

When k packets of the N transmitted packets (k ≤ N) are received at the destination, all source

symbols in the first k layers can be recovered due to the erasure protection. Since they form a prefix of
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Fig. 1. UEP packetization array: (N = 4, L = 8). Gray boxes represent redundancy symbols and white boxes source symbols.

the scalable code stream, the source data can be reconstructed to a certain fidelity. However, the source

symbols in the received packets, that do not occur in the first k layers cannot be decoded, and must

be discarded at the receiver. This is because such source symbols are separated from the reconstructed

prefix by ”holes” due to missing source symbols (i.e., those source symbols in layers k + 1 through N ,

from the lost packets). We emphasize this disadvantage of UEP by means of an example.

Example 1: Consider the source multi-stream (a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, d3, a4, b4, c4, d4,

a5, b5, c5, d5, · · · ), formed by interleaving four scalable streams A,B,C,D, where x1, x2, x3, · · · , denote

the symbols of stream X , X ∈ {A,B,C,D}. Consider now the UEP packetization with (m1,m2,m3,

m4, m5, m6,m7,m8) = (1, 1, 2, 2, 3, 3, 4, 4), which is illustrated in Figure 1. Let us analyze the case

when only packets P2 and P4 arrive at the receiver. Due to the erasure protection, only the lost symbols

in layers 1 and 2 can be recovered, i.e., a1, b1, c1, a2. Together with the source symbols from the

received packets they form the prefix (a1, a2) of stream A, prefix (b1, b2) of B, prefix (c1) of C and

prefix (d1, d2) of D, which are decoded. Note that the symbols c3, b4, b5, d4, d5 are also available at

the decoder, but they cannot be decoded (c3 cannot be decoded because c2 is missing, b4, b5 cannot be

decoded because b3 is missing, etc.).

B. Multi-stream UEP (M-UEP)

In the M-UEP strategy the source symbols in packet i constitute a prefix of stream i. Each row is

formed by a permuted systematic RS channel codeword. A permuted systematic RS codeword is obtained

from a strict systematic RS codeword, by applying a permutation to the channel symbols. This causes

the source symbols to be interleaved with the redundancy symbols in the channel codeword. Clearly, the
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erasure protection capabilities are not affected. In other words, an (N, k) permuted systematic RS code

is able to correct up to N − k erasures. As with UEP, the strengths of the RS channel codewords in

M-UEP must be non-increasing as the row index increases.

Let xj denote the number of rows in layer j, and let x
(i)
j be the number of source symbols from

substream i (packet i), situated in layer j, 1 ≤ i, j ≤ N . Note that the rows belonging to any layer are

consecutive, due to the constraint which imposes non-increasing strength of the RS codes in the row

index. As in UEP, some layers j may be empty, hence with xj = 0. Figure 2 illustrates an M-UEP

packetization array with N = 4, L = 8, for the same multi-stream as in Example 1.

When only k packets of the N transmitted packets (k ≤ N) are received at the destination, all source

symbols in the first k layers from any lost packet i can be recovered due to the erasure protection as in

the case of UEP. These symbols form a prefix of stream i, therefore they can be decoded. Moreover, all

source symbols from any received packet ℓ can also be decoded since they form the transmitted prefix

of stream ℓ. Thus, as in UEP, all source symbols in the first k layers will be recovered and decoded.

Moreover, additionally, all available source symbols in layers k+1 through N from the received packets,

will also be decoded. This key benefit of M-UEP over UEP is illustrated by the following example.

Example 2: Consider the same source multi-stream as Example 1. Figure 2 illustrates an M-UEP

packetization array where the streams A,B,C,D are assigned to packets P1, P2, P3, P4, respectively.

Furthermore, each source symbol has the same erasure protection as in the UEP scenario of Example

1. Let us revisit the case when only packets P2 and P4 are received. In the context of M-UEP, source

symbols in the first two layers from the lost packets (a1, a2, c1) can be recovered. Thus, prefixes (a1, a2)

of stream A and (c1) of C are formed and decoded. Moreover, the source symbols from the received

packets form prefixes (b1, b2, b3, b4, b5) of B and (d1, d2, d3, d4, d5) of D which are also decoded. Thus,

the reconstruction is strictly better than in the UEP case.

The advantage of M-UEP over UEP is clear in Example 2. Notice that in this example the redundancy

assignment to source symbols is identical to the redundancy assignment achieved under the UEP frame-

work. When this happens, in other words when any M-UEP layer j contains the same source symbols

as the UEP layer j, the M-UEP technique ensures a performance improvement in any situation when

only a subset of k, k < N packets is received. This is because the M-UEP guarantees the decoding of all

source symbols that would have been decoded under the UEP scenario (i.e., all source symbols in layers

1 through k), and additionally decodes all source symbols in layers k + 1 through N of the received

packets.
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Fig. 2. M-UEP packetization array: (N = 4, L = 8). Gray boxes represent redundancy symbols and white boxes source

symbols.

The ability of the M-UEP framework to ensure the same redundancy allocation as the UEP is influenced

by the nature of the streams. A sufficient condition for this property to hold is the multi-stream to be

balanced. A multi-stream is balanced when symbols of the same importance in R-D sense are evenly

distributed amongst the streams. Assuming R-D optimal interleaving of streams in the multi-stream, a

balanced multi-stream ensures that each UEP layer j contains approximately equal number of symbols

from each stream. If xj denotes the number of rows in UEP layer j, then approximately jxj/N source

symbols from each stream are contained in this layer. Since jxj/N ≤ xj , these source symbols can be

arranged to fill xj rows of layer j in the M-UEP packetization array, such that each column contains

only symbols from the corresponding stream (a rigorous proof of this claim is provided in Appendix A).

