1. Employ the following methods to find the maximum of $f(x)=4 x-1.8 x^{2}+1.2 x^{3}-0.3 x^{4}$:
(a) Golden-section search $\left(x_{l}=-2, x_{u}=4\right.$, relative error less than $\left.1 \%\right)$
(b) Quadratic interpolation ($x_{0}=1.75, x_{1}=2, x_{2}=2.5$, iterations $=4$)
(c) Newton's method $\left(x_{0}=3\right.$, absolute error less than 0.0001)
2. To control an illness, there are three drugs A, B, and C.

- Drugs A, B and C have effectiveness $0.8,0.6$ and 0.3 per dose, respectively;
- Drugs A, B and C have side effect $0.15,0.05$ and 0.1 per dose, respectively;
- Drugs A, B and C cost $\$ 100, \$ 65$ and $\$ 20$ per dose, respectively.

Suppose that the effectiveness and side effect of these drugs are additive. Formulate the linear programming problem to compute dosage x of drug A, dosage y of drug B, dosage z of drug C such that

- The total effectiveness is maximized;
- Total side effect is less than 0.35 ;
- Total cost is less than $\$ 500$.

3. Perform one iteration of the steepest ascent method to locate the maximum of

$$
f(x, y)=4 x+2 y+x^{2}-2 x^{4}+2 x y-3 y^{2}
$$

using initial guesses $x=0$ and $y=0$. Employ bisection method to find the optimal step size in the gradient search direction.
4. Derive the three-piece cubic spline function to interpolate four data points or knots $(-1,0.5),(0$, $-0.5),(1,2)$ and $(2,1)$, assuming that the cubic spline $f(x)$ has equal first and second derivatives at the knots $x=0$ and $x=1$, and $f(x)$ has zero second derivative at $x=-1$ and $x=2$.
5. Consider a computer that uses 10 bits to represent floating-point numbers, 1 bit for $s, 5$ bits for $c(c=e+15)$, and 4 bits for f . In terms of s, e, and f, the base 10 numbers are given by $x=(-$ $1)^{s} 2^{e}(1+f), c$ is non-negative, and $0 \leq f \leq 1$.
(a) If $\delta=0.5$, what is the result of $1+\delta$ on this computer?
(b) What is the result of the following loop executed by this computer?

```
x = 1;
\delta=0.005;
for i=1 to 1000 do
    x = x + \delta;
```

6. Consider solving the equation $\mathbf{A x}=\mathbf{b}$ where \mathbf{x} is an unknown vector, \mathbf{b} is a known vector and the matrix \mathbf{A} is given by $A=\left[\begin{array}{lll}4 & 0 & 1 \\ 3 & 1 & 3 \\ 0 & 1 & 2\end{array}\right]$. If the vector \mathbf{b} is accurate only to 10^{-5}, how accurate will be the solution \mathbf{x} in terms of 1-norm?
7. Use the Taylor series to derive the centered divided difference formula for approximating the first derivative. What is the error term in O notation?
8. Integrate the following function using (a) multiple-application trapezoidal rule with $\mathrm{n}=4$; (b) Simpson's $1 / 3$ rules; (c) Simpson's $3 / 8$ rules, and find the truncation error respectively.

$$
\int_{0}^{2} 4 x ? 1.8 x^{2}+1.2 x^{3} ? 0.3 x^{4} d x
$$

9. Consider fitting the function $f(x)=\alpha \sin (2 x)+\beta \cos (5 x)$ to the data $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$.
(a) Using the Least-squares criterion, derive two linear equations in terms of α and β.
(b) Given the following data, find the values of α and β using the results from (a).

i	1	2	3
x_{i}	0	$\pi / 3$	$2 \pi / 3$
y_{i}	5.02	4.91	-5.20

(c) Given $\mathrm{f}(\pi)=-5$, estimate the approximate error in the above evaluation.

