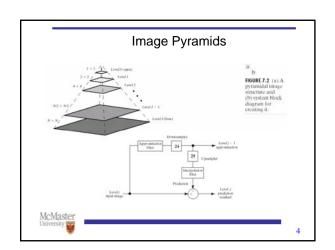
CoE4TN3 Image Processing

Wavelet and Multiresolution Processing



Introduction

- Unlike Fourier transform, whose basis functions are sinusoids, wavelet transforms are based on small waves, called wavelets, of limited duration.
- Fourier transform provides only frequency information, but wavelet transform provides time-frequency information
- Wavelets lead to a multiresolution analysis of signals.
- Multiresolution analysis: representation of a signal (e.g., an images) in more than one resolution/scale.
- Features that might go undetected at one resolution may be easy to spot in another.

2

Image pyramids

- At each level we have an approximation image and a residual image.
- The original image (which is at the base of pyramid) and its P approximation form the approximation pyramid.
- The residual outputs form the residual pyramid.
- Approximation and residual pyramids are computed in an iterative fashion.
- A P+1 level pyramid is build by executing the operations in the block diagram P times.

5

Multiresolution Right 7.1 A natural image and its local histogram variations. McMaster University (2017)

Image pyramids

- During the first iteration, the original 2^Jx2^J image is applied as the input image.
- This produces the level J-1 approximate and level J prediction residual results
- For iterations j=J-1, J-2, ..., J-p+1, the previous iteration's level j-1 approximation output is used as the input.

Image pyramids

- Each iteration is composed of three sequential steps:
- 1. Compute a reduced resolution approximation of the input image. This is done by filtering the input and downsampling (subsampling) the filtered result by a factor of 2.
 - Filter: neighborhood averaging, Gaussian filtering
 - The quality of the generated approximation is a function of the filter selected

7

Subband coding

- In subband coding, an image is decomposed into a set of bandlimited components, called subbands.
- Since the bandwidth of the resulting subbands is smaller than that of the original image, the subbands can be downsampled without loss of information.

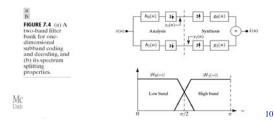
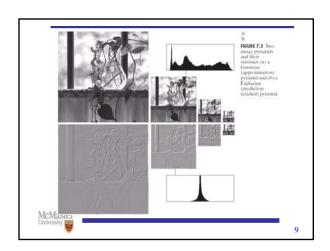


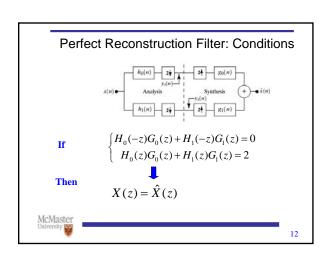
Image pyramids

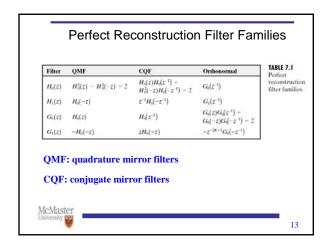
- 2. Upsample output of the previous step by a factor of 2 and filter the result. This creates a prediction image with the same resolution as the input.
 - By interpolating intensities between the pixels of step 1, the interpolation filter determines how accurately the prediction approximates the input to step 1.
- 3. Compute the difference between the prediction of step 2 and the input to step 1. This difference can be later used to reconstruct progressively the original image

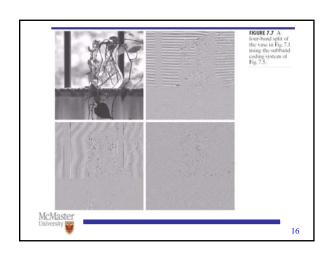
McMaster University

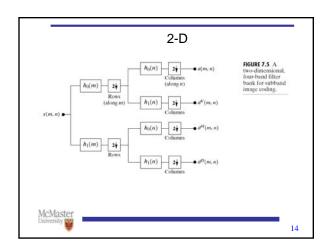
Perfect Reconstruction Filter $x(n) = \frac{h_0(n)}{y(n)} \underbrace{x_1}{y(n)} \underbrace{x_2}{y(n)} \underbrace{x_2}{y(n)} \underbrace{x_3}{y(n)} \underbrace{x_3}{y(n)} \underbrace{x_4}{y(n)} \underbrace{x_5}{y(n)} \underbrace{x_5}{y(n)}$