When the multi-stream is unbalanced, the constraint of assigning source symbols from stream i only

to packet i may prevent M-UEP from achieving identical redundancy protection for each source symbol

as with UEP. However in the case of a mildly unbalanced multi-stream, M-UEP can still outperform

UEP, especially under poor channel conditions. This is due to the fact that when only a small number of

packets are received, the number of additional symbols decoded in the M-UEP framework is large enough

to compensate for the unavailability of a few important source symbols which might have been available

to the decoder in the UEP case. On the other hand, if the multi-stream is severely unbalanced, some

important symbols might not even be transmitted with M-UEP since they do not fit into the corresponding

packet. This loss might offset the contribution of the less important additional symbols decoded. However,

it is difficult to provide a precise characterization of the degree of imbalance which deprives the M-UEP

of its advantage over UEP.
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III. R-D OPTIMAL REDUNDANCY ALLOCATION

In Example 2 from the previous section, the M-UEP layers have the same size as the UEP layers.

However, such an allocation of redundancy is not necessarily optimal for M-UEP. To maximize the M-UEP

performance, we address the problem of optimal redundancy allocation (ORA) in the rate-distortion (R-D)

sense, formulated as follows: find the redundancy assignment which minimizes the expected distortion

at the receiver, given the total transmission budget of N ×L symbols, the channel loss statistics, and the

R-D curves of the streams.

Let us denote by PN (k) the probability that out of the N transmitted packets, k are lost, while N − k

are received. We assume that the values PN (k) are known at the encoder. Furthermore, we assume that

the distortion metric is additive, in other words, each decoded symbol contributes additively to the total

distortion reduction. This assumption holds true when the mean-squared error (MSE) is used as the

distortion metric and no error concealment is applied at the decoder. Formally, for each stream i, let

∆Di(ri) denote the decrease in distortion due to decoding the ri-th source symbol from stream i. For

convenience, we also use the notation ∆D(r) for the decrease in distortion due to decoding the r-th

source symbol from the multi-stream. Notice that if the r-th symbol in the multi-stream coincides with

the ri-th symbol from stream i, then ∆D(r) = ∆Di(ri).

Next we review the RD-ORA problem for the UEP framework.

A. UEP RD-ORA

For UEP-based transmission, the probability CU (j) that a source symbol in layer j will be decoded

equals the probability that at least j packets are received. Consequently,

CU (j) =

N−j∑
k=0

PN (k) , 1 ≤ j ≤ N. (1)

Let xj denote the size of layer j (i.e., the number of rows allocated to layer j), 1 ≤ j ≤ N . Then the

number of source symbols in any layer ℓ is ℓxℓ. Consequently, the symbols situated in some layer j are

all the symbols in the multi-stream between positions (
∑j−1

ℓ=1 ℓxℓ)+1 and
∑j

ℓ=1 ℓxℓ, inclusive. Then the

expected distortion of the reconstructed source at the receiver is

D̄U = Dmax −
N∑
j=1

 ∑j
ℓ=1 ℓxℓ∑

r=1+
∑j−1

ℓ=1 ℓxℓ

∆D(r)

× CU (j), (2)

where Dmax denotes the distortion when no source symbols are decoded.

The objective of the UEP R-D ORA problem is to find the non-negative integers x1, x2, · · · , xN which

minimize D̄U subject to the constraint
∑N

j=1 xj = L. This problem has been extensively studied by the
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research community [3]-[10]. A plethora of solutions of various degrees of accuracy and/or efficiency

have been proposed. The fastest globally optimal algorithm for the most general case, presented in [8], has

O(N2L2) time complexity. A detailed discussion and comparison of notable solutions to the RD-ORA

UEP problem can be found in [11].

B. M-UEP RD-ORA

In order to formulate the M-UEP RD-ORA problem, recall that in M-UEP-based transmission, a source

symbol of stream i, situated in layer j, will be recovered and decoded at the receiver if and only if one

of the following events occurs: 1) packet i is received at the destination, or 2) packet i is lost and at least

j other packets are received. Let us denote the probability of the first event by α(i), and the probability

of the second event by β(i, j). Consequently, the probability that a source symbol of stream i, situated

in layer j, will be decoded is CM (i, j) = α(i) + β(i, j), for 1 ≤ i, j ≤ N . Recall that x(i)j denotes the

number of source symbols from stream i situated in layer j, and xj denotes the number of rows in layer

j, 1 ≤ i, j ≤ N . Because the distortion is additive, and the expectation operator is a linear operator,

it follows that the expected distortion of the reconstructed source at the receiver, denoted by D̄M , can

be expressed as the maximum distortion when no source symbols are decoded (Dmax) reduced by the

contribution of each symbol to the decrease of distortion, weighted by the probability that the symbol is

decoded. Thus, we obtain

D̄M = Dmax −
N∑
j=1

N∑
i=1

CM (i, j)

 ∑j
ℓ=1 x

(i)
ℓ∑

ri=1+
∑j−1

ℓ=1 x
(i)
ℓ

∆Di(ri)

 . (3)

The objective of the M-UEP RD-ORA problem is to minimize D̄M over all non-negative integers xj , x
(i)
j ,

1 ≤ i, j ≤ N , satisfying the constraints
N∑
j=1

xj = L (4)

N∑
i=1

x
(i)
j = jxj ∀ j, 1 ≤ j ≤ N, (5)

x
(i)
j ≤ xj ∀ i, j, 1 ≤ i, j ≤ N. (6)

It is easy to see that the above constraints are necessary. Constraints (5) follow from the fact that any

row of layer j must have exactly j source symbols. Constraints (6) are due to the fact that symbols from

stream i can only be placed in packet i. These constraints are also sufficient. We defer the proof of their

sufficiency to Appendix A in order to avoid interrupting the flow of the exposition.
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In Appendix B, we show that the M-UEP RD-ORA problem can be cast as a maximum-weight

path problem in a weighted directed acyclic graph, yielding a globally optimal solution algorithm of

O(2NN(L+1)N+1) time complexity. This is a tight bound and holds in both worst and best cases. Note

that this complexity value is polynomial in L, but exponential in N . Therefore, we conclude that for

all but small values of N , the globally optimal solution is impractical. This fact motivates the use of a

sub-optimal algorithm to solve the problem, which is the topic of the next section.

IV. SUB-OPTIMAL SOLUTION TO M-UEP RD-ORA PROBLEM FOR SYMMETRIC CHANNELS

In this section we develop a fast sub-optimal solution algorithm for the M-UEP RD-ORA problem, in

the case of symmetric packet loss channels.

