Constrained Optimization

Chapter 15

LINEAR PROGRAMMING

- An optimization approach that deals with meeting a desired objective such as maximizing profit or minimizing cost in presence of constraints such as limited resources
- Mathematical functions representing both the objective and the constraints are linear.
- The constraints can be represented generally as

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n} \leq b_{i}
$$

- Where $a_{i j}=$ amount of the ith resource that is consumed for each unit of the j th activity and $b_{i}=$ amount of the i th resource that is available
- The general second type of constraint specifies that all activities must have a positive value, $\mathrm{x}_{\mathrm{i}}>0$.
- Together, the objective function and the constraints specify the linear programming problem.

Chapter 15
3

Possible outcomes that can be generally obtained in a linear programming problem/

1. Unique solution. The maximum objective function intersects a single point.
2. Alternate solutions. Problem has an infinite number of optima corresponding to a line segment.
3. No feasible solution.
4. Unbounded problems. Problem is underconstrained and therefore open-ended.

Standard Form/

- Basic linear programming problem consists of two major parts:
- The objective function
- A set of constraints
- For maximization problem, the objective function is generally expressed as
Maximize $Z=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$
$c_{\mathrm{j}}=$ payoff of each unit of the j th activity that is undertaken
$x_{\mathrm{j}}=$ magnitude of the j th activity
$Z=$ total payoff due to the total number of activities Chapter 15

Figure 15.1

Chapter 15

The Simplex Method/

- Assumes that the optimal solution will be an extreme point.
- The approach must discern whether during problem solution an extreme point occurs.
- To do this, the constraint equations are reformulated as equalities by introducing slack variables.

$x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, S_{4} \geq 0$
- A slack variable measures how much of a constrained resource is available, e.g.,
$7 x_{1}+11 x_{2} \leq 77$
If we define a slack variable S_{1} as the amount of raw gas that is not used for a particular production level $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ and add it to the left side of the constraint, it makes the relationship exact.
$7 x_{1}+11 x_{2}+S_{1}=77$
- If slack variable is positive, it means that we have some slack that is we have some surplus that is not being used.
- If it is negative, it tells us that we have exceeded the constraint.
- If it is zero, we have exactly met the constraint. We have used up all the allowable resource.
- We now have a system of linear algebraic equations.
- For even moderately sized problems, the approach can involve solving a great number of equations. For m equations and n unknowns, the number of simultaneous equations to be solved are:

$$
C_{m}^{n}=\frac{n!}{m!(n-m)!}
$$

Figure 15.3