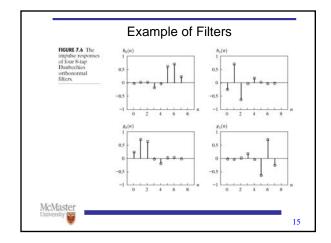


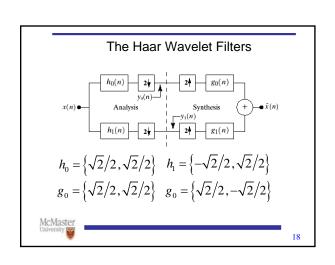


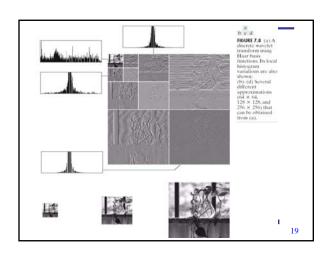


The Haar Transform

- Haar proposed the Haar Transform in 1910, more than 70 years before the wavelet theory was born.
- Actually, Haar Transform employs the Haar wavelet filters but is expressed in a matrix form.
- Haar wavelet is the oldest and simplest wavelet basis.
- Haar wavelet is the only one wavelet basis, which holds the properties of orthogonal, (anti-)symmetric and compactly supported.







Multiresolution Expansions

- · Scaling functions
 - ► Integer translations and dyadic scalings of a scaling function $\varphi(x)$

$$\varphi_{j,k}(x) = 2^{j/2} \varphi(2^j x - k)$$

Express f(x) as the combination of $\varphi_{j_0,k}(x)$

$$f(x) = \sum_{k} \alpha_{k} \varphi_{j_{0},k}(x)$$

McMaster University

22

Multiresolution Expansions

- · Series Expansions
 - >A function can be expressed as

$$f(x) = \sum_{k} \alpha_{k} \varphi_{k}(x)$$

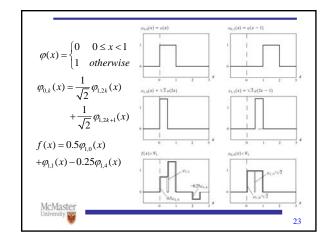
≻where

$$\alpha_k = \langle \tilde{\varphi}_k(x), f(x) \rangle = \int \tilde{\varphi}_k^*(x) f(x) dx$$

 $\tilde{\varphi}_k(x)$ — Dual function of $\varphi_k(x)$

* — Complex conjugate operation

McMaster University



Multiresolution Expansions

- Series Expansions
 - ➤Orthonormal basis

$$\varphi_k(x) = \tilde{\varphi}_k(x)$$

$$0 \quad j \neq 0$$

 $\langle \varphi_j(x), \varphi_k(x) \rangle = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases}$

≻biorthogonal

$$\left\langle \varphi_{j}(x), \varphi_{k}(x) \right\rangle = 0 \qquad j \neq k$$

$$\left\langle \varphi_{j}(x), \tilde{\varphi}_{k}(x) \right\rangle = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases}$$

McMaster University

1

20

Multiresolution Expansions

- · Scaling functions
 - \triangleright Dilation equation for scaling function $\varphi(x)$

$$\varphi(x) = \sum h_{\varphi}(n) \sqrt{2} \varphi(2x-n)$$

- $\triangleright h_{\omega}(n)$ are called scaling function coefficients
- Example: Haar wavelet, $h_{\alpha}(0) = h_{\alpha}(1) = 1/\sqrt{2}$

$$\varphi(x) = \frac{1}{\sqrt{2}} \left[\sqrt{2} \varphi(2x) \right] + \frac{1}{\sqrt{2}} \left[\sqrt{2} \varphi(2x-1) \right]$$