Definition 1. A packet loss channel is said to be symmetric if the probability that the packets in some

subset I ⊂ {1, 2, · · · , N} are lost, while the rest of packets are received, is the same for all subsets I

of equal size.

As proved in Appendix C, for symmetric channels the coefficient CM (i, j) does not depend on i, thus

it can be denoted by CM (j), and we have

CM (j) = 1− µ+

N−j∑
k=0

k

N
PN (k), (7)

where µ denotes the mean packet loss rate. Thus, the cost function (3) becomes

D̄M = Dmax −
N∑
j=1

CM (j)

N∑
i=1

 ∑j
ℓ=1 x

(i)
ℓ∑

ri=1+
∑j−1

ℓ=1 x
(i)
ℓ

∆Di(ri)

 . (8)

The proposed algorithm hinges on the assumption that in the problem solution all source symbols

situated in a layer form a contiguous segment of the multi-stream. As proved by the following lemma,

this assumption holds true for multi-streams with convex R-D curve, if we disregard the constraint (6).

Lemma. Assume that the multi-stream has convex R-D curve (i.e., ∆D(r) ≥ ∆D(r+1) for any r ≥ 0).

Consider the problem of minimizing (8) subject to the constraints (4) and (5). Then there is an optimal

solution such that, for any j, 1 ≤ j ≤ N , all source symbols situated in layer j form a contiguous segment

of the multi-stream.

Proof. It is sufficient to show that, for each j, 1 ≤ j ≤ N − 1, each symbol in layer j must contribute a

distortion reduction at least equal to the distortion reduction of any symbol in layer j + 1. To prove this

claim, we consider the scenario when it is not satisfied. Thus, assume there are packets i1 and i2, source

DRAFT



11

symbol ã placed in layer j of packet i1, and source symbol b̃ placed in layer j+1 of packet i2, such that

∆(b̃) > ∆(ã), where ∆(s) denotes the contribution of symbol s to the decrease in distortion. Further,

let a be the last source symbol of packet i1 in layer j and b be the first source symbol of packet i2 in

layer j + 1. The convexity of the R-D curves of the streams implies that ∆(b) > ∆(a). This scenario

is illustrated in Figure 3(a) for i1 = N − 1 and i2 = 2. Now let us promote source symbol b to layer j

and demote source symbol a to layer j+1. By doing this, constraints (4), (5) are not broken (recall that

we do not care of (6) for now), consequently this swap yields a feasible solution . This new solution is

illustrated by Figure 3(b). By performing this source symbol swap between layers j and j + 1, the cost

function of (8) will decrease by the amount (CM (j)−CM (j+1))(∆(b)−∆(a)) > 0, thus contradicting

the optimality of the previous solution. �
Note that if all source symbols situated in a layer form a contiguous segment of the multi-stream, then

the cost function of (8) can be rewritten as

Dmax −
N∑
j=1

CM (j)

 ∑j
ℓ=1 ℓxℓ∑

r=1+
∑j−1

ℓ=1 ℓxℓ

∆D(r)

 . (9)

Inspired by the above observations, we propose a sub-optimal algorithm for the M-UEP RD-ORA problem

for symmetric channels, which proceeds in two main steps. Step 1 minimizes the objective function of

(9) over all non-negative integers xj satisfying (4). Step 2 uses the values xj output at Step 1 and

finds the values x
(i)
j such that the constraints of (5) and (6) to be satisfied. Notice that the problem

of Step 1 is similar to the UEP RD-ORA problem, the only difference consisting in the calculation of

the weights CM (j). Therefore any algorithm which solves the UEP RD-ORA problem (and which does

not rely on particular properties of the weights) can be used for this purpose. In our experiments we

employ the O(N2L2) time globally optimal solution developed in [8]. For Step 2 we use the algorithm

whose pseudocode is provided in Figure ??. The algorithm proceeds in increasing order of j. For each

j, jxj iterations are performed. At each iteration exactly one source symbol is assigned to layer j.

The algorithm maintains pointers for each stream to the current candidate symbol to be placed in layer

j (i.e., the first symbol unassigned a layer yet). Also a list I is maintained of streams for which the

number of symbols already assigned to layer j, is smaller than xj (hence streams in I have not yet

fully occupied their designated capacity in layer j). The symbol to be assigned at each iteration is the

symbol with highest distortion reduction among all candidate symbols from streams in list I. Clearly, this

algorithm ensures that the output satisfies conditions (5) and (6). The number of operations performed

is O(
∑N

j=1 jxj) = O(NL). We conclude that completing steps 1 and 2 requires O(N2L2) time.
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Fig. 3. M-UEP Packetization Array Cross section : M-UEP packetization array layers j and j+1 prior to swapping source

symbols (a), and after swapping source symbols (b). Gray boxes represent redundancy symbols and white boxes represent source

symbols.

It is instructive to identify cases when the proposed solution to the M-UEP RD ORA problem is

optimal.

Definition 2. We say that the multi-stream is perfectly balanced if any segment of N consecutive symbols

of the multi-streams contains exactly one symbol from each stream.

Proposition. Assume that the multi-stream is perfectly balanced and its R-D curve is convex. Then the

algorithm proposed in this section guarantees the optimal solution to M-UEP RD ORA problem for

symmetric channels.

