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Noise

Image sensor might produce noise because of
environmental conditions or quality of sensing
elements.

Interference in the image transmission channel.
Assumptions: noise is independent of spatial
coordinates (except for periodic noise) and
independent of the image.

Spatial description of noise: Gaussian noise,
Rayleigh noise, Erlang (Gamma) noise, Exponential
noise, Uniform noise, Impulse noise, etc.
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Image Restoration

« Restoration: a process that attempts to
reconstruct or recover a degraded image by
using some a priori knowledge of the
degradation phenomenon.

 Technique: model the degradation -> apply
the inverse process to recover the original
image.

» Enhancement technique are heuristic while
restoration techniques are mathematical.
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Degradation Model

ag(x,y)=h(xy)* f(x,y)+n(xy)
G(u,v)=H(u,v)F(u,v)+ N(u,0)
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Noise Model
Different PDFs provide useful tools for modeling
a broad range of noise corruption situations:

Gaussian noise: due to factors such as electronic
circuit noise, sensor noise (due to poor
illumination or high temperature)

Rayleigh noise: model noise in range imaging
Exponential and Gamma: laser imaging

Impulse noise: found in quick transients (e.g.,
faulty switches)
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Noise Model
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Periodic Noise
Periodic noise: from electrical or
electromechanical interference during image
acquisition.
Frequency domain filtering can be used to
remove this noise.
Fourier transform of a pure sinusoid is a pair of
conjugate impulses.

In the Fourier transform of an image corrupted
with periodic noise should have a pair of

impulses for each sine wave.
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Noise Model
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Noise Model

Estimation of Noise Parameters

s commputed using sl strips (s s imerts] from () the Gaussian, (i) the Ran leigh
g i Fige 8.4,

H= Zzi p(z;) o= Z(Zi _:U)z p(z;)

z;eS z;eS

L 2




Restoration in the presence of noise

* When the only degradation is noise:
g(x.y)=f(x,y)+n(x.y)
G(u,v)=F(u,v)*N(u,v)

« Spatial filtering is the method of choice in this

case: Mean filters, Order-statistics filters,
Adaptive filters

Wil
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Mean filters
* S,y : subimage of size m*n
 Arithmetic mean filter:
B 1
fxy)=— > a(s:t)
mN ses,,
» Geometric mean filter:
1
A mn
foay)=| J]oGst)
(s,t)eS,,
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Mean filters
» Harmonic mean filter:
mn
ty) =———

s, 9(s:1)

» Contraharmonic mean filter

>9(s,

(s.)eS,,

> ast)°

(s)eS,,

F(x,y)=

— Negative Q: Suitable for salt noise

— Positive Q: Suitable for pepper noise
i'\_1_L Master
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Order-statistics filters

* Median filters: »
f(x.y) = median{g(s, )}

— Effective for salt and pepper noise
» Max and Min filters

fly) = Mmax {g(s. )} f(xy)= (Jnin {g(s.0)}

— Max filter: useful for finding brightest points in an
image (remove pepper noise)
— Min filter: useful for finding darkest points in an
image (remove salt noise)
McMaster
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Order-statistics filters
» Midpoint filter:

: 1 .
f(xy)= E[(E‘n‘i‘éfy {9(s.)}+ (s(gigxy{g(s.t)}]
— Works best for Gaussian and uniform noise
* Alpha-trimmed mean filter
d/2 lowest and d/2 highest gray-levels are removed

L Zgr(slt)

f(x,y)=
) mn_d(s,l)ssxy

— Useful for combination of salt-pepper and
Gaussian noise
I\ '\-[;::._utur
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Adaptive, local noise reduction filter
» Response of the filter is based on four quantities:
1. g(zx,y)
2. Yy : variance of noise
3. m_: mean of pixels in S,
4. o2 variance of pixels in S,
n a;
fxy)=9(xy)-—[9(x,y)-m ]
L
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Adaptive median filtering

 Adaptive median filter:

— Handle dense impulse noise

— Smoothes non-impulse noise

— Preserves details
* Zpip: Minimum gray level in S,
* Zpa Maximum gray level in S,
* Zpeq: Median gray level of S,
* Z,,: gray level at coordinate (x,y)
* Spax: Maximum allowed size of S,

Periodic noise reduction

« Bandreject filters remove or attenuate a band
of frequencies

1 D(u,v)<D0—WE
H(u,v)=4:0 DO—%SD(U,V)SDO+WE

W
1 D(u,v)>Do+?

McMaster
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Adaptive median filtering
< A
= Al=Ze4Znmin
= A2=Z047Zmax

— If A1>0 and A2<0 go to B else increase the window size
— If window size<S,,, repeat A
— Else output z,,,

- Bl=z,,7,

- Bzzzxy'zmax

- 1fB1>0 and B2<0 output z,,,
— Else output z,,,4
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Periodic noise reduction
¢ Butterworth Bandreject Filter
1
H(u,v) = >
D(u,v)W }
2 2
D*(u,v)-D,
» Gaussian Bandreject Filter
1[D2uw-02 |
o =7 =0
H(u,v)=1-e 2{ pLw }
McMaster
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abc
FIGURE 5.14 (1) limge corrupted by sall-and-pepper noise with probabilitis P, = P = 0,25, (b) Result of fil
tering witha 7 % 7 median filler. (¢} Result of adaptive median filtering with Sa,, = 7
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Periodic noise reduction
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FIGURE 5.15 From left 1o right, perspective plots of ideal, Butterworth (of order 1), and Guussian bandreject
fillers
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FIGURE 5.16
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Estimation by Experimentation

« If equipment similar to the equipment used to
acquire the degraded image is available it is
possible to obtain an accurate estimate of the
degradation.

 The idea is to obtain the impulse response of
the degradation by imaging an impulse (small
dot of light) using the system

Estimation of Degradation

g(x,y)=h(x,y)* f(x, y)+n(x,y)
G(u,0)=H(u,v)F(u,v)+ N(u,v)

FIGURE 5.1 A
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Estimation by Experimentation

G (U ) V) FT of an impulse
= is a constant

H(u,v)

ahb
FIGURE 5.24
Diegradation

Estimation by image observation

» We look at a small section of the image containing
simple structures (e.g., part of an object and the
background)

» By using sample gray levels of the object and
background, we can construct an unblurred “true”
image of the subimage ¢ (y y)

Hs(u,v):iGi(u’v)

F.(u,v)
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Estimation by modeling

 Approach: derive a mathematical model
starting from basic principles

« Example: Turbulence model

H (u’v) _ e_k(u2+U2)5/6
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Wiener Filtering
Goal: minimize the estimation error
e =E|(f- )]
Wiener filtering:
1 |Hu)

> G(u,v)
H(u,v) |H(u,v)| +K

If(u,u)z

K is a constant (1/SNR), adjusted in practice

i.~-1-L.'\,l.‘!-H[:"I 1
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Inverse Filtering

ﬁmm=mepﬂ&ﬂQ

H(u,v)

Difficulty: if the degradation has zero or very
small values, then the ratio N(u,v)/H(u,v) could
easily dominate the estimation.

Cure: limit filter frequencies to values near the
origin.

i'~_1_L' :\'l_'.il.f%[t_' f
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Wiener Filtering

FIGURE 5.28 Comparison of inverse. wid Wiener fillering. (1) Result of full inverse filtering of Fig. S25(b).
i) Radially linited inverse flier resull (c) Wiener lter resull
Wehacte
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Constrained Least Square Filtering

\Vector-matrix representation of an image

g=Hf +n
Minimize criterion function
—1N-1 ) A 5
C=Y DIV f(xy)]
x=0 y=0
subject to
All2
2
i =l
o .

Geometric Transformation

Geometrical transformations: modify the spatial
relationships between pixels in an image

Constrained Least Square Filtering

Solution:
F(u,v) = HUY o)
IH(u,0)" +7|P(u,v)|
where P(u,v) is the FT of
0 -1 0
p(x,y)={-1 4 -1
0 -1 0
a W .

Geometric Transformation

Geometrical transformation consists of two

basic operations:

1. Spatial transformation: defines the
rearrangement of pixels on the image plane

2. Gray level interpolation: deals with the
assignment of gray levels to pixels in the
spatially transformed image

Constrained Least Square Filtering

FIGURE 5.30 Rosulis of constrained beast syuares filiering. Compare (a4 bk and (¢} with the Wicner filiering
w ively,

results in Figs, 3.290c], (1), and (i), respect
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Spatial Transformation

Image f with pixels coordinates (x,y) has

undergone geometric distortion to produce an

image g with coordinates (x’,y’)

- x’=r(xy), - y'=s(xy)

Example: xX’=r(x,y)=x/2, y’=s(x,y)=y/2

— Distortion is a shrinking of the size of f(x,y)
by one-half in both directions.

48




Spatial Transformation

o Ifr(x,y) and s(x,y) are known analytically: the
inverse of r and s is applied to g(x’,y’) to recover
f(x.y).

 In practice finding a single set of r(x,y) and s(x,y) is
not possible

 Solution: spatial relocation is formulated by the use
of tiepoints.

» Tiepoints: a set of pixels whose locations in
distorted and corrected images are known

Gray-level Interpolation

» Depending on the values of ¢; x’ and/or y’ can be
noninteger for integer values of xy)

= X'Sr(XY)=CX+Coy+Cayxte,
= Y'=5(X,Y)=CoX+Cey+CryX+Cq

e gisadigital image and its pixel values are defined
only at integer values of (x,y).

» We need inferring gray-level values at noninteger
locations (gray-level interpolation)

Spatial Transformation

« Suppose the geometrical distortion process within the region
is modeled by a pair of bilinear equations:

= XZF(KY)=CXHCY+CoyXHC,
— YES(KY)=CXHCEY+CyXHCy

— 8 known tiepoints, 8 unknown c;

— The model is used for all the points inside the region

FGURS 5,37

Gray-level Interpolation
«  Simplest scheme: nearest neighbor approach (zero-order
interpolation)
1. Mapping (x,y) to (x’,y")
2. Selection of closest integer coordinate neighbor to (x’,y”)
3. Assign the gray-level of this nearest neighbor to the pixel

at (x.y)
/——\!\ |
| -
UT: ~ il
FIGURE 5.);|I.rf-\ “level intenpolation b |‘«:|'| i the feare I|.| ighbor concept.
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Spatial Transformation

for x=1 to horizontal size {
for y=1 to vertical size {
X=1(X,Y)=CoX+Cy +CayX+C,
Y’=8(X,y)=CoX+Cgy+CryX+Cq
xy)=g(x".y")
}
}

) W )

Gray-level Interpolation

e Nearest neighbor interpolation: simple to
implement, has the drawback of producing
undesirable artifacts

e Example: distortion of straight edges in an
image

« More sophisticated techniques: better results,
costly in terms of computations

¢ A reasonable compromise: bilinear
interpolation approach

) W y




Gray-level Interpolation
(x’,y"): a noninteger coordinate
v(x’,y"): the gray-level at (x’,y’)
v(x’,y")=ax’+by’+cx’y’+d
The four unknowns (a,b,c,d) are determined
using the gray-levels of four neighbors of
x7.y’)
When the coefficients (a,b,c,d) have been
determined, v(x’,y’) is computed and this
values is assigned to the location (x,y).
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End of Lecture
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