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Abstract - We consider the problem of maximum a posterior probability (MAP) de-

coding of a Markov sequence that is variable length coded and transmitted over a binary

symmetric channel. The number of source symbols in the sequence, if made known to the

decoder, can improve MAP decoding performance. But adding a sequence length constraint

to MAP decoding problem increases its complexity. In this paper we convert the length-

constrained MAP decoding problem into one of maximum-weight k-link path in a weighted

directed acyclic graph. The corresponding graph optimization problem can be solved by a

fast parameterized search algorithm that finds either the exact solution with high probability

or a good approximate solution otherwise. The proposed algorithm has lower complexity

and superior performance than the previous heuristic algorithms.

1 Introduction

In practice, due to the constraint of system complexity, the source encoder is almost always

suboptimal in the sense that it fails to remove all the redundancy from the source. This

residue redundancy makes it possible for the decoder to detect and correct channel errors,

even in the absence of channel code. Consider the situation that a scalar-quantized Gaussian

Markov source sequence {Xi} is compressed by Huffman code that only approaches the self-

entropy H(Xi) of the source. The residue redundancy H(Xi+1|Xi) = H(Xi, Xi+1)−H(Xi)

can be used by a MAP decoding scheme that exploits the source memory to combat channel
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noise. The objective of MAP decoding is to estimate the channel input that maximizes the

a posterior probability of the channel output. In other words, the decoder examines all the

possible channel input sequences and finds the one with the maximal a posterior probability.

Throughout the paper a binary symmetric channel (BSC) is assumed. Since the source

code is of variable length, a single bit error will most likely desynchronize the encoder and

decoder. Therefore, the MAP decoder has to parse the input tentatively and examine all

possible parsings in the search for maximum a posterior probability. This greatly increases

the decoding complexity. Existing algorithms for this problem are variants of the Viterbi

algorithm based on an extended trellis model [4, 7, 10, 11]. Demir and Sayood [4], Park and

Miller [7] assumed the number of symbols in the sequence is known, while Subbalakshmi and

Vaisey [10], Wang and Wu [11] didn’t assume that prior knowledge. The sequence length

needs to be transmitted as a side information except implied in specific applications, such

as the size of a sample block. The length constraint may be viewed as a form of added

redundancy, and thus can improve the MAP decoding performance.

In length-constrained MAP decoding, the decoder needs to find the sequence that max-

imizes the a posterior probability while having a specified number of source symbols. Park

and Miller gave an O(N2M2) time algorithm (N being the size of the VLC codebook, and M

being the length of the received sequence in bits) that can solve this constrained optimiza-

tion problem exactly [7]. Having admitted this high-complexity algorithm being impractical,

they resorted to the heuristics of limiting the number of survived paths at each node of the

underlying trellis. This heuristic technique offers a fast approximation solution. Demir and

Sayood [4] proposed a similar algorithm for the same problem. Park and Miller [8] described

these two approximation algorithms in detail and compared them in performance.

In this paper we reexamine the length-constrained MAP decoding problem. First, in

Section 2 we formulate the problem of MAP decoding with and without length constraint.
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In Section 3, we induce a weighted directed acyclic graph G to facilitate the development

of efficient MAP decoding algorithms. The induced graph G maps the MAP decoding of a

VLC-coded Markov sequence of k source symbols to the problem of finding the path with

the maximal weight among all paths of k edges (the maximum-weight k-link path). We

start our algorithm development by presenting a dynamic programming technique to solve

the MAP decoding problem without length constraint. Then we parameterize the graph G

to G(τ), where τ is a real value. Through a binary search on the value of τ , the dynamic

programming method can also be applied to this parameterized graph G(τ), which can either

solve exactly or approximately the maximum-weight k-link path problem corresponding to

the length-constrained MAP decoding. For most general settings, there is no guarantee of

the existence of a parameter τ for any given k. In this case our algorithm can not find

the maximum-weight path with the exact number of edges. Fortunately, however, we found

that in practice this strategy has a very high probability to solve the problem exactly. Even

when failing to find the maximum-weight path of the exact number of edges, the algorithm

offers an approximate solution after some adjustment of the number of edges. The proposed

approximation algorithm outperforms the approximation algorithm of Park and Miller.

Complexity analysis of various MAP decoding algorithms is also offered in Section 3.

Interestingly, if the source sequence is Gaussian-Markov, we can adopt a fast matrix search

technique to reduce the complexity of MAP decoding drastically. This is made possible by a

so-called Monge property that the objective function of MAP decoding holds for Gaussian-

Markov sources.

