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Medical Image Processing

Chapter 10

Image Segmentation
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Image Segmentation

* An important step in 1mage analysis 1s to segment
the 1mage.

* Segmentation: subdivides the image into its
constituent parts or objects.

* Autonomous segmentation 1s one of the most
difficult tasks in image processing.

e Segmentation algorithms for monochrome images
generally are based on two basic properties of gray-
level values:

1. Discontinuity 2. Similarity
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Image Segmentation

» Discontinuity: the image 1s partitioned based on
abrupt changes 1n gray level.

« Similarity: partition an image into regions that are
similar
— Main approaches are thresholding, region growing
and region splitting and merging.
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Detection of Discontinuities

e [.1ne detection: If each mask 1s moved around an
image 1t would respond more strongly to lines in the

mentioned direction.
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Detection of Discontinuities

* There are 3 basic types of discontinuities 1n digital
1mages:

1. Point
2. Line
3. Edges.
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Detection of Discontinuities

* Point detection: detect an 1solated point

R|>T
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FIGURE 10.2
-1 8 -1 (a) Point

detection mask.
(b) X-ray image
of a turbine blade
with a porosity.
(¢) Result of point
detection.

(d) Result of
using Eq. (10.1-2).
(Original image
courtesy of
X-TEK Systems
Ltd.)
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FIGURE 10.4
Hlustration of line
detection.

(a) Binary wire-
bond mask.

by Absolute
value of resull
alter processing
with —45" line
detector.

ic) Result of
thresholding
image (b).



Edge detection

* Edge: boundary between two regions with relatively
distinct gray levels.

Model of an ideal digital edge Model of a ramp digital edge a b

FIGURE 10.5

(a) Model of an
ideal digital edge.
(b) Model of a
ramp edge. The
slope of the ramp
is propartional to

the degree of
blurring in the
edge.

Gray-level profile Gray-level profile
of a horizontal line of a horizontal line
through the image through the image
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Edge detection

 Basic idea: computation of a local derivative operator.

a b ]

FIGURE 10.6
(a) Two regions
separated bv a

; Grav-level profile
vertical edge. ’ p

(b} Detail near
the edge, showing
a grav-level
profile, and the
first and second
derivatives of the

profile.

First
derivative

Second
derivative




Edge detection

* The magnitude of the first derivative can be used to
detect an edge

* The sign (zero crossing) of the second derivative can
be used to detect an edge.

la

 The same i1dea can be extended into 2-D. 2-D
derivatives should be used.

* The magnitude of the gradient and sign of the
Laplacian are used.
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Gradient Operator

_g_
Gx (9x
i VI = =
Gradient { Gy } g
Oy

Gradient magnitude

Vf =mag(VT) = \/(ze + Gyz) Vf ~

Gradient direction

a(x,y)=tan" (i)
b Gx
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FIGURE 10.8

A3 x 3 region of

an image (the z's
are grav-level
values) and
various masks
used to compute
the gradient at
point labeled zs.
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0 1 1 —1 —1 0
—1 0 1 —1 0 1
—1 —1 0 0 1 1
Prewitt
0 1 2 —2 —1 0
—1 0 1 —1 0 1
—2 —1 0 0 1 2
ab
enfan Sobel

FIGURE 10.9 Prewitt and Sobel masks for detecting diagonal edges.
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FIGURE 10.10

{(a) Original
image. (b) |G .
component of the
oradient in the
x-direction.

() |Gy
component in the
y-direction.

(d) Gradient
image, |G| + |G|
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FIGURE 10.11
Same sequence as
in Fig. 10.10, but
with the original
image smoothed
witha3 X 5
averaging filter.
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ab
FIGURE 10.12

Diagonal edge
detection.

(a) Result of using
the mask in

Fig. 10.9(c).

