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CoE4TN3
Image Processing

Image Registration

What is image registration?
• Image Registration is the process of estimating an 

optimal transformation between two images.
• Sometimes also known as “Spatial Normalization”.
• Applications in medical imaging

– Matching PET (metabolic) to MR (anatomical) Images
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– Atlas-based segmentation/brain stripping
– fMRI Specific

Motion Correction
Correcting for Geometric Distortion in EPI
Alignment of images obtained at different times or with different 
imaging parameters
Formation of Composite Functional Maps
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MR-PET
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Analysis

A schematic diagram of multi-modality MR-PET 
image analysis using computerized atlases.

Image Registration Through Transform
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f
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Image registration provides transformation of a source 
image space to the target image space. 

The target image may be of different modalities from 
the source one.

Multi-modality brain image registration

• External Markers and Stereotactic Frames Based 
Landmark Registration.

• Rigid-Body Transformation Based Global 
Registration.

• Image Feature Based Registration
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Image Feature Based Registration.
– Boundary and Surface Matching Based 

Registration
– Image Landmarks and Features Based 

Registration

Rigid-Body Transformation

Translation of z 

Rotation by φ' = +x Rx t

Rotation Translation
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Translation of y Translation of x 

Rotation by θ

Rotation by ω
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Rigid-Body Transformation
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(b) Translation along y-axis by q

Rigid-Body Transformation
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(a) Rotation about x-axis by θ (c) Rotation about z-axis by φ
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(b) Rotation about y-axis by ω

Rigid-Body Transformation

' = +x Rx t
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Rigid-Body Transformation
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Rigid-Body Transformation: Affine Transform

Affine transform: translation + rotation + scaling

Scaling: '
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a, b and c are scaling parameters in the three directions.

Affine transform can be expressed as

'
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Rigid-Body Transformation: Affine Transform

A: The affine transform matrix that integrates translation, 
rotation and scaling effects.
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Rigid-Body Transformation: Affine Transform

The overall mapping can be expressed as 
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Rigid-Body Transformation: Principal Axes Registration

Principal axes registration (PAR) is used for global matching 
of binary volumes from CT, MR or PET images.
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Rigid-Body Transformation: Principal Axes Registration
The principal axes of B(x,y,z) are the eigenvector of inertia matrix I:
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Rigid-Body Transformation: Principal Axes Registration

The inertia matrix I is diagonal when computed with 
respect to the principal axes.

The centroid and principal axes can describe the 
orientation of a volume.
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The principal axes registration can resolve six degrees 
of freedom of an object (three rotation and three 
translation).

It can compare the orientations of two binary volumes 
through rotation, translation and scaling.  

Rigid-Body Transformation: Principal Axes Registration

Normalize the principal axes (the eigenvectors of I) and define:
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The rotation matrix is

Rigid-Body Transformation: Principal Axes Registration

Let

E = R
We can resolve the rotation angles as
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We can resolve the rotation angles as

31
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Rigid-Body Transformation: Principal Axes Registration

The PAR algorithm to register V1 and V2:

1. Compute the centroid of V1 and translate it to the origin.

2. Compute the principal axes (by using E=R) of V1 and rotate 
V1 to coincide with the x, y and z axes.
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3. Compute the principal axes of V2 and rotate the x, y and z 
axes to coincide with it.

4. Translate the origin to the centroid of V2.

5. Scaling V2 to match V1 by using factor                           .3 1/ 2sF V V=

Rigid-Body Transformation: Principal Axes Registration
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A 3-D model of brain 
ventricles obtained 
from registering 22 MR 
brain images using the 
PAR method. Rotated views of the 3-D brain 

ventricle model in the left image. 

Iterative Principal Axes Registration (IPAR)

Advantages over PAR: IPAR can be used with partial 
volumes.

Assumption made in IPAR: the field of view (FOV) 
of a functional image (such as PET)) is less than the 
full brain volume while the other volume (such as
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full brain volume while the other volume (such as 
MR image) covers the entire brain.

Algorithm: refer to pages 259 ~ 264 of the textbook.