Finally, the experimental results are presented in Section 4.
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2 Problem Formulation

We assume that the input of a binary symmetric channel (BSC) is a scalar-quantized first-

order Markov source, which is a first-order discrete Markov process with alphabet I =

{0, 1, · · · , N−1}. The process X can be completely characterized by transition probabilities

p(i|j) = Pr(Xt = i|Xt−1 = j), for all i, j ∈ I, and the prior probability distribution,

p(i0) = Pr(X0 = i0), i0 ∈ I. The scalar quantizer indexes are compressed by a VLC source

encoder, such as Huffman code, whose codebook is C = {c0, c1, · · · , cN−1}. If the input of

the VLC encoder is i, we denote the output of the source coder by ci = C(i).

A block diagram of the communication system being considered is presented in Fig. 1.

An input sequence of K symbols generates a sequence of quantizer indexes I = i0i1 · · · iK−1

after quantization. The input to the BSC is C(I) = C(i0)C(i1) · · ·C(iK−1), which is a binary

sequence of length M =
∑K−1

t=0 |C(it)|, where | · | is the length of a source codeword in bits.

Since the channel has no insertion/deletion errors, the decoder will receive a binary sequence

of the same length, denoted by y = y0y2 · · · yM−1. Given a received binary sequence y and

the side information that K codewords are transmitted, the input must be a binary string

of length |y| that can be parsed into a sequence of K codewords. Let I = i0i1 · · · iK−1 be

the input sequence of K codewords. A permissible parsing of y with respect to I, denoted

by y(m0,m1, · · · ,mK−1 : I), is the one such that the subsequence of y from position mt

to mt+1 − 1 is the channel output of codeword C(it). For a cleaner notation we write the

subsequence ymt · · · ymt+1−1 as y[mt,mt+1).

Given a received binary sequence y, the decoder should estimate the input I that max-

imizes P (I|y) over all permissible I. Using the Bayesian rule, this is to maximize P (y|I)P (I)
P (y)

,

which is equivalent to maximizing P (y|I)P (I). For a particular first-order Markov sequence
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Figure 1: Schematic diagram of transmission system.

I = i0i1 · · · iK−1, we have

P (I) = p(i0) ·
K−1∏
t=1

p(it|it−1), (1)

and

P (y|I) =
K−1∏
t=0

Pe(it,y[mt, mt+1)), (2)

where

Pe(it,y[mt,mt+1)) = pHd(C(it),y[mt,mt+1))
c · (1− pc)

|C(it)|−Hd(C(it),y[mt,mt+1)), (3)

with y[mt,mt+1) being the tth subsequence in the parsing with respect to I, pc being the

crossover probability of the BSC, and Hd(u, v) being the Hamming distance between two

binary sequences u and v of the same length. Then the objective of length-constrained MAP

decoding is to find

Î = arg max
I∈SK(y)

log(P (y|I)P (I)), (4)

where

SK(y) = {I = i0i1 · · · iK−1 | |C(I)| = |y|} (5)

is the set of all possible binary input sequences that consists of K source symbols and have

|y| bits in length. The set of all possible binary input sequences that can possibly produce

the output sequence y via a BSC channel is denoted by

S(y) =
Kmax⋃

t=Kmin

St(y),
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where Kmin and Kmax are the minimum and maximum possible number of VLC source

symbols in an input binary sequence of |y| bits respectively, i.e., Kmin = d |y|
lmax

e and Kmax =

b |y|
lmin

c, with lmin and lmax being the length of the shortest and longest codeword of C in bits

respectively. The objective function of MAP decoding without length constraint is therefore

Î′ = arg max
I∈S(y)

log(P (y|I)P (I)). (6)

3 Graph Representation and Algorithms

3.1 Graph Construction

By expanding the product terms inside the logarithm operator of the objective function (4),

we have

Î = arg max
I∈SK(y)

{
log p(i0) + log Pe(i0,y[m0,m1)) +

K−1∑
t=1

[log Pe(it,y[mt,mt+1)) + log p(it|it−1)]

}
.

(7)

To facilitate the development of efficient algorithms for the above optimization problem, let

us construct a weighted directed acyclic graph (DAG) G in which we can embed all possible

parsings of y with respect to any I ∈ S(y). This DAG G has NM + 1 vertices, where

M = |y| is the length of the channel output sequence in bits, and N is the size of the VLC

codebook. The graph has a unique starting node s, and all other nodes are grouped into M

stages. Each stage has N nodes, indexed from 0 to N − 1, as shown in Fig. 2. Each stage

corresponds to a bit location in the received sequence y. Node s is at the 0-th stage. The

nodes at the M -th (last) stage are so-called final nodes. Denote by F the set of all final

nodes, marked by double circles in Fig. 2. We use nm
i to label the i-th node at stage m.