(b} Result of using
the mask in

Fig. 10.9(d). The
input in both cases
was Fig. 10.11(a).
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Laplacian

» Laplacian 1n its original form 1s not used for edge
detection because:

1. It 1s very sensitive to noise
2. It’s magnitude produces double edges
3. Unable to detect the direction of an edge.

* To solve the first problem, the image 1s low-pass
filtered before using the Laplacian operator.

f(x,y)—1h(x,y) "V g(x,y)
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Laplacian

82f o’ f
8x2 oy’

Vf =
3

V?f =8z, —Zzl.
i=1

Vif=4z,—(z,+z,+z +z,)

FIGURE 10.13
Laplacian masks 0 —1 0 —1 —1 —1
used to

implement
Eqs. (10.1-14) and 5 . - - 8 ~
(10.1-15),
]‘E’S}":IC‘CH\-'C[}". 0 —1 0 -1 -1 -1

McMaster
W




Laplacian

Convolution: g(x, Y) = f(x9 J/) *Vzh(xa J’)

2 2
Gaussian function: /(x, y) =exp(— X 2+§/ )
o
rr=x 4y’
- r
Second derivative: V>ji(r)=( )exp(— 5)
o 20°

» Cross section of V°/ has a Mexican hat shape.

« The average V°h is zero. The average of image convolved
with V*/ is also zero.

* We will have negative pixel values in the result.
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Laplacian

* To solve the problem of double edges, zero crossing
of the output of Laplacian operator is used.

ab
c d

FIGURE 10.14
Laplacian of a
Gaussian (LoG).
(a) 3-D plot.

(b) Image (black
is negative, gray is
the zero plane.
and white is
positive ).

{c) Cross section
showing zero

V2h Crossings.

4 (d) 5 X 5 mask
approximation to
the shape of (a).
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FIGURE 10.15 {a) Original image. (b) Sobel gradient {shown for comparison). (c) Spatial Gaussian smooth-
ing function. {d) Laplacian mask. (e) LoG. {f) Thresholded LoG. {g) Zero crossings. {Original image courtesy

of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical
Center.)
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FIGURE 10.15 (a) Original image. (b} Sobel gradient (shown for comparison). (c) Spatial Gaussian smooth-
ing function. {d) Laplacian mask. {e) LoG. {f) Thresholded LoG. (g) Zero crossings. { Original image courtesy
of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical I
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Edge linking and Boundary Detection

* The output of discontinuity detection stage seldom
characterizes a boundary completely.

* This 1s because of noise, breaks in the boundary and
other effects.

* Edge detection algorithms typically are followed by
linking and boundary detection procedures.

* These procedures assemble edge pixels into
meaningful boundaries.
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Edge linking and Boundary Detection

* All the points that are similar are linked forming a
boundary of pixels.

* Two principle properties used for establishing

similarity of edge pixels 1n this kind of analysis are:

1. The strength of the response of the gradient
operator used to produce the edge pixels

2. The direction of the gradient
Vf Ce, )| =V (g + 1) S E
05(3@)/) _a(xmyO)‘ <A
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FIGURE 10.16
(a) Input image.
(b) G, component
of the gradient.
(¢) G, component
of the gradient.
(d) Result of edge
linking. (Courtesy
of Perceptics
Corporation.)




Hough Transform
(x,y;): all the lines passing this point y,=ax,+b

b= y.-ax,: point (x,),) maps to a single line in ab plane.
Another point (x;,y;) also has a single line in ab plane
b= Vi-ax;

a’ and b’ are the slope and intercept of the line containing
both (x,y;) and (x,)).

- .y v b ab
' o ' ] FIGURE 10.17
\ : I e (a) xy-plane.
. : (b) Parameter
0, \ | / space.
|
\
o (. 5)) \
b=-xa+y,

= -
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Hough transform

): expected range of slope

[
(amlnﬂ max

(b

A(1,)): the number of points in the cell at coordinates (1,)) in
the ab plane.

): expected range of intercepts

m1n9 max

B i b
Hmin min D Max - b

For every point in the image
plane, we let the value of a
equal each of the allowed
subdivisions and find the 0 oo
corresponding b from

b= yrax; It for a, we get b,
the A(p,q) 1s incremented.
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Hough transform

* The cell with the largest value shows the parameters
of the line that contains the maximum number of
points.

* Problem with this method: a approaches infinity as
the line gets perpendicular to the x axis.

* Solution: use the representation of the line as:

xcos@+ysméb=p
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Hough transform

* A point in xy plane 1s mapped 1nto a sinusoidal curve
in p6@ plane.

