Tutorial 1 of 3SK3
 Maryam Mohseni

Question 1

- Which of these are representable machine numbers in standard IEEE 32-bit binary format:

$$
\begin{aligned}
& \text { (a) }-1.01 \times 10^{200} \text {, (b) } 127.00125 \text {, (c) } 1 / 127 \text {, } \\
& \text { (d) } 2.625 \times 2^{-58} \text {, (e) } 1.0 \times 10^{-32}+2.625 \times 10^{-125}
\end{aligned}
$$

Question 1

Figure 12: IEEE 32 -bit floating point representation of 2.75

$$
\begin{gathered}
U=m \cdot b^{e}=\left(2-2^{-23}\right) \times 2^{127} \approx 3.4028 \times 10^{38} \\
L=m \cdot b^{e}=1 \times 2^{-126}=1.1755 \times 10^{-38}
\end{gathered}
$$

Question 1

- Only the numbers between -U and $-\mathrm{L}, 0$ and between L and U can be represented

Figure 13: Range of exactly representable numbers

Question 2

Evaluate $e^{-8.3}$ using two approaches

$$
e^{-x}=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3!}+\cdots
$$

and

$$
e^{-x}=\frac{1}{e^{x}}=\frac{1}{1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots}
$$

and compare with the true value of 2.485168×10^{-4}
and discuss your results. Use 25 terms to evaluate each series.

Thank you

