

Image Enhancement

- Image enhancement techniques:
$>$ Spatial domain methods
$>$ Frequency domain methods
- Spatial (time) domain techniques are techniques that operate directly on pixels.
- Frequency domain techniques are based on modifying the Fourier transform of an image.

Fourier transform basis functions

Approximating a square wave as the sum of sine waves.

Fourier Cosine Series

Because $\cos (m t)$ is an even function, we can write an even function, $f(t)$, as:

$$
f(t)=\frac{1}{\pi} \sum_{m=0}^{\infty} F_{m} \cos (m t)
$$

where series F_{m} is computed as

$$
F_{m}=\int_{-\pi}^{\pi} f(t) \cos (m t) d t
$$

Here we suppose $f(t)$ is over the interval $(-\pi, \pi)$.
McMaster
University

Fourier Sine Series

Because $\sin (m t)$ is an odd function, we can write any odd function, $f(t)$, as:

$$
f(t)=\frac{1}{\pi} \sum_{m=0}^{\infty} F_{m}^{\prime} \sin (m t)
$$

where the series $F^{\prime}{ }_{m}$ is computed as

McMaste
University

$$
F_{m}^{\prime}=\int_{-\pi}^{\pi} f(t) \sin (m t) d t
$$

Fourier Series

So if $f(t)$ is a general function, neither even nor odd, it can be written:

where the Fourier series is

$$
F_{m}=\int f(t) \cos (m t) d t \quad F_{m}^{\prime}=\int f(t) \sin (m t) d t
$$

McMaster

McMaste \qquad

The Fourier Transform

Let $F(m)$ incorporates both cosine and sine series coefficients, with the sine series distinguished by making it the imaginary component:
$F(m)=F_{m}-j F_{m}^{\prime}=\int f(t) \cos (m t) d t-j \cdot \int f(t) \sin (m t) d t$
Let's now allow $f(t)$ range from $-\infty$ to ∞, we rewrite:

$$
\mathfrak{J}\{f(t)\}=F(u)=\int_{-\infty}^{\infty} f(t) \exp (-j 2 \pi u t) d t
$$

$\boldsymbol{F}(\boldsymbol{u})$ is called the Fourier Transform of $f(t)$. We say that $f(t)$ lives in the "time domain," and $\boldsymbol{F}(\boldsymbol{u})$ lives in the "frequency domain." \boldsymbol{u} is called the frequency variable.

Discrete Fourier Transform (DFT)

- The discrete Fourier transform pair that applies to sampled functions is given by:
$F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x) \exp (-j 2 \pi u x / M) u=0,1,2, \ldots, M-1$
and

$$
\begin{aligned}
& f(x)=\sum_{u=0}^{M-1} F(u) \exp (j 2 \pi u x / M) \quad x=0,1,2, \ldots, M-1 \\
& \text { McMaster } \\
& \text { University }
\end{aligned}
$$

2-D Discrete Fourier Transform

- In 2-D case, the DFT pair is:
$F(u, v)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \exp (-j 2 \pi(u x / M+v y / N))$
and:
$f(x, y)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) \exp (j 2 \pi(u x / M+v y / N))$
17

Discrete Fourier Transform (DFT)

Let x denote the discrete values ($x=0,1,2, \ldots, M-1$), i.e.

$$
f(x)=f\left(x_{0}+x \Delta x\right)
$$

then

Polar Coordinate Representation of FT

- The Fourier transform of a real function is generally complex and we use polar coordinates:

Frequency Domain Filtering

- Edges and sharp transitions (e.g., noise) in an image contribute significantly to high-frequency content of FT.
- Low frequency contents in the FT are responsible to the general appearance of the image over smooth areas.
- Blurring (smoothing) is achieved by attenuating range of high frequency components of FT.

McMaster

Butterworth Lowpass Filters (BLPF)

- Smooth transfer function, $\begin{aligned} & \text { no sharp discontinuity, } \\ & \text { no clear cutoff } \\ & \text { frequency. }\end{aligned} \quad H(u, v)=\frac{1}{1+\left[\frac{D(u, v)}{D_{0}}\right]^{2 n}}$

FIGURE 4.14 (a) Penpoctive plot of a Butternorth howpaxs filter tramser function. (b) Filler displayed as an image. (c) Filter radial crows sections of orbers 1 through 4 .

Gaussian Lowpass Filters (GLPF)

- Smooth transfer function, $\begin{aligned} & \text { smooth impulse } \\ & \text { response, no ringing }\end{aligned} \quad H(u, v)=e^{-\frac{D^{2}(u, v)}{2 D^{2} 0_{0}}}$

abec
FIGURE 4.17 (a) Perpective plot of a GLPF transer function, (b) Filter divplayed as an image. (c) Filler
radial croas sctions for Larious values or D_{0}. 40

High-pass Filters

FIGURE 4.23 Sputial representations of typical (a) ideat. (b) Butterworth. and (c) Gaussan frequency domain biefthyos fillen and corresponding gray-kevel profice:

Sharpening High-pass Filters

- $\mathrm{H}_{\mathrm{hp}}(\mathrm{u}, \mathrm{v})=1-\mathrm{H}_{\mathrm{lp}}(\mathrm{u}, \mathrm{v})$
- Ideal: $\quad H(u, v)= \begin{cases}1 & D(u, v)>D_{0} \\ 0 & D(u, v) \leq D_{0}\end{cases}$
- Butterworth:

$$
|H(u, v)|^{2}=\frac{1}{1+\left[\frac{D_{0}}{D(u, v)}\right]^{2 n}}
$$

- Gaussian: $\quad H(u, v)=1-e^{-D^{2}(u, v) / 2 D_{0}^{2}}$

$$
H(u, v)=1-e
$$

McMaster
University
禺

Ideal High-pass Filtering
ringing artifacts
Ω

FIGURE 4.24 Resulto of ideal highpors, filleting the image in Fiy. $4.11(a)$ with $D_{0}=15$, ise and sis apectuct: Problents with rine ine are quite evident in (a) and (b)
McMaster

An image formation model

- We can view an image $f(x, y)$ as a product of two components:

$$
\begin{aligned}
& f(x, y)=i(x, y) \cdot r(x, y) \\
& 0<i(x, y)<\infty \\
& 0<r(x, y)<1
\end{aligned}
$$

- $i(x, y)$: illumination. It is determined by the illumination source.
- $\mathrm{r}(\mathrm{x}, \mathrm{y})$: reflectance (or transmissivity). It is determined by the characteristics of imaged objects.

Unsharp Masking, High-boost Filtering

- Unsharp masking: $\mathrm{f}_{\mathrm{hp}}(\mathrm{x}, \mathrm{y})=\mathrm{f}(\mathrm{x}, \mathrm{y})-\mathrm{f}_{\mathrm{lp}}(\mathrm{x}, \mathrm{y})$
- $\mathrm{H}_{\mathrm{hp}}(\mathrm{u}, \mathrm{v})=1-\mathrm{H}_{\mathrm{lp}}(\mathrm{u}, \mathrm{v})$

Homomorphic Filtering

- In some images, the quality of the image has reduced because of non-uniform illumination.
- Homomorphic filtering can be used to perform illumination correction.

$$
f(x, y)=i(x, y) \cdot r(x, y)
$$

- The above equation cannot be used directly in order to operate separately on the frequency components of illumination and reflectance.