Proof. By Lemma the output of Step 1 is the optimal solution to the problem of minimizing (8) subject

to constraints (4) and (5). Consequently, the optimal value of the cost function in (9), denoted by D̄opt,

is a lower bound for the minimum M-UEP expected distortion. Denote by D̄M,opt, the M-UEP expected

distortion obtained by using the algorithm described in this section, and by Uj the segment of the multi-

stream between positions (
∑j−1

ℓ=1 ℓxℓ)+1 and
∑j

ℓ=1 ℓxℓ, for the output of Step 1. Further, let u(i)j denote

the number of source symbols from stream i, situated in segment Uj , for all i, j. It is easy to see that if

conditions

u
(i)
j ≤ xj ∀ i, j, 1 ≤ i, j ≤ N, (10)

are satisfied, then the algorithm of Step 2 ensures that x(i)j = u
(i)
j for all i, j, which, in turn, implies that

D̄M,opt = D̄opt. On the other hand, since the multi-stream is perfectly balanced, we have u
(i)
j ≤ ⌈jxj/N⌉,

where ⌈·⌉ denotes the ceiling function. Since xj is an integer and jxj/N ≤ xj , it further follows that

⌈jxj/N⌉ ≤ xj . Consequently, relations (10) are satisfied, fact which concludes the proof. �
For a multi-stream with convex R-D curve for which the violations in relations (10) are mild, i.e.,
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aaaaaa

current (i) = index of current candidate symbol of stream i

I = set of stream indices i ∈ {1, 2, 3, . . . , N} that satisfy

x
(i)
j < xj

set current(i) = 0 and x
(i)
j = 0 , ∀ i, j = 1 to N

for j = 1 to N

set I = {1, 2, 3, . . . , N}
for q = 1 to jxj

s = argmax
k∈I

∆Dk (current (k))

increment x
(s)
j and current(s) by 1

if x
(s)
j equals xj

remove s from I
end if

end for

end for

Fig. 4. Source Symbol Assignment : M-UEP packetization array source symbol assignment pseudocode.

the excess u
(i)
j − xj is small, we expect the solution to be close to optimal. An intuitive explanation is

the following. Violations of relations (10) cause excess symbols which do not fit into the layer allocated

according to Step 1, to be placed into subsequent layers, thus reducing their protection level. If u(i)j −xj

is small, it is expected that the excess symbols will fit into the next layer. Since this leads to only a small

change in the protection level (especially when N is high), it is likely that D̄M,opt increases only slightly

from the lower bound. Since D̄M,opt−D̄opt is an upper bound for the gap between D̄M,opt and the optimal

solution, this guarantees only a small degradation from the optimum. On the other hand, if the violations

in relations (10) are severe, Step 2 will cause high changes in protection level of source symbols, pushing

D̄M,opt far away from the lower bound. In such a case the proposed redundancy allocation algorithm

does not have any performance guarantee.

One last thing worth mentioning before concluding this section is that D̄opt is always lower than D̄U,opt,

where D̄U,opt denotes the minimum UEP expected distortion. This is due to the fact that CM (j) > CU (j)

for all 1 ≤ j ≤ N and both optimization problems have the same set of feasible solutions. Moreover,

D̄opt depends on the RD curve of the multi-streams, but does not depend on how the source symbols are

distributed among the streams. Therefore, the difference D̄U,opt− D̄opt is an upper bound on the possible

advantage of M-UEP over UEP, which does not depend on the balance properties of the multi-stream.

V. M-UEP SIDE INFORMATION

A critical aspect of M-UEP that must be considered is the side information which specifies the M-UEP

packetization to the decoder. In the formulation of the RD-ORA problem we have not accounted for this
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side information, therefore it is important to analyze the overhead resulting from it. This side information

can be split into two parts: SI1 - the side information needed to specify the size of each layer (i.e.,

the values xj), and SI2 - the additional side information needed to completely determine the M-UEP

packetization, given the knowledge of SI1.

Since 0 ≤ xj ≤ L, it follows that ⌈log2(L + 1)⌉ bits are enough to encode the value of some xj .

Moreover, only x1, · · · , xN−1 have to be specified since xN can be computed from (4). In conclusion,

si1 = (N − 1)⌈log2(L+ 1)⌉ bits are enough to encode SI1.

In order to encode SI2, for each non-empty layer j, j ̸= N , we use (N − 1)⌈log2(xj + 1)⌉ bits to

indicate the values x
(i)
j , 1 ≤ i ≤ N − 1. Note that x

(N)
j can be computed from (5). Thus, a total of

si2 = (N − 1)
∑N−1

j=1,xj ̸=0⌈log2(xj +1)⌉ bits suffice to encode SI2. Clearly, this amount depends on the

number of allocated layers, which, in turn, depends on the type of channel, as revealed by our experiments

in Section VI. However, an upper bound for this value can be computed.

si2 = (N − 1)

N−1∑
j=1

⌈log2(xj + 1)⌉ (11)

≤ (N − 1)

N−1∑
j=1

(log2(xj + 1) + 1)

= (N − 1) log2

(
ΠN−1

j=1 (xj + 1)
)
(N − 1)2

≤ (N − 1) log2
(N−1∑

j=1

(xj + 1)/(N − 1)
)N−1

(N − 1)2

≤ (N − 1)2 (log2(L/(N − 1) + 1) + 1) .

The second inequality in the above sequence of relations follows from the inequality between the

geometric and arithmetic means of N −1 positive numbers. Finally, an upper bound for the total amount

of side information is

si1 + si2 ≤ (N − 1)(log2(L+ 1) + 1) +

(N − 1)2 (log2(L/(N − 1) + 1) + 1) . (12)

VI. EXPERIMENTAL RESULTS

The main goal of this section is to compare the performance of the proposed M-UEP strategy versus

traditional UEP. For this we performed tests on two 512 × 512 images (Lena and Peppers). In both

cases a 5-level Cohen-Daubechies-Feauveau 9/7 wavelet transform was applied, and the resulting wavelet

coefficient matrix was SPIHT encoded (without arithmetic coding). In essence, the code stream produced
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by SPIHT can be regarded as the interleaving of 256 independent primary streams, with 64 streams

corresponding to non-root nodes in the lowest sub-band, and the remaining 192 streams representing

spatial orientation trees. In our experiments, we considered N = 2, 4, 6, . . . , 40. In order to obtain N

independent streams, we group the primary streams into N groups. The primary streams of each group are

then interleaved to form a stream, such that the relative order of symbols in each stream is the same as in

the SPIHT coded multi-stream. As emphasized throughout the paper, the M-UEP performance is affected

by the balance properties of the multi-stream. Therefore, it is expected that the grouping technique will

influence the M-UEP performance.

