
1

Minimum Spanning Trees

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced topics

References:

 Algorithms in Java, Chapter 20
 http://www.cs.princeton.edu/introalgsds/54mst

2

Minimum Spanning Tree

23

10

21

 14

24

 16

 4

18

9

7

11

 8

G

5

6

Given. Undirected graph G with positive edge weights (connected).

Goal. Find a min weight set of edges that connects all of the vertices.

3

Minimum Spanning Tree

Given. Undirected graph G with positive edge weights (connected).

Goal. Find a min weight set of edges that connects all of the vertices.

23

10

21

 14

24

 16

 4

18

9

7

11

 8

weight(T) = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

5

6

Brute force: Try all possible spanning trees

• problem 1: not so easy to implement

• problem 2: far too many of them Ex: [Cayley, 1889]: VV-2 spanning trees
on the complete graph on V vertices.

4

MST Origin

Otakar Boruvka (1926).

• Electrical Power Company of Western Moravia in Brno.

• Most economical construction of electrical power network.

• Concrete engineering problem is now a cornerstone

problem-solving model in combinatorial optimization.

Otakar Boruvka

5

Applications

MST is fundamental problem with diverse applications.

• Network design.

telephone, electrical, hydraulic, TV cable, computer, road

• Approximation algorithms for NP-hard problems.

traveling salesperson problem, Steiner tree

• Indirect applications.

max bottleneck paths

LDPC codes for error correction

image registration with Renyi entropy

learning salient features for real-time face verification

reducing data storage in sequencing amino acids in a protein

model locality of particle interactions in turbulent fluid flows

autoconfig protocol for Ethernet bridging to avoid cycles in a network

• Cluster analysis.

6

Medical Image Processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

7http://ginger.indstate.edu/ge/gfx

8

Two Greedy Algorithms

Kruskal's algorithm. Consider edges in ascending order of cost.

Add the next edge to T unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T

from s. At each step, add the cheapest edge to T that has exactly

one endpoint in T.

Proposition. Both greedy algorithms compute an MST.

Greed is good. Greed is right. Greed works. Greed

clarifies, cuts through, and captures the essence of the

evolutionary spirit." - Gordon Gecko

9

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced topics

10

Weighted Graph API

iterate through all edges (once in each direction)

create an empty graph with V verticesWeightedGraph(int V)

public class WeightedGraph

insert edge einsert(Edge e)void

return an iterator over edges incident to vadj(int v)Iterable<Edge>

return the number of verticesV()int

return a string representationtoString()String

Identical to Graph.java but use Edge adjacency sets instead of int.

11

public class WeightedGraph
{
 private int V;
 private SET<Edge>[] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = (SET<Edge>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Edge>();
 }

 public void addEdge(Edge e)
 {
 int v = e.v, w = e.w;
 adj[v].add(e);
 adj[w].add(e);
 }

 public Iterable<Edge> adj(int v)
 { return adj[v]; }

}

Weighted graph data type

12

Weighted edge data type

public class Edge implements Comparable<Edge>
{
 private final int v, int w;
 private final double weight;

 public Edge(int v, int w, double weight)
 {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int either()
 { return v; }

 public int other(int vertex)
 {
 if (vertex == v) return w;
 else return v;
 }

 public int weight()
 { return weight; }

 // See next slide for edge compare methods.

}

Edge abstraction
needed for weights

slightly tricky accessor methods
(enables client code like this)

for (int v = 0; v < G.V(); v++)
{
 for (Edge e : G.adj(v))
 {
 int w = e.other(v);

 // edge v-w
 }
}

13

Weighted edge data type: compare methods

public final static Comparator<Edge> BY_WEIGHT = new ByWeightComparator();

private static class ByWeightComparator implements Comparator<Edge>
{
 public int compare(Edge e, Edge f)
 {
 if (e.weight < f.weight) return -1;
 if (e.weight > f.weight) return +1;
 return 0;
 }
}

 public int compareTo(Edge that)
 {
 if (this.weight < that.weight) return -1;
 else if (this.weight > that.weight) return +1;
 else if (this.weight > that.weight) return 0;
 }
}

Two different compare methods for edges

• compareTo() so that edges are Comparable (for use in SET)

• compare() so that clients can compare edges by weight.