McMaster University

Multiresolution Expansions

· Wavelet functions

$$\psi(x) = \sum_{n} h_{\psi}(n) \sqrt{2} \varphi(2x - n)$$

 $\triangleright h_{\psi}(n)$ are called wavelet function coefficients \triangleright Translation and scaling of $\psi(x)$

$$\psi_{i,k}(x) = 2^{j/2} \psi(2^j x - k)$$

> condition for orthogonal wavelets

$$h_{\psi}(n) = (-1)^n h_{\varphi}(1-n)$$

25

Wavelet Transform: 1-D

· Wavelet series expansion

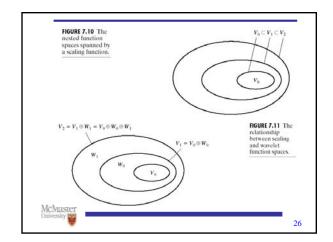
$$f(x) = \sum_{k} c_{j_0} \varphi_{j_0,k}(x) + \sum_{j=j_0}^{\infty} \sum_{k} d_j(k) \psi_{j,k}(x)$$

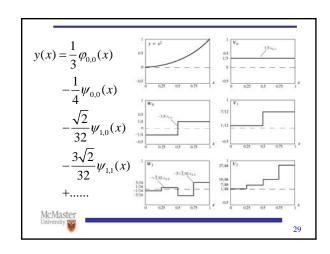
> where

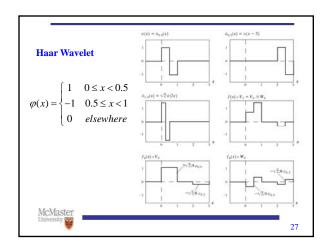
$$c_{j_0}(k) = \left\langle f(x), \varphi_{j_0,k}(x) \right\rangle = \int f(x) \varphi_{j_0,k}(x) dx$$

$$d_j(k) = \langle f(x), \psi_{j,k}(x) \rangle = \int f(x)\psi_{j,k}(x)dx$$

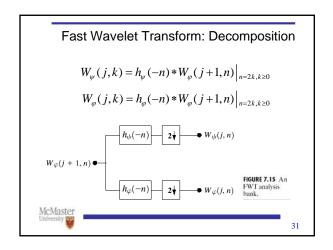
28

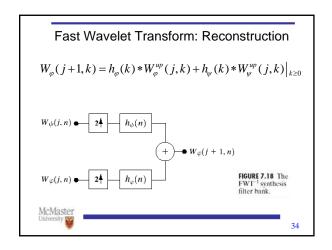


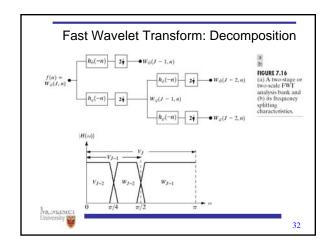


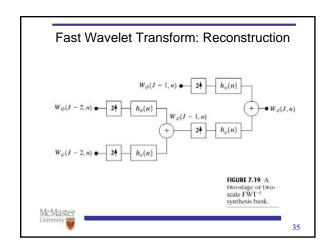


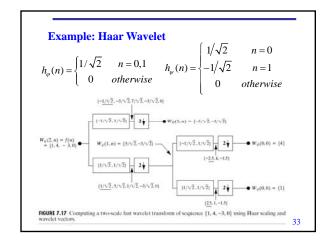
Wavelet Transform: 1-D • Discrete Wavelet Transform $f(x) = \frac{1}{\sqrt{M}} \sum_{k} W_{\varphi}(j_{0}, k) \varphi_{j_{0}, k}(x)$ $+ \frac{1}{\sqrt{M}} \sum_{j=j_{0}}^{\infty} \sum_{k} W_{\psi}(j, k) \psi_{j, k}(x)$ • where Approximation coefficients $W_{\varphi}(j_{0}, k) = \frac{1}{\sqrt{M}} \sum_{x} f(x) \varphi_{j_{0}, k}(x)$ Detail coefficients $W_{\psi}(j, k) = \frac{1}{\sqrt{M}} \sum_{x} f(x) \psi_{j, k}(x)$ McMaster