Iterative Principal Axes Registration (IPAR)

Sequential slices of MR (middle rows) and PET 
(bottom rows) and the registered MR-PET brain 

images (top row) using the IPAR method.
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Landmarks and Features Based Registration

With the corresponding landmarks/features identified 
in the source and target images, a transformation can be 
computed to register the images.

Non-rigid transformations have been used in 
l d k /f t b d i t ti b l iti th
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landmarks/features based registration by exploiting the 
relationship of corresponding points/features in source 
and target images.

Two point-based algorithms will be introduced.

Similarity Transformation

X: source image

Y: target image

x: landmark points in X

y: landmark points in Y
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T(x): non-rigid transformation
' ( )T s= = ⋅ ⋅ +x x r x t

scaling rotation translation
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Similarity Transformation

The registration error:

( ) ( )E T s= − = + −x x y rx t y
The optimal transform is to find s, r and t to minimize:
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N

i i i
i

w s
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+ −∑ rx t y

wi: the weighting factor for landmark xi

N: the number of landmark points

Similarity Transformation: Algorithm

1. Set s=1.

2. Find r through the following steps:

2
N

w∑ x

2a) Compute the weighted centroids of x and y.

2
N

w∑ y
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2b) Compute the distance of each landmark from 
the centroid.

i i= −y y y

Similarity Transformation: Algorithm (continued)

2c) Compute the weighted co-variance matrix.
2

1

N
t

i i i
i

w
=

=∑Z x y

Singular value decomposition
t= ΛZ U V
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U V
t t= =UU VV Ι

1 2 3 1 2 3( , , ) 0diag λ λ λ λ λ λΛ = ≥ ≥ ≥

where

2d) Compute
(1,1,det( )) tdiag= ⋅ ⋅r V VU U

Similarity Transformation: Algorithm (continued)

3. Compute the scaling factor:

2

1

N

i i i
i
N

w
s ==
∑ rx y
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2

1

N

i i i
i

w
=
∑ rx x

4. Compute

s= −t y rx

Iterative Features Based Registration (WFBR)

Xi: a data set representing a shape in source image

xij: points in Xi

T(x): transform operator
' ( )T s= = +x x r x t

Yi: the corresponding data set in target image
yij: points in Yi
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( )T s= = ⋅ ⋅ +x x r x t
Disparity function to be minimized:
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1 1
( ) ( )

s iN N

ij ij ij
i j

d T w T
= =

= −∑∑ x y

Ns: number of shapes
Ni: number of points in shape Xi

WFBR: Iterative Algorithm

1. Determine T by the similarity transformation method.

2. Let T(0)=T and initialize the optimization loop for k=1 as
(0)
ij ij=x x

(1) (0) (0)( )T=x x
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( )ij ijT=x x

3. For the points in shape Xi, find the closest points in Yi as 
( ) ( )( , ) 1, 2,3,...,k k
ij i ij i iC Y j N= =y x

where Ci is the operator to find the closest point.
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WFBR: Iterative Algorithm (continued)

4.Compute the transformation T(k) between {xij
(0)} and 

{yij
(k)} with the weights {wij} using the similarity 

transformation method.

5. Compute 
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( 1) ( ) (0)( )k k
ij ijT+ =x x

6. Compute d(T(k)) – d(T(k+1)). If the convergence criterion 
is met, stop; otherwise go to step 3 for the next iteration.

Elastic Deformation Based Registration
One of the two volume is considered to be made of elastic 

material while the other serves as a rigid reference. Elastic matching 
is to map the elastic volume to the reference volume.

The matching starts in a coarse mode followed by fine 
adjustments.

Th t i t i th ti i ti i l d th d

32

The constraints in the optimization include smoothness and 
incompressibility.

The smoothness ensures that there is continuity in the deformed 
volume while the incompressibility guarantee that there is no 
change in the total volume.

For detail algorithm, refer to pp. 269 ~ 272 in the textbook.
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Results of the elastic deformation based registration of 3-D MR brain images: 
The left column shows three reference images, the middle column shows the  
images to be registered and the right column shows the registered brain images. 

End of Lecture
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