Node nm
i corresponds to codeword ci that is parsed out of y[m− |ci|,m) at the bit location

m in y. From nm
j to n

m+|ci|
i , there is an edge corresponding to the probability event that the

subsequence y[m,m + |ci|) is decoded as ci, given that the previously decoded codeword is

cj. From the starting node s there is an edge to each node n
|ci|
i , 0 ≤ i ≤ N−1, corresponding
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to the probability event that the subsequence y[0, |ci|) is decoded as ci. Generally, for an

nm
i , there are N incoming edges, one from each of the nodes on stage m− |ci|; there are N

outgoing edges emitted from nm
i , one to each node n

m+|cj |
j , 0 ≤ j ≤ N − 1.
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Figure 2: Weighted directed acyclic graph for MAP decoding of a variable length code of a
Markov sequence. In this example, the codebook has one 1-bit codeword (c1), and two 2-bit
codewords (c2 and c3). For clarity, only directed edges to and from the nodes on stage m
are drawn.

With the definition of G, any possible input in S(y) can be mapped to a path from s

to F . The weights of outgoing edges emitted from s are log p(ci) + log Pe(i,y[0, |ci|)), if

y[0, |ci|) is decoded as ci, 0 ≤ i ≤ N − 1. The weight of the edge from nm
j to n

m+|ci|
i is

assigned to be log p(ci|cj) + log Pe(i,y[m,m + |ci|)). Then it follows from (6), (1), (2), and

(7) that Î′ is determined by the maximum-weight path from s to F , and Î is determined

by the maximum-weight K-link path (i.e., the path of maximal weight over all paths with

K edges) from s to F . The problem of MAP decoding without or with length constraint

is thus converted to finding the maximum-weight path or the maximum-weight k-link path

respectively, in the weighted DAG G, from s to F .

3.2 Solution for MAP Decoding without Length Constraint

If without length constraint, the MAP decoding problem becomes the one of finding the

maximum-weight path in the induced weighted DAG. This problem can be solved by dynamic

programming. Let ω(m, i) be the weight of the maximum-weight path from s to the node
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nm
i , then the following recursion holds

ω(m, i) = max
0≤j≤N−1

{ω(m− |ci|, j) + log(p(ci|cj) + log Pe(i,y[m− |ci|,m))}, (8)

for all 0 ≤ i ≤ N − 1 and 1 ≤ m ≤ M , with initial values

ω(m, i) = log p(ci) + log Pe(i,y[0, |ci|)), (9)

for all m = |ci|, 0 ≤ i ≤ N − 1. Define ω(m, i) = −∞ if m < |ci|, 0 ≤ i ≤ N − 1. Finally,

ω(M, i), 0 ≤ i ≤ N − 1, are the weights of the maximum-weight paths from s to individual

nodes of the set F . The MAP decoding is determined by

ω̃(M) = max
0≤i≤N−1

ω(M, i), (10)

which is the maximum-weight path in G. We can reconstruct the MAP decoded sequence Î ′

by tracing the path back step by step to s.

Now we analyze the complexity of the dynamic programming algorithm. The cost of (8)

is O(N) for fixed m and i, and it amounts to O(N2M) over the range of 0 ≤ i ≤ N − 1

and 1 ≤ m ≤ M . The step of (9) and respectively (10), clearly takes O(N) time. Therefore,

the complexity of this algorithm is O(N2M). Although the graph G has O(NM) nodes and

O(N2M) edges, we do not need to store the entire graph during the process of dynamic

programming. Note that the algorithm considers any edge only once. There is no need to

store all the O(N2M) edges. For each node nm
i at each stage m, we only need to record

the edge from the immediate predecessor of nm
i on the maximum-weight path from s to nm

i ,

resulting in a space complexity of O(NM).

3.3 Solution for MAP Decoding with Length Constraint

For the problem of MAP decoding with length constraint, the exact solution corresponds to

the maximum-weight path from s to F , among all paths of K edges. Dynamic programming
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technique can also be applied to find the maximum-weight K-link path [7]. But the time

complexity jumps to O(N2M2). This complexity is too high to be practical except for very

short sequences.

Since the length-constrained MAP decoding problem is equivalent to the maximum-

weight k-link path problem in the underlying graph, we can use a parameterized search

technique of Aggarwal et. al [1] to construct the required path. To this end let us restate

below two lemmas proved in [1]. For any real number τ , define a new weighted DAG G(τ)

that is derived from the same sets of nodes and edges as G. The weight of an edge e in G(τ)

is the sum of the weight of e in G, and τ . Then we have:

Lemma 1: If for some real τ , the maximum-weight path from s to F in G(τ) has k links,

then this path is the maximum-weight k-link path from s to F in G.