In our experiments we use two grouping strategies: 1) predefined and 2) optimized grouping. In order

to reduce the amount of side information needed to specify the grouping, we first fix an ordering of

the primary streams, and constrain each group to be formed by consecutive primary streams according

to this ordering. In predefined grouping, each group contains the same number of primary streams, i.e.

P/N , where P is the total number of primary streams. In this case no side information is needed to

indicate the grouping. In optimized grouping, the number of primary streams assigned to each group is

optimized using the criterion in [18]. Once the streams are formed, a header of 2⌈log2 P ⌉ bits is added

to each stream indicating the first and the last primary stream in the corresponding group. In optimized

grouping the number of primary streams in each group is decided such that the distortion achieved when

all the prefixes of size L from all formed streams are decoded, to be minimized. A similar problem, with

slightly different constraints, was formulated in [18] and solved by using dynamic programming. The

dynamic programming algorithm to solve our problem can be easily derived from [18]. Due to space

limitation we omit the description of the algorithm here.

For the fixed ordering of primary streams we have considered two examples. One is the dispersed

dot-dithering ordering (DD) [17], [18] borrowed from digital halftoning. The other ordering, which we

refer to as subband dispersed (SD), is inspired by the DD ordering, but achieves a better dispersion of

primary streams corresponding to non-root nodes. To define the SD ordering, consider, for k ≤ 1, the

2k × 2k-dimensional matrices MAk,MBk,MCk,MDk defined recursively as follows

MA1 =

 0 4

8 12

 , MB1 =

 13 1

5 9

 ,

MC1 =

 10 14

2 6

 , MD1 =

 7 11

15 3

 .
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Xk+1 =

 Xk Xk + 1× 22k+2 × Uk

Xk + 2× 22k+2 × Uk Xk + 3× 22k+2 × Uk

 ,

for X ∈ {MA,MB,MC,MD}, k ≤ 1, where Uk denotes the 2k × 2k-dimensional matrix whose all

elements are equal to 1. Finally, for k ≥ 2, define the 2k × 2k-dimensional matrix Mk as

Mk =

 MAk−1 MBk−1

MCk−1 MDk−1

 .

If the number of rows and columns in the lowest subband is 2m, then the matrix Mm defines the index

in the SD ordering corresponding to each primary stream. Note that the indexing starts at 0. Thus, when

P = 64, hence m = 3, the assignment matrix for SD ordering is

M3 =



0 4 16 20 13 1 29 17

8 12 24 28 5 9 21 25

32 36 48 52 45 33 61 49

40 44 56 60 37 41 53 57

10 14 26 30 7 11 23 27

2 6 18 22 15 3 31 19

42 46 58 62 39 43 55 59

34 38 50 54 47 35 63 51



.

Thus, by applying the two grouping strategies for each of the two orderings (DD and SD) we obtained

four groupings which were tested in our experiments. For brevity we will use the acronyms PDD and

PSD to refer to the predefined grouping based on DD, SD, respectively, and the acronyms OptDD and

OptSD for the optimized grouping counterparts.

We implemented the M-UEP transmission scheme for each of the four groupings introduced above.

In each case we used the algorithm of Section IV to solve the M-UEP RD-ORA problem. For Step

1 we employed the globally optimal algorithm for UEP of [8], which does not require the convexity

assumption. The same algorithm of [8] was used to solve UEP RD-ORA for the SPIHT codestream

without arithmetic coding Furthermore, for both M-UEP and UEP we assumed that the side information

needed to specify the packetization was sent to the decoder via a secure channel. However, the grouping

side information, when needed, was included in the M-UEP packets.

Our tests were performed for two symmetric packet loss channel models. The first one is the inde-

pendent packet loss (IPL) model with erasure rates ϵ = 0.05, 0.15. Independence of packet losses is

a reasonable assumption when the packets are interleaved with packets from other applications during
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Fig. 5. Grouping comparison: M-UEP PSNR vs. number of packets, for at R = 0.50 bpp, for IPL ϵ = 0.05.
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Fig. 6. Grouping comparison: M-UEP PSNR vs. number of packets, for at R = 0.50 bpp, for IPL ϵ = 0.15.

the transmition. The second model is a channel with exponentially decreasing probability mass function

PN (k), 1 ≤ k ≤ N , (EPL) with mean packet loss values µ = 0.05, 0.15.

For each value of N = 2, 4, 6, · · · , 40, we have considered two values for the packet lengths L, such

that the total transmission rate (denoted by R) to be 0.20 and 0.50 bits per pixel (bpp), respectively.

Thus, L = 6554/N bytes in the first case and L = 16384/N bytes in the second case.

Figures 5-8 plot the M-UEP PSNR for all four groupings, versus N , for Lena image in each of the

four channel conditions mentioned above. Each figure also contains the UEP PSNR and the M-UEP

PSNR upper bound computed based on D̄opt. In all cases R = 0.5 bpp. The M-UEP PSNR upper bound

always outperforms UEP at differences approaching 0.7 dB. Moreover, the performance of M-UEP using
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Fig. 7. Grouping comparison: M-UEP PSNR vs. number of packets, for at R = 0.50 bpp, for EPL ϵ = 0.05.
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Fig. 8. Grouping comparison: M-UEP PSNR vs. number of packets, for at R = 0.50 bpp, for EPL ϵ = 0.15.

optimized groupings is very close to the upper bound, suggesting that the grouping optimization criterion

ensures good balance properties to the multi-stream. Interestingly, the performance of OptSD and OptDD-

based M-UEP is almost identical.