14

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced topics

15

Spanning Tree

MST. Given connected graph G with positive edge weights,

find a min weight set of edges that connects all of the vertices.

Def. A spanning tree of a graph G is a subgraph T that is

connected and acyclic.

Property. MST of G is always a spanning tree.

16

Greedy Algorithms

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max cost edge

belonging to C. Then the MST does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min

cost edge with exactly one endpoint in S. Then the MST contains e.

f
C

S

e is in the MST

e

f is not in the MST

17

Cycle Property

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max cost edge

belonging to C. Then the MST T* does not contain f.

Pf. [by contradiction]

• Suppose f belongs to T*. Let's see what happens.

• Deleting f from T* disconnects T*. Let S be one side of the cut.

• Some other edge in C, say e, has exactly one endpoint in S.

• T = T* { e } { f } is also a spanning tree.

• Since ce < cf, cost(T) < cost(T*).

• Contradicts minimality of T*.

f

 T*

e

S

C

18

Cut Property

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of vertices, and let e be the min cost

edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. [by contradiction]

• Suppose e does not belong to T*. Let's see what happens.

• Adding e to T* creates a (unique) cycle C in T*.

• Some other edge in C, say f, has exactly one endpoint in S.

• T = T* { e } { f } is also a spanning tree.

• Since ce < cf, cost(T) < cost(T*).

• Contradicts minimality of T*.

f

 MST T*

e

S

cycle C

19

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced algorithms
clustering

20

Kruskal's algorithm. [Kruskal, 1956] Consider edges in ascending order

of cost. Add the next edge to T unless doing so would create a cycle.

Kruskal's Algorithm: Example

3-5 1-7 6-7

0-2 0-7 0-1 3-4 4-5 4-7

3-5 0.18

1-7 0.21

6-7 0.25

0-2 0.29

0-7 0.31

0-1 0.32

3-4 0.34

4-5 0.40

4-7 0.46

0-6 0.51

4-6 0.51

0-5 0.60

21

Kruskal's algorithm example

25%

50%

75%

100%

22

w

v

C

e

Kruskal's algorithm correctness proof

Proposition. Kruskal's algorithm computes the MST.

Pf. [case 1] Suppose that adding e to T creates a cycle C

• e is the max weight edge in C (weights come in increasing order)

• e is not in the MST (cycle property)

23

w

v

e
S

Kruskal's algorithm correctness proof

Proposition. Kruskal's algorithm computes the MST.

Pf. [case 2] Suppose that adding e = (v, w) to T does not create a cycle

• let S be the vertices in v’s connected component

• w is not in S

• e is the min weight edge with exactly one endpoint in S

• e is in the MST (cut property) ■

24

Kruskal's algorithm implementation

Q. How to check if adding an edge to T would create a cycle?

A1. Naïve solution: use DFS.

• O(V) time per cycle check.

• O(E V) time overall.

25

Kruskal's algorithm implementation

Q. How to check if adding an edge to T would create a cycle?

A2. Use the union-find data structure from lecture 1 (!).

• Maintain a set for each connected component.

• If v and w are in same component, then adding v-w creates a cycle.

• To add v-w to T, merge sets containing v and w.