) ) Y min o Ymax ab
Lol Frmin . ]
. FIGURE 10.19
I . (a) Normal
! representation of
a line.
(b} Subdivision of
Of oo see the po-plane into
cells.
Fmax
Y ¥
X [l
McMaster
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a b , . NEG THETAR @  POS THETA
¢ d ]
FIGURE 10.20
Hustration of the
Hough transtorm.
{Courtesy of Mr,
D. R. Cate. Texas
Instruments, Inc.)

P
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s
R
H
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Hough transform

Hough transform 1s applicable to any function of the
form g(v,c)=0, where v 1s the vector of coordinates
and c 1s the vector of coefficients.

Exp: (x—¢,)’ +(y—c,)’ =¢,’
3 parameters (cl,c2,c3), 3-D parameter space, cube
like cells, accumulators of the form A(1,3,k).

Procedure:

l1. Increment cl and c2

2. Solve for c3

3. Update the accumulator associated with (c1,c2,c3)
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Thresholding

* Thresholding 1s one of the most important
approaches to 1mage segmentation.

* Qray level histogram of an image {(X,y)

composed of a light object on a dark background.

* To extract the object: select a threshold T that
separates the gray levels of the background and
the object.
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Thresholding

« Single threshold: points with f(x,y)>T belong to object;
other points belong to background.

Multiple thresholds: points with {(x,y)>T, belong to
object; points with f(x,y)<T, belong to bakground.

||||||‘| hll | II‘H‘" . ||‘ |‘||I||I.II‘H|I|I||‘|‘|| -
T T, T,

ab
FIGURE 10.26 (a) Gray-level histograms that can be partitioned by (a) a single thresh-
M, old, and (b) multiple thresholds.
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Thresholding

* Threshold in general can be calculated as:
T=T(X,y,p(X,y),{(x,y))
f(x,y): gray level at (x,y)

p(x,y): some local property of the point (x,y) (e.g., the
average gray level of a neighborhood centered on (x,y).

T depends only on f(x,y): global threshold
T depends on f(x,y) and p(x,y): local threshold
T depends on f(x,y) and p(x,y) and X,y : dynamic threshold
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B3

Thresholding

a
b ¢

FIGURE 10.28
(a) Original
image. (b) Image
histogram.

(¢) Result of
olobal
thresholding with
T midway
between the
maximum and
minimum gray
levels.
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Thresholding

MR brain image (top left), its
histogram (bottom) and the
segmented image (top right)
using a threshold T=12 at the
first major valley point in the

histogram.
e
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Thresholding

Two segmented MR brain
images using a gray value
threshold T=166 (top right)
and T=225 (bottom)
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Basic Global Thresholding

1. Select an 1initial estimate for T

2. Segment the image using T. This will produce two
group of pixels G1 (with gray level greater than T)
and G2 (with gray level less than T)

3. Compute average gray level values ul and u2 for
pixels i regions G1 and G2

4. Compute a new threshold: T=(ul+ p2)/2

5. Repeat step 2 through 4 until the difference in T 1n
successive iterations 1s smaller than a predefined
value

McMaster
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Basic Global Thresholding

a b

C
FIGURE 10.29
(a) Original
image. (b) Image
histogram.
(c) Result of
segmentation with
the threshold
estimated by
iteration.
{Original courtesy
of the National
[nstitute of
Standards and
Technology.)
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Basic Adaptive (Local) Thresholding

a b

B

FIGURE 10.30
{(a) Original
image. (b) Result
of global
thresholding.
() Image
subdivided into
individual
subimages.

(d) Result of
adaptive
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Optimal Global Thresholding

FIGURE 10.32 p(z)
Gray-level 4
probability
density functions
of two regions in
an image.

|
1
T

p(z)=F-p(z2)+P-p,(2)
B+P =1

Problem: how to optimally determine T to minimize the
segmentation error?
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Optimal Global Thresholding

Brror ;. E(T) = p,(2)dz

Error2:  E,(T) = j: p(2)dz

Total error: E(T)=PE, (T)+ P E,(T)

Goal: what’s the value of T to minimize E(T)?

