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Image Restoration
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Medical Image Processing

Image Restoration

Image Restoration
• Restoration: a process that attempts to 

reconstruct or recover a degraded image by 
using some a priori knowledge of the 
degradation phenomenon.

• Technique: model the degradation -> apply
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Technique: model the degradation > apply 
the inverse process to recover the original 
image.

• Enhancement technique are heuristic while 
restoration techniques are mathematical.

Degradation Model 
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Noise
• Image sensor might produce noise because of 

environmental conditions or quality of sensing 
elements.

• Interference in the image transmission channel. 
• Assumptions: noise is independent of spatial 
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coordinates (except for periodic noise) and 
independent of the image.

• Spatial description of noise: Gaussian noise, 
Rayleigh noise, Erlang (Gamma) noise, Exponential 
noise, Uniform noise, Impulse noise, etc.
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Noise Model
Different PDFs provide useful tools for modeling 
a broad range of noise corruption situations:

• Gaussian noise: due to factors such as electronic 
circuit noise, sensor noise (due to poor 
illumination or high temperature)
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• Rayleigh noise: model noise in range imaging 
• Exponential and Gamma: laser imaging
• Impulse noise:  found in quick transients (e.g., 

faulty switches)
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Noise Model
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Noise Model
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Noise Model
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Periodic Noise
• Periodic noise: from electrical or 

electromechanical interference during image 
acquisition.

• Frequency domain filtering can be used to 
remove this noise.

10

• Fourier transform of a pure sinusoid is a pair of 
conjugate impulses.

• In the Fourier transform of an image corrupted 
with periodic noise should have a pair of 
impulses for each sine wave.
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Estimation of Noise Parameters
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Restoration in the presence of noise

• When the only degradation is noise: 
g(x,y)=f(x,y)+n(x,y)
G(u,v)=F(u,v)+N(u,v)

• Spatial filtering is the method of choice in this
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Spatial filtering is the method of choice in this 
case: Mean filters, Order-statistics filters, 
Adaptive filters 

Mean filters
• Sxy : subimage of size m*n 
• Arithmetic mean filter: 
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• Geometric mean filter: 
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Mean filters
• Harmonic mean filter:

• Contraharmonic mean filter
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Contraharmonic mean filter

– Negative Q: Suitable for salt noise
– Positive Q: Suitable for pepper noise
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Order-statistics filters
• Median filters: 

– Effective for salt and pepper noise 
• Max and Min filters
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– Max filter: useful for finding brightest points in an 
image (remove pepper noise)

– Min filter: useful for finding darkest points in an 
image (remove salt noise)
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Order-statistics filters 
• Midpoint filter:

– Works best for Gaussian and uniform noise 
• Alpha-trimmed mean filter
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d/2 lowest and d/2 highest gray-levels are removed 

– Useful for combination of salt-pepper and 
Gaussian noise
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Adaptive, local noise reduction filter

• Response of the filter is based on four quantities:
1. g(x,y) 
2. : variance of noise 
3. mL: mean of pixels in Sxy

4 σ2 : variance of pixels in S

2
ησ
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4. σ2
L: variance of pixels in Sxy
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Adaptive median filtering
• Adaptive median filter:

– Handle dense impulse noise
– Smoothes non-impulse noise
– Preserves details 

• zmin: minimum gray level in Sxy
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zmin: minimum gray level in Sxy

• zmax: maximum gray level in Sxy

• zmed: median gray level of Sxy

• zxy: gray level at coordinate (x,y)
• Smax: maximum allowed size of Sxy

Adaptive median filtering
• A

– A1=zmed-zmin

– A2=zmed-zmax

– If A1>0 and A2<0 go to B else increase the window size
– If window size<Smax repeat A

Else output z
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– Else output zxy

• B
– B1=zxy-zmin

– B2=zxy-zmax

– If B1>0 and B2<0 output zxy

– Else output zmed
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Periodic noise reduction

• Bandreject filters remove or attenuate a band 
of frequencies
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Periodic noise reduction
• Butterworth Bandreject Filter
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• Gaussian Bandreject Filter

Periodic noise reduction
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Estimation of Degradation 
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Estimation by image observation
• We look at a small section of the image containing 

simple structures (e.g., part of an object and the 
background)

• By using sample gray levels of the object and 
background, we can construct an unblurred “true” 
i f th bi ^
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Estimation by Experimentation 

• If equipment similar to the equipment used to 
acquire the degraded image is available it is 
possible to obtain an accurate estimate of the 
degradation.
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• The idea is to obtain the impulse response of 
the degradation by imaging an impulse (small 
dot of light) using the system

Estimation by Experimentation 
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is a constant
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Estimation by modeling 
• Approach: derive a mathematical model 

starting from basic principles
• Example: Turbulence model 
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Inverse Filtering
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Difficulty: if the degradation has zero or very 
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small values, then the ratio N(u,v)/H(u,v) could 
easily dominate the estimation.