Thus, if there exists a real number τ such that the maximum-weight path from s to F

in G(τ) has exactly k edges, then this path has maximal weight over all paths from s to

F in G, with exactly k edges, which in return solves the length-constrained MAP decoding

problem exactly.

Lemma 2: Suppose the maximum-weight path from s to F in G(τ) has k links. Then for

every β < τ , the maximum-weight path from s to F in G(β) has at most k links.

Lemma 2 implies that binary search can be used to search for the optimal parameter τ .

For a general weighted directed acyclic graph, like the DAG G induced by MAP decoding,

and a length constraint K, there is no guarantee that such a real value τ exists. In other

words, the binary search in τ may not find the specified K-link path. Fortunately, if the

algorithm fails to find the optimal parameter, it will converge very quickly to such a τ that

the maximum-weight path in G(τ) is a (K + α)-link path, where α is an integer whose

absolute value is very small. To reduce the computational complexity, we limit the number

of iterations in the binary search to be L, then the overall time complexity is O(LMN2).
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This algorithm does not increase the space complexity.

3.4 Complexity Reduction by Matrix Search

As we saw in the preceding subsections, solving the MAP decoding problem by straight-

forward dynamic programming has a time complexity O(N2M) (resp. O(LN2M)). In this

section we strive to reduce the complexity to O(NM) (resp. O(LNM)) by exploiting some

monotonicity of the objective function (8) underlying MAP decoding.

In order to find the maximum-weight path from s to each final node, in the graph G, the

sequence of computations in the dynamic programming process can be organized as follows:

for each m, 0 ≤ m ≤ M−1, in increasing order, evaluate ω(m+ |ci|, i) for all i, 0 ≤ i ≤ N−1,

with m + |ci| ≤ M .

For each 1 ≤ m ≤ M − lmax, consider the matrix Gm of dimension N ×N , with elements

Gm(i, j) defined as

Gm(i, j) = ω(m, j) + log p(ci|cj) + log Pe(i,y[m,m + |ci|)), (11)

0 ≤ i, j ≤ N − 1. Computing all ω(m + |ci|, i) for given m and all 0 ≤ i ≤ N − 1, is

equivalent to finding all row maxima of the matrix Gm. A straightforward algorithm can

find all row maxima in O(N2) time, which leads to the solution for MAP decoding without

length constraint in O(N2M) time. Very interestingly, if the matrix Gm satisfies the so-

called Monge condition, we can find its row maxima in O(N) time by using the elegant

matrix search algorithm [2], and subsequently, we can reduce the total time complexity to

O(NM).

In order to apply the fast matrix search technique to speed up the MAP decoding algo-

rithm, we need

Gm(i, j) ≤ Gm(i, j′) ⇒ Gm(i′, j) ≤ Gm(i′, j′) (12)
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for 0 ≤ i < i′ ≤ N − 1, and 0 ≤ j < j′ ≤ N − 1 to hold, which is also known as the total

monotonicity condition [2]. A sufficient condition for (12) is

Gm(i, j′) + Gm(i′, j) ≤ Gm(i′, j′) + Gm(i, j) (13)

for all 0 ≤ i < i′ ≤ N − 1, and 0 ≤ j < j′ ≤ N − 1, which is also known as the Monge

condition. By replacing Gm(i, j) according to (11) and doing the cancellations, relation (13)

becomes equivalent to

log p(ci|cj′) + log p(ci′|cj) ≤ log p(ci′|cj′) + log p(ci|cj), (14)

for 0 ≤ i < i′ ≤ N − 1, and 0 ≤ j < j′ ≤ N − 1. Interestingly, this condition does not

depend on the channel statistics, but only on the source statistics.

Moreover, if (14) holds, then the fast matrix search technique can also be applied to solve

the maximum-weight path problem in the graph G(τ). Indeed, the matrix corresponding to

Gm is now the matrix Gm,τ with elements:

Gm,τ (i, j) = ωτ (m, j) + log p(ci|cj) + log Pe(i,y[m, m + |ci|)) + τ, (15)

0 ≤ i, j ≤ N − 1, where ωτ (m, j) denotes the weight of the maximum-weight path from s to

the node nm
j in G(τ). By a similar argument as above it follows that the maximum-weight

path in the graph G(τ) can be found in O(NM) time if the matrix Gm,τ satisfies the Monge

property, i.e.,

Gm,τ (i, j
′) + Gm,τ (i

′, j) ≤ Gm,τ (i
′, j′) + Gm,τ (i, j) (16)

for all 0 ≤ i < i′ ≤ N − 1, and 0 ≤ j < j′ ≤ N − 1. Again, by replacing Gm,τ (i, j) according

to (15) and doing the cancellations, relation (16) becomes equivalent to (14). Hence, if

the latter holds, then the time complexity of MAP decoding with length constraint can be

reduced from O(LMN2) to O(LMN).