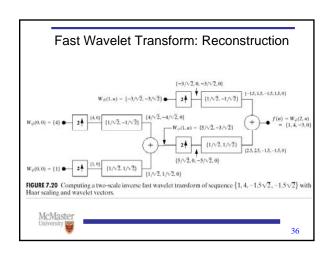


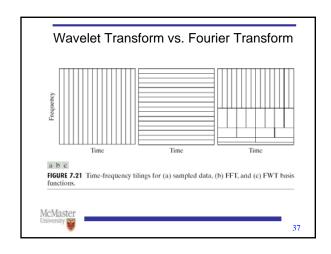


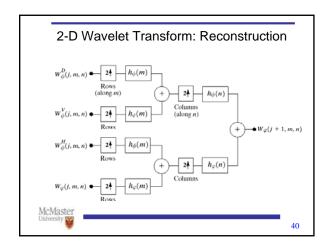


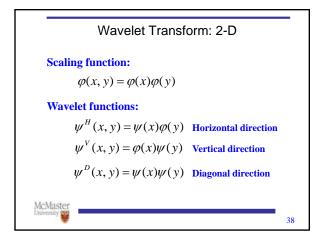


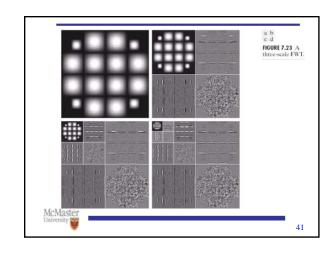


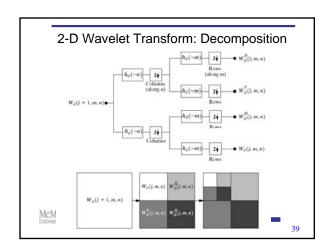


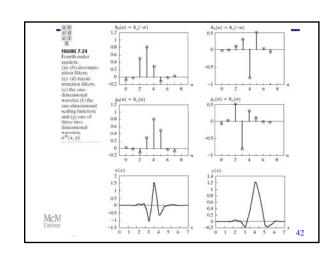


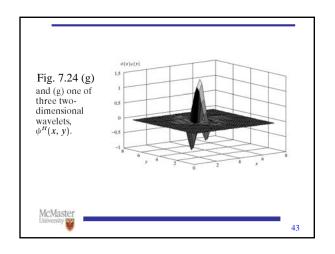












Wavelet Transform based Denoising

- Three Steps:
 - Decompose the image into several scales.
 - For each wavelet coefficient y:

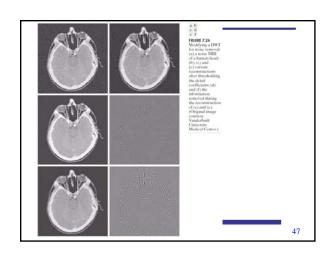
*****Hard thresholding:
$$y = \begin{cases} y & |y| \ge t \\ 0 & |y| < t \end{cases}$$

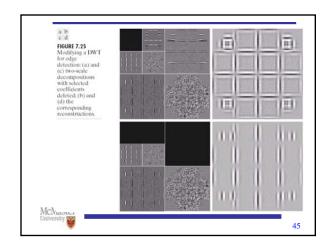
♦ Hard thresholding:
$$y = \begin{cases} y & |y| \ge t \\ 0 & |y| < t \end{cases}$$
♦ Soft thresholding: $y = \begin{cases} sign(y) \cdot (|y| - t) & |y| \ge t \\ 0 & |y| < t \end{cases}$

➤ Reconstruct the image with the altered wavelet coefficients.

Image Processing by Wavelet Transform

- Three Steps:
 - ➤ Decompose the image into wavelet domain
 - Alter the wavelet coefficients, according to your applications such as denoising, compression, edge enhancement, etc.
 - Reconstruct the image with the altered wavelet coefficients.





Assignment

- Get familiar with the Matlab Wavelet Toolbox.
- By using the Wavelet Toolbox functions, write a program to realize the softthresholding denoising on a noisy MRI image.

McMaster

