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Abstract

Optimal index assignment of multiple description lattice vector quantizer
(MDLVQ) can be posed as a large-scale linear assignment problem. But is this
expensive algorithmic approach necessary? This paper presents a surprisingly
simple index assignment algorithm for high-resolution MDLVQ of K ≥ 2 bal-
anced descriptions in any dimensions. Despite its simplicity, the new algorithm
is optimal for a large family of lattices encountered in theory and practice, in
terms of minimizing the expected distortion for any side description loss rate
and any side entropy rate. This work offers exact combinatoric constructions
of optimal index assignments, rather than arguing for the optimality asymptot-
ically. Consequently, the optimality holds for all values of sublattice index N
(i.e., over all trade-offs between the central and side distortions), rather than
for very large N only. Furthermore, the time complexity of the new algorithm
is O(N) as opposed to O(N6) for a current linear assignment-based method.

New and improved closed form expressions of the expected distortion as the
function of N and K are also presented. Thus the optimal values of N and K
can be computed.

1 Introduction

An effective MDC technique is multiple description vector quantization (MDVQ).
Unfortunately, optimal MDVQ design is computationally intractable (optimal single-
description VQ design is already NP-hard) unless NP equals P. To overcome this
operational difficulty, one typically imposes some structure on codebooks. A pop-
ular structured MDVQ approach is multiple description lattice vector quantization
(MDLVQ). Given a lattice Λ for central description, the problem of optimal code
design reduces to one of associating Λ to a so-called sublattice Λs (typically Λs ⊂ Λ),
and establishing a one-to-one mapping, called index assignment α, between a point
λ ∈ Λ and an ordered K-tuple (λ1, ..., λK) ∈ ΛK

s , where K is the number of side
descriptions [2]. The goal of the MDLVQ index assignment is to find the bijection
function α : Λ ↔ α(Λ) ⊂ ΛK

s that minimizes an expected distortion measure over all
subsets of K descriptions.

1



Vaishampayan et al. discussed a “guiding principle” for constructing an optimal
MDLVQ index assignment [3]. Some example index assignments were presented with-
out the proof of their optimality. More recently, Ostergaard et al. studied the problem
of optimal MDLVQ index assignment, and presented some asymptotical results [4].
But to our best knowledge, the only known exact solution of optimal MDLVQ index
assignment is a linear assignment algorithm of extremely high complexity [4] (O(N6)
as shown in Section 3.4). In this paper we propose a very simple linear-time algo-
rithm for MDLVQ index assignment for balanced descriptions, and then prove, under
the assumption of high resolution, that the algorithm is optimal for many commonly
used good lattices, over the entire range of achievable central distortions given the
side entropy rate. The optimality is in terms of minimizing the expected distortion
given