11



Now our attention is turned to the type of Markov source that lends itself to fast MAP

decoding by matrix search. We will try to derive sufficient conditions on the joint pdf f(·, ·)

such that relation (14) holds.

Theorem Relation (14) is valid for all 0 ≤ i < i′ ≤ N − 1, 0 ≤ j < j′ ≤ N − 1, when the

joint pdf f(·, ·) is Gaussian.

The proof of the theorem is given in [12]. In summary, the MAP decoding problem

without or with length constraint for Markov sequences can be solved in O(NM) time or

O(LNM) time respectively, for BSC, if the joint pdf f(·, ·) satisfies the condition (14). An

instance of this class is scalar quantized Gaussian Markov sequence.

4 Experimental Results

The simplest performance measure of a MAP decoder is a symbol-by-symbol difference (inner

product) such as PSNR in the case of signal compression. However, for most applications a

meaningful distance between two sequences is not as simple as pairwise distortion, even if

they have the same length. For instance, a MAP-decoded sequence with errors may contain

subsequences that are in the original input sequence only with some shifts. But a symbol-

by-symbol distortion measure may mistakenly quantify these subsequences as complete loss.

Instead, a string edit distance is more appropriate to measure the performance of MAP

decoding. In the following evaluation of MAP decoding performance, a decoded sequence is

first aligned to the original sequence by minimizing the Levenshtein distance between them.

This is to find an alignment scheme with the minimum number of insertions, deletions and

substitutions of symbols to transform the decoded sequence to the original one.

Suppose after the minimum edit distance alignment, the estimated MAP sequence Î is

adjusted to Ĩ = · · · sisdsj · · · , where the subsequences si and sj agree with the original input

symbol by symbol, but sd differs from the original in all of its symbols. Then we count sd
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as one error propagation of length el = |sd|. We use the mean error propagation length ēl,

and the number of error propagations, en as the measures of MAP decoding performance.

The former measures the length of burst errors due to loss of synchronization of the VLC

decoding, while the latter measures the frequency of desynchronization. Of course, ēlen

equals to the total number of decoding errors after the alignment of minimum edit distance.

If our MAP decoding algorithm with length constraint fails to find the optimal solution

within L iterations, it will stop with an approximate solution that has K + α codewords.

Nevertheless, we can still compare its performance with the approximation algorithm in [7],

and our own MAP decoding algorithm without length constraint in [11].

In our experiments MAP decoding is applied to a scalar-quantized (uniform with nine

codecells) zero-mean, unit-variance, first-order Gaussian-Markov process of correlation co-

efficient 0.9. The performance results of the MAP decoding algorithms being evaluated

were averages of 1000 simulation runs on test sequences of different lengths generated by

the above source model. The test sequences were encoded at an average rate of about 3

bits/sample and were transmitted through a BSC of various crossover probabilities pc. In

Fig. 3, we plot the mean error propagation length ēl of different MAP decoding algorithms

versus crossover probability pc. In order to evaluate the effects of side information on MAP

decoding performance three groups of curves for different sequence lengths K = 50, 100, 500

are plotted. The experiments show that the maximum-weight k-link path algorithm (i.e.,

our algorithm described in subsection 3.3) has the lowest ēl among the three MAP decoding

algorithms. The MAP decoding algorithm based on the maximum-weight k-link path also

outperforms the other two MAP decoding algorithms when measured by the number of error

propagations. In Fig. 4 we plot the number of error propagations en as a function of pc for

two different sequence lengths K = 50, 100. For sequences of 500 and 1000 symbols, the

relative ranking of the three different algorithms remains the same.
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In Fig. 5 we plot the probability that the maximum-weight k-link path algorithm solves

the length-constrained MAP decoding problem exactly. It can be observed that the proposed

MAP decoding algorithm has higher than 0.9 probability to obtain the globally optimal

solution when pc ≤ 10−2 and the sequence length K ≤ 100.

Another observation to be made from our experiments is that the length-constrained

MAP decoding algorithms perform better for smaller sequence lengths K. This should be

expected since short sequence length means stronger side information on per-symbol basis.
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