Case 2: add v-w to T and merge sets

v w

Case 1: adding v-w creates a cycle

v

w

Easy speedup: Stop as soon as there are V-1 edges in MST.

sort edges
by weight

greedily add
edges to MST

return to client iterable
sequence of edges

26

public class Kruskal
{
 private SET<Edge> mst = new SET<Edge>();

 public Kruskal(WeightedGraph G)
 {
 Edge[] edges = G.edges();
 Arrays.sort(edges, Edge.BY_WEIGHT);

 UnionFind uf = new UnionFind(G.V());
 for (Edge e: edges)
 if (!uf.find(e.either(), e.other()))
 {
 uf.unite(e.either(), e.other());
 mst.add(edge);
 }

 }

 public Iterable<Edge> mst()
 { return mst; }
}

Kruskal's algorithm: Java implementation

27

Kruskal's algorithm running time

Kruskal running time: Dominated by the cost of the sort.

Remark 1. If edges are already sorted, time is proportional to E log* V

Remark 2. Linear in practice with PQ or quicksort partitioning

 (see book: don’t need full sort)

Operation

sort

union

find

Time per op

E log E

 log* V †

 log* V †

Frequency

1

V

E

† amortized bound using weighted quick union with path compression

recall: log* V 5 in this universe

28

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced topics

29

Prim's algorithm example

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]

Start with vertex 0 and greedily grow tree T. At each step,

add cheapest edge that has exactly one endpoint in T.

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

30

Prim's Algorithm example

25%

50%

75%

100%

31

Prim's algorithm correctness proof

Proposition. Prim's algorithm computes the MST.

Pf.

• Let S be the subset of vertices in current tree T.

• Prim adds the cheapest edge e with exactly one endpoint in S.

• e is in the MST (cut property) ■

S e

32

Prim's algorithm implementation

Q. How to find cheapest edge with exactly one endpoint in S?

A1. Brute force: try all edges.

• O(E) time per spanning tree edge.

• O(E V) time overall.

33

Prim's algorithm implementation

Q. How to find cheapest edge with exactly one endpoint in S?

A2. Maintain a priority queue of vertices connected by an edge to S

• Delete min to determine next vertex v to add to S.

• Disregard v if already in S.

• Add to PQ any vertex brought closer to S by v.

Running time.

• log V steps per edge (using a binary heap).

• E log V steps overall.

Note: This is a lazy version of implementation in Algs in Java

 lazy: put all adjacent vertices (that are not already in MST) on PQ

eager: first check whether vertex is already on PQ and decrease its key

34

Key-value priority queue

Associate a value with each key in a priority queue.

API:

Implementation:

• start with same code as standard heap-based priority queue

• use a parallel array vals[] (value associated with keys[i] is vals[i])

• modify exch() to maintain parallel arrays (do exch in vals[])

• modify delMin() to return Value

• add min() (just returns keys[1])

public class MinPQplus<Key extends Comparable<Key>, Value>

MinPQplus() create a key-value priority queue

void put(Key key, Value val) put key-value pair into the priority queue

Value delMin() return value paired with minimal key

Key min() return minimal key

add to PQ any vertices
brought closer to S by v

35

Lazy implementation of Prim's algorithm

marks vertices in MST

public class LazyPrim
{
 Edge[] pred = new Edge[G.V()];
 public LazyPrim(WeightedGraph G)
 {
 boolean[] marked = new boolean[G.V()];
 double[] dist = new double[G.V()];
 MinPQplus<Double, Integer> pq;
 pq = new MinPQplus<Double, Integer>();
 dist[s] = 0.0;
 marked[s] = true;
 pq.put(dist[s], s);
 while (!pq.isEmpty())
 {
 int v = pq.delMin();
 if (marked[v]) continue;
 marked(v) = true;
 for (Edge e : G.adj(v))
 {
 int w = e.other(v);
 if (!done[w] && (dist[w] > e.weight()))
 {
 dist[w] = e.weight(); pred[w] = e;
 pq.insert(dist[w], w);
 }
 }
 }
 }
}

get next vertex

pred[v] is edge
attaching v to MST

distance to MST

ignore if already in MST

key-value PQ

36

Prim's algorithm (lazy) example

Priority queue key is distance (edge weight); value is vertex

Lazy version leaves obsolete entries in the PQ

 therefore may have multiple entries with same value

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

0-2 0-7 0-1 0-6 0-5 0-7 0-1 0-6 0-5 7-1 7-6 0-1 7-4 0-6 0-5 7-6 0-1 7-4 0-6 0-5

0-1 7-4 0-6 0-5 4-3 4-5 0-6 0-5 3-5 4-5 0-6 0-5

 red: pq value (vertex)

blue: obsolete value

Eager implementation of Prim’s algorithm

Use indexed priority queue that supports

• contains: is there a key associated with value v in the priority queue?

• decrease key: decrease the key associated with value v

[more complicated data structure, see text]

Putative “benefit”: reduces PQ size guarantee from E to V

• not important for the huge sparse graphs found in practice

• PQ size is far smaller in practice

• widely used, but practical utility is debatable

37

38

Removing the distinct edge costs assumption

Simplifying assumption. All edge weights we are distinct.

Fact. Prim and Kruskal don't actually rely on the assumption

 (our proof of correctness does)

Suffices to introduce tie-breaking rule for compare().

Approach 1:

Approach 2: add tiny random perturbation.

public int compare(Edge e, Edge f)
{
 if (e.weight < f.weight) return -1;
 if (e.weight > f.weight) return +1;
 if (e.v < f.v) return -1;
 if (e.v > f.v) return +1;
 if (e.w < f.w) return -1;
 if (e.w > f.w) return +1;
 return 0;
}

39

weighted graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced topics

40

Advanced MST theorems: does an algorithm with a linear-time guarantee exist?

Worst Case

E log log V

E log log V

E log* V, E + V log V

E log (log* V)

E (V) log (V)

Discovered By

Yao

Cheriton-Tarjan

Fredman-Tarjan

Gabow-Galil-Spencer-Tarjan

Chazelle

E (V)

optimal

Chazelle

Pettie-Ramachandran

Year

1975

1976

1984

1986

1997

2000

2002

deterministic comparison based MST algorithms

related problems

Problem

Planar MST

MST Verification

Discovered By

Cheriton-Tarjan

Dixon-Rauch-Tarjan

Year

1976

1992

Time

E

E

Randomized MST Karger-Klein-Tarjan1995 E

E ???20xx

41

Euclidean MST

Euclidean MST. Given N points in the plane, find MST connecting them.

• Distances between point pairs are Euclidean distances.

Brute force. Compute N2 / 2 distances and run Prim's algorithm.

Ingenuity. Exploit geometry and do it in O(N log N)

 [stay tuned for geometric algorithms]

42

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.

distance function. numeric value specifying "closeness" of two objects.

Fundamental problem.

 Divide into clusters so that points in different clusters are far apart.

Applications.

• Routing in mobile ad hoc networks.

• Identify patterns in gene expression.

• Document categorization for web search.

• Similarity searching in medical image databases

• Skycat: cluster 109 sky objects into stars, quasars, galaxies.

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

43

k-clustering of maximum spacing

k-clustering. Divide a set of objects classify into k coherent groups.

distance function. Numeric value specifying "closeness" of two objects.

Spacing. Min distance between any pair of points in different clusters.

k-clustering of maximum spacing.

Given an integer k, find a k-clustering such that spacing is maximized.

spacing

k = 4

44

Single-link clustering algorithm

“Well-known” algorithm for single-link clustering:

• Form V clusters of one object each.

• Find the closest pair of objects such that each object is in a

different cluster, and add an edge between them.

• Repeat until there are exactly k clusters.

Observation. This procedure is precisely Kruskal's algorithm

 (stop when there are k connected components).

Property. Kruskal’s algorithm finds a k-clustering of maximum spacing.

45

Clustering application: dendrograms

Dendrogram.

Scientific visualization of hypothetical sequence of evolutionary events.

• Leaves = genes.

• Internal nodes = hypothetical ancestors.

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf

46

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed

gene not expressed