The performance of PSD-based M-UEP is close to OptSD for smaller values of N , but degrades

comparing to OptSD as N increases. This degradation is higher for IPL channel than for EPL channel,

and for each channel it accentuates as the mean packet loss rate decreases. Notably, the PSD-based M-

UEP performance is always above UEP level, except for the case of IPL channel at small loss rate and

high N . Finally, PDD performs the worst and it is inferior to UEP in all cases except for EPL channel
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with higher mean loss rate. The above observations remain consistent for Lena at R = 0.2 bpp and for

Peppers at R = 0.20 and R = 0.50 bpp, but due to space limitations we do not include those plots

here. The poor performance of PDD was expected since PDD generates some streams much shorter than

others thus leading to severe imbalance. This is because in DD ordering, primary streams corresponding to

non-root nodes (which are much shorter than the others) are consecutive. For severely unbalanced multi-

streams the proposed M-UEP redundancy allocation algorithm does not offer performance guarantees. To

verify this statement we also implemented the redundancy allocation algorithm which uses in Step 2 the

layer sizes of the optimal UEP. The plots labeled PDD M-UEP∗ inserted in Figures 5-8 show the PSNR

achieved with this rate allocation method, in the case od PDD grouping. In all cases, PDD M-UEP∗

outperforms PDD M-UEP, and the gap can reach up to 0.3 dB. However PDD M-UEP∗ still remains

below UEP level in the case of IPL and EPL with small mean loss rate. Determining a close to optimal

solution for severely unbalanced streams and clarifying if the M-UEP strategy maintains the benefit over

UEP in such cases, remains a topic for further research.

To better highlight the gain of M-UEP over UEP we plot in Figures 9, 10, the difference in PSNR

between OptSD M-UEP and UEP, versus the number of packets, for the IPL and EPL channels respec-

tively. Each figure contains four plots corresponding to both images at each loss rate. R = 0.5 bpp in

all cases. These results show that the gain of M-UEP over UEP can reach up to 0.6 dB. Interestingly,

the gains are higher in the case of EPL than IPL, at the same loss rate, especially as N increases. In

order to understand these phenomenon, it is useful to analyze the performance between M-UEP and UEP

when only a fraction of the total number of packets is received. Figures 11, 12 plot the PSNR [dB]

value achieved when only a subset of k < N packets are received for OptSD M-UEP and UEP, for IPL

and EPL respectively. Both figures illustrate the performance of M-UEP for Peppers, at R = 0.5 bpp,

N = 16, and packet loss rate ϵ = µ = 0.15. We observe that, as a result of optimization of both UEP

and M-UEP schemes, the advantage of M-UEP is higher when the number of lost packets is farther away

from the the mean number of lost packets. Given a fixed loss rate ϵ = µ, the probability of this event is

higher for EPL channels, thus leading to higher PSNR gains on average.

As discussed in Section V the performance advantage of M-UEP over UEP comes at the cost of

additional side information needed at the decoder. In Figure 13 we plot the ratio between the amount

of M-UEP side information and R versus N , for Lena for both channel models, at both loss rates. We

also include the plot corresponding to the upper bound based on (12), and the plot corresponding to

the UEP side information. The transmission budget is 0.5 bpp and OptSD grouping is considered. As it

can be seen, the amount of side information is higher for the EPL channel comparing to IPL, and for
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Fig. 9. M-UEP vs. UEP: PSNR difference between OptSD M-UEP and UEP vs. number of packets, for IPL at R = 0.50

bpp.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Packets

P
S

N
R

 d
if
fe

re
n

c
e

 [
d

B
]

lena =0.05

lena =0.15

peppers =0.05

peppers =0.15

Fig. 10. M-UEP vs. UEP: PSNR difference between OptSD M-UEP and UEP vs. number of packets, for EPL at R = 0.50

bpp.

both channel models the overhead increases with the loss rate. The reason for this behaviour is that the

M-UEP optimization allocates more non-zero layers in the case of EPL than IPL, at the same loss rate.

Furthermore, for each channel model, more non-zero layers are allocated when the loss rate increases.

We also observe that the ratio between the amount of M-UEP side information and R increases roughly

linearly with N , but the rate of increase is lower than predicted by the upper bound (12).

The increase in the amount of M-UEP side information with N could render M-UEP unattractive at

high number of packets. Therefore, techniques to decrease the overhead due to this side information are
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Fig. 11. M-UEP vs. UEP: PSNR of OptSD M-UEP and UEP vs. number k of received packets, for peppers, at R = 0.50

bpp, N = 16, IPL with ϵ = 0.15.
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Fig. 12. M-UEP vs. UEP: PSNR of OptSD M-UEP and UEP vs. number k of received packets, for peppers, at R = 0.50

bpp, N = 16, EPL with µ = 0.15.

of interest. One possibility is for each j, to force the values x
(i)
j for all i to be equal. In this case it is

enough to transmit to the decoder only the size of each layer xj . The decoder derives the total amount

of source symbols in layer j corresponding to each packet i as x
(i)
j = jxj/N . If the division jxj/N is

not exact, then some x
(i)
j ’s are set to ⌊jxj/N⌋ and the others to ⌈jxj/N⌉, according to a fixed rule. We

refer to such a constrained M-UEP as M-UEP with fixed redundancy (FM-UEP, for short) because fixed

redundancy is allocated across packets in each layer. The FM-UEP side information is the same as in

UEP since it is enough to transmit to the decoder only the size of each layer xj .
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for lena, at R = 0.50 bpp.

We have implemented the FM-UEP scheme in conjunction with the four groupings. Our tests reveal

the following. First of all, OptSD grouping remains the best among all four groupings and is always

superior to UEP for the IPL channel at both erasure rates and for the EPL channel at low mean loss rate.

For these channel conditions, the drop in performance versus the M-UEP counterpart is modest, about

0.1 dB for IPL channel and 0.2 dB for the EPL channel. For the same channel conditions, OptDD-based

FM-UEP is worse than OptSD in most of the cases, but the gap is small. Interestingly, both OptSD and

OptDD are more dramatically affected by the fixed redundancy constraint in the case of EPL at high

loss rate, when their PSNR decreases below UEP for all values of N . As for PSD grouping, it is more

affected by the restriction of fixed redundancy in the case of IPL at high N . In this case its PSNR drops

below UEP level even for high loss rate. On the other hand, PSD is the most robust among the four

groupings to the restriction of fixed redundancy, in the case of EPL channel. For this type of channel,

PSD FM-UEP performs better than UEP at both loss rates it, and most notably, at high mean loss rate,

PSD is the only grouping which succeeds to maintain the performance of FM-UEP still higher than

UEP. Surprisingly, in this case OptSD FM-UEP’s PSNR becomes inferior to UEP as N increases, at

a gap of up to 1dB. The above observations are consistent for both image, at both transmission rates.