Result: Epl (T) — })2]72 (T)
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Optimal Global Thresholding: Gaussian PDFs

_ _(Z_M)Z b, _(Z_luz)z
p(z)= Vono exp( = )+ Voro. exp( 207 )

Solution: 4T? + BT + (=0

2 2

B=2(u,0; - 15,07)
C =0, 1, —o, 4 +20, 205 In(o,F, / o, P)
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Region Based Segmentation

* Let R represent the entire image. Segmentation 1s a

process that partitions R into n subregions
R1,R2,...,Rn such that:

a) UR =R
i=1
b) R. 1s a connected region.
OR,NR, =¢
d) P(R.) =True
e) PR, U R )= False

McMaster
Universitv mem
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Region Growing

» Pixel aggregation: starts with a set of seed point and
from these grows regions by appending to each seed
point those neighboring pixels that have similar
properties (e.g., gray-level, texture, color).
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Region Growing

Center Pixel

Pixels satisfying the similarity criterion

Pixels unsatisfying the criterion

—— 3x3 neighborhood
Segmented region mmmsmam 5y 5 ne%ghborhood
}]ULEH[&I == == /X7 neighborhood
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Region Growing

A T-2 weighted MR brain image (left) and the segmented
ventricles (right) using the region-growing method.
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Region growing

 Problems:

1. Selection of initial seeds that properly represent
regions of interest

2. Selection of suitable properties

3. Formulation of a stopping rule.
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Region Growing in a Diffusion Weighted Image




Region Splitting and Merging

* Sub-divide an 1image into a set of disjoint regions
and then merge and/or split the regions in an attempt
to satisfy the condition (P).

a b

FIGURE 10.42

(a) Partitioned
image.

(b) Corresponding
quadtree.
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Region Splitting and Merging

e Procedure:

1. Split into 4 disjoint quadrants any region R1 where
P(R1)= False.

2. Merge any adjacent regions R; and Ry for which
P(R; U Ry)= True.

3. Stop when no further merging or splitting 1s
possible.
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Region Splitting and Merging

a b c

FIGURE 10.43

(a) Original
image. (b)) Result
of split and merge
procedure.

() Result of
thresholding (a).
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Mathematical Morphology

e Mathematical morphology involves a convolution-like
process using various shaped kernels, called structuring
clements

* The structuring elements are mostly symmetric: squares,
rectangles, and circles

* Most common morphological operations are
— Erosion
— Dilation
— Open
— Close
* The operations can be applied iteratively in selected order to
effect a powerful process
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Erosion Functions

* Erosion function 1s a reduction operator.

It removes noise and other small objects, breaks thin
connections between objects, removes an outside
layer from larger objects, and increases the size of
holes within an object

* For binary images, any pixel that 1s 1 and has a
neighbor that 1s 0, 1s set to 0

e The minimum function 1s the equivalence of an
€rosion

* The neighbors considered are defined by the
structuring element
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[Mlustration of Erosion Function
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Example of Erode Function

McMaster

University ﬁ



Erosion Example




Dilation Function

* The dilation function 1s an enlargement operator, the reverse
of erosion

« For a binary data set, any 0 pixel that has a 1 neighbor, where
the neighborhood 1s defined by the structuring element, is set
to 1

* For gray scale data, the dilation 1s a maximum function

* The dilation fills small holes and cracks and adds layers to
objects 1n a binary image
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Example of Dilation
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Dilated Image

®
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Erosion — Dilation Functions

 Erosion and dilation are essentially inverse
operations, they are often applied successively to an
image volume

* An erosion followed by a dilation 1s called an open

* A morphological open will delete small objects and
break thin connections without loss of surface layers

* A dilation followed by an erosion 1s called close

* The close operation fills small holes and cracks in an
object and tends to smooth the border of an object
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Example of Open Operation

McMaster

University ﬁ
- 64




Example of Open Operation
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Example of Close Operation
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Example of Close Operation
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An Automated Segmentation
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Active Contours (Snakes)

e Segmenting an object 1n an 1image with active
contours 1mnvolves minimizing a cost function based
on certain properties of the desired object boundary
and contrast in the 1image

* Smoothness of the boundary curve and local
gradients in the 1image are usually considered

* Snake algorithms search the region about the current
point and iteratively adjust the points of the boundary
until an optimal, low cost boundary 1s found

* It may get caught in a local minimum (initial guess)
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Example of A Snake Algorithm
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Active Contour with Level-Set Method
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End of Lecture

72