Cure: limit filter frequencies to values near the 
origin.
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Wiener Filtering

Goal: minimize the estimation error
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Constrained Least Square Filtering

Minimize criterion function
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Vector-matrix representation of an image

43

∑∑
= =

∇=
0 0

22 )],([
x y

yxfC

2
2

ηfHg
^

=−

subject to

Constrained Least Square Filtering
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Solution:
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where P(u,v) is the FT of

Constrained Least Square Filtering
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Geometric Transformation

• Geometrical transformations: modify the spatial 
relationships between pixels in an image
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Geometric Transformation

• Geometrical transformation consists of two 
basic operations:
1. Spatial transformation: defines the 

rearrangement of pixels on the image plane
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rearrangement of pixels on the image plane
2. Gray level interpolation: deals with the 

assignment of gray levels to pixels in the 
spatially transformed image

Spatial Transformation

• Image f with pixels coordinates (x,y) has 
undergone geometric distortion to produce an 
image g with coordinates (x’,y’)
– x’=r(x,y),     y’=s(x,y)
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• Example: x’=r(x,y)=x/2,  y’=s(x,y)=y/2
– Distortion is a shrinking of the size of f(x,y) 

by one-half in both directions.
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Spatial Transformation
• If r(x,y) and s(x,y)  are known analytically: the 

inverse of r and s is applied to g(x’,y’) to recover 
f(x,y).

• In practice finding a single set of r(x,y) and s(x,y) is 
not possible
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• Solution: spatial relocation is formulated by the use 
of tiepoints. 

• Tiepoints: a set of pixels whose locations in 
distorted and corrected images are known 

Spatial Transformation
• Suppose the geometrical distortion process within the region 

is modeled by a pair of bilinear equations:
– x’=r(x,y)=c1x+c2y+c3yx+c4

– y’=s(x,y)=c5x+c6y+c7yx+c8

– 8 known tiepoints, 8 unknown ci

– The model is used for all the points inside the region
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Spatial Transformation

for x=1 to horizontal size {
for y=1 to vertical size {

x’=r(x,y)=c1x+c2y+c3yx+c4

y’=s(x,y)=c5x+c6y+c7yx+c8
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y ( ,y) 5 6y 7y 8

f^(x,y)=g(x’,y’)
}
}

Gray-level Interpolation

• Depending on the values of ci , x’ and/or y’ can be 
noninteger for integer values of (x,y)
– x’=r(x,y)=c1x+c2y+c3yx+c4

– y’=s(x,y)=c5x+c6y+c7yx+c8

• g is a digital image and its pixel values are defined
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• g is a digital image and its pixel values are defined 
only at integer values of (x,y).

• We need inferring gray-level values at noninteger 
locations (gray-level interpolation)

Gray-level Interpolation
• Simplest scheme: nearest neighbor approach (zero-order 

interpolation)
1. Mapping (x,y) to (x’,y’)
2. Selection of closest integer coordinate neighbor to (x’,y’) 
3. Assign the gray-level of this nearest neighbor to the pixel 

at (x,y)
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Gray-level Interpolation
• Nearest neighbor interpolation: simple to 

implement, has the drawback of producing 
undesirable artifacts

• Example: distortion of straight edges in an 
image
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image
• More sophisticated techniques: better results, 

costly in terms of computations
• A reasonable compromise: bilinear 

interpolation approach 
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Gray-level Interpolation
• (x’,y’): a noninteger coordinate
• v(x’,y’): the gray-level at (x’,y’)
• v(x’,y’)=ax’+by’+cx’y’+d
• The four unknowns (a,b,c,d) are determined 

using the gray-levels of four neighbors of
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using the gray levels of four neighbors of 
(x’,y’)

• When the coefficients (a,b,c,d) have been 
determined, v(x’,y’) is computed and this 
values is assigned to the location (x,y).
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End of Lecture
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