For illustration we plot in Figures 14 and 15 the PSNR values of UEP and FM-UEP with the four

groupings, versus N for IPL, and EPL channel models respectively. In both figures image Lena at 0.5

bpp is considered and the channel loss rate is 0.15. To illustrate the gains of FM-UEP versus UEP we

also plot in Figures 16, 17, the difference in PSNR between FM-UEP and UEP for the IPL and EPL
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Fig. 15. Grouping comparison: PSNR of FM-UEP vs. number of packets for lena, at R = 0.50 bpp, for EPL with µ = 0.15.

channel respectively. Each figure contains four plots corresponding to both images, for R = 0.5bpp at

both loss rates. For each channel condition we consider FM-UEP in conjunction with the grouping which

has the best performance, precisely, PSD for EPL with µ = 0.15, and OptSD in all other cases.

It is also instructive to assess the performance of the M-UEP strategy with respect to UEP under

channel mismatch conditions. Figure 18 plots the PSNR difference between OptSD M-UEP and UEP

for each image and each channel model, under channel mismatch conditions. The actual channel loss

rate varies in the range [0.01− 0.30], while the redundancy allocation for both transmission schemes is

optimized for the loss rate ϵ = µ = 0.15. The number of packets is N = 16 and R = 0.5 bpp. It is

clear from these figures that OptSD M-UEP maintains its superiority over UEP in all cases. Another
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Fig. 16. FM-UEP vs. UEP: PSNR difference between FM-UEP and UEP vs. number of packets, for IPL at R = 0.50 bpp.
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Fig. 17. FM-UEP vs. UEP: PSNR difference between FM-UEP and UEP vs. number of packets, for EPL at R = 0.50 bpp.

interesting observation is that for most images the improvement in PSNR increases as the erasure rate

tends away from the predicted value for IPL, while for EPL increases only as the erasure rate becomes

smaller than the predicted value. We believe that the increase in performance as the loss rate becomes

smaller can be attributed to the fact that our redundancy allocation algorithm for M-UEP assigns less

total redundancy than UEP. Consequently, M-UEP has higher performance than UEP when the number

of received packets is very high. As the packet loss rate decreases, the probability of this event becomes

higher leading to an increase in PSNR improvement.
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Fig. 18. Channel mismatch performance : PSNR improvement [dB] of BB M-UEP over UEP vs. packet erasure rate ϵ for

all tested images at transmission rate R = 0.50 bpp and N = 8. The erasure protection is optimized for erasure rate ϵ = 0.15.

VII. CONCLUSION

This paper proposed a new uneven erasure protection (UEP) strategy, termed M-UEP, for the transmis-

sion of multi-streams over packet erasure networks. M-UEP creates independently decodable packets to

ensure that all received source symbols are decoded and uses permuted Reed-Solomon codes to increase

the flexibility of the redundancy assignment. The R-D optimal redundancy allocation (RD ORA) problem

was formulated and shown to have a time complexity of O(2NN(L+ 1)N+1), where N is the number

of transmitted packets and L is the packet size. To address the high complexity of the globally optimal

solution an efficient sub-optimal algorithm running in O(N2L2) time was proposed. The additional

side information necessary for M-UEP at the decoder was discussed and an upper bound on the side

information length was derived. Moreover, a technique for mitigating the side information (FM-UEP)

was presented. Experiments performed on SPIHT coded images (with appropriate grouping of wavelet

coefficient) validated the superiority of M-UEP and FM-UEP over UEP, with peak improvements of

0.6, 0.5 dB, respectively. Additionally, our tests revealed that M-UEP is more robust than UEP in adverse,

unpredictable and varying channel conditions. Future research interests include improving the solution

to M-UEP RD ORA problem and applying M-UEP to JPEG2000 coded images. Initial upper-bound

experiments with JPEG2000 reveal the promise of similar performance improvement of M-UEP over

UEP as achieved with the SPIHT coder.
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APPENDIX A

SUFFICIENCY OF M-UEP RD-ORA CONSTRAINTS

(4), (5), (6)

In this appendix we show that the constraints (4), (5), (6) are sufficient for the M-UEP RD-ORA

problem formulated in Section 3. To this end we need to prove that for any non-negative integers

xj , x
(i)
j , 1 ≤ i, j ≤ N , satisfying conditions (4), (5), (6), there is a corresponding arrangement of the

source symbols in the packetization array compatible with the M-UEP framework.

Proof. We begin by fixing some j and considering populating the j-th layer of the packetization array

with source symbols. Consider N containers, where the i-th container has x
(i)
j items. Populating the j-th

M-UEP layer is equivalent to placing all these items in an array of xj rows and N columns such that

all items of the i-th container to be situated in the i-th column, and each row to contain exactly j items.

The algorithm to perform this task proceeds in xj iterations, each iteration populating one row. At the

beginning of each iteration the containers are sorted in non-increasing order of the sizes of their contents.

Then an item is withdrawn from each of the first j containers. Each item is placed in the current row in

the column corresponding to the container.

To prove the algorithm correctness we need to show that at the beginning of each iteration there are

at least j non-empty containers. If this result is established then it is clear that at algorithm completion

all containers are empty, and hence all items have been placed in the array as required.

To validate the above claim we prove a stronger statement. Namely, we show that at the beginning

of each iteration ℓ, 1 ≤ ℓ ≤ xj , each container has at most xj − ℓ + 1 items and there are at least j

non empty containers. For this we present a proof by induction over ℓ. When ℓ = 1 the first part of the

claim obviously holds by condition (6). Further, assuming that less than j containers are non empty, it

follows that the total number of items is at most (j− 1)xj , which contradicts relation (5). Consequently,

the second part of the claim is satisfied as well.

Now we proceed to the inductive step. Assume that the claim holds for some ℓ, 1 ≤ ℓ ≤ xj − 1, and

let us prove it for ℓ+1. By the inductive hypothesis, at the beginning of the ℓ-th iteration each container

has at most xj − ℓ+ 1 items. This further implies that at most j containers can have exactly xj − ℓ+ 1

items. Indeed, by assuming the contrary we obtain the total number of items still in the containers to

be larger or equal than (j + 1)(xj − ℓ + 1) which contradicts the fact that that exactly j(ℓ − 1) items

have already been withdrawn. Consequently, all those containers having exactly xj − ℓ+1 items (if any)

will have an item withdrawn during the ℓ-th iteration. Thus, at the beginning of the (ℓ+ 1)-th iteration
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no container has xj − ℓ or more items. Thus, the first part of the claim is proven. Assuming now that

less than j containers are non empty at the beginning of the (ℓ+1)-th iteration, we obtain that the total

number of items is at most (j − 1)(xj − ℓ) items, which contradicts the fact that that exactly jℓ items

have already been withdrawn. With this, the proof is completed. �

APPENDIX B

GRAPH-BASED FORMULATION OF M-UEP RD-ORA PROBLEM

In this appendix, we derive a weighted directed acyclic graph G and show that the M-UEP RD-ORA

problem is equivalent to the maximum-weight path problem in G.

Let G = (V,E), where V is the set of vertices (or nodes) and E is the set of directed edges. The

nodes of the graph are all (N + 2)-tuples of integers (u(1), u(2), . . . , u(N), n, ℓ) such that 0 ≤ ℓ ≤ L,

0 ≤ u(i) ≤ ℓ, for all i ∈ {1, 2, . . . , N}, and 0 ≤ n ≤ N . The edges of the graph are all ordered pairs of

vertices (u,v), where u =
(
u(1), u(2), . . . , u(N), n, ℓ

)
and v =

(
v(1), v(2), . . . , v(N),m, κ

)
such that the

following conditions are satisfied

κ = ℓ+ 1, m ≥ n (13)

0 ≤ v(i) − u(i) ≤ 1∀ i, 1 ≤ i ≤ N, (14)∑N
i=1

(
v(i) − u(i)

)
= m. (15)

Each edge (u,v) is assigned a weight w (u,v) defined as

w(u,v) =

N∑
i=1

(
CM (i,m) (v(i) − u(i))∆Di

(
v(i)

))
. (16)

The source node of the graph is v0 = (0, 0, . . . , 0, 0), and the final nodes are all vertices whose last

component is L. A path in G is any sequence of nodes starting with the source node and ending with

a final node, such that any two consecutive nodes are connected by an edge. The weight of the path is

defined as the sum of the weights of its edges. Note that the last component of the i-th node of the path

must necessarily be i− 1. Therefore, any path in G has exactly L+ 1 nodes, and hence L edges.

Any M-UEP packetization array PA can be assigned a path PPA in G as follows. For each row ℓ

(1 ≤ ℓ ≤ L), and each column i (1 ≤ i ≤ N), let v(i)ℓ denote the number of source symbols in the first ℓ

rows of column i, and let nℓ denote the layer corresponding to that row. Let vℓ =
(
v
(1)
ℓ , v

(2)
ℓ , . . . , v

(N)
ℓ , nℓ, ℓ

)
,

1 ≤ ℓ ≤ L, be the vertex representing the source symbol assignment in the first ℓ rows of the packetization

array. Then the path PPA is defined as the sequence of vertices v0,v1, . . . ,vL (it is easy to see that any

ordered pair (vℓ−1,vℓ) forms an edge). Note that the ℓ-th path edge (vℓ−1,vℓ) corresponds to the ℓ-th
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row in the packetization array. Moreover, the weight of this edge equals the contribution of the source

symbols in the ℓ-th row to the decrease of D̄M in (8). Therefore, the weight of the path w(PPA) satisfies

w(PPA) = Dmax − D̄M . (17)

It is easy to see that the above correspondence between M-UEP packetization arrays and paths in the

graph G is one-to-one. Therefore, we conclude that the M-UEP RD-ORA problem is equivalent to the

maximum-weight path problem in the graph G.

The time complexity to solve the latter problem is O(|V |+ |E|). The number of vertices |V | is clearly

O(N(L + 1)N+1). In order to determine |E| let us first evaluate the number of edges (u,v) outgoing

from some node u. Note that the last component of v is determined by u. For any possible value m of

the second last component, the number of choices of v(1), v(2), . . . , v(N), which satisfy (15) is
(N
m

)
. It

follows that the total number of nodes v is
∑N

m=n

(N
m

)
≤ 2N . Consequently, |E| = O(|V | × 2N ). We

conclude that the globally optimal solution to the problem of R-D optimal M-UEP packetization can be

found in O(2NN(L+ 1)N+1) time.

APPENDIX C

SYMBOL DECODING PROBABILITY FOR SYMMETRIC CHANNELS

Denote N = {1, 2 · · · , N}. For any I ⊆ N , let QN (I) denote the probability that the packets in

subset I are received, while the packets in N − I are lost. Assume a symmetric packet loss channel as

defined in Section IV. Since QN (I) = QN (I ′) for any I, I ⊆ N , with equal number of elements, it

follows that

QN (I) = PN (N − s)

(Ns )
, (18)

where s is the size of I. Let µ denote the average number of lost packets (out of N transmitted packets).

Recall that α(i) denotes the probability that packet i is received. Then we obtain

α(i) =
∑

I⊆N ,i∈I QN (I) =∑N−1
k=0

∑
I⊆N ,|I|=N−k,i∈I QN (I)

=
∑N−1

k=0
PN (k)
(NN−k)

(N−1
N−k−1) =∑N−1

k=0 PN (k)N−k
N =

∑N
k=0 PN (k)(1− k/N) = 1− µ.
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The third equality in the above sequence follows from (18). Further, recall that β(i, j) denotes the

probability that packet i is lost and at least j other packets are received. Then we have

β(i, j) =
∑N−j

k=0

∑
I⊆N ,|I|=N−k,i/∈I QN (I)

=
∑N−j

k=0
PN (k)
(NN−k)

(N−1
N−k) =

∑N−j
k=0

k
NPN (k),

where the second equality follows from (18).

The above relations imply that α(i) and β(i, j) are constant in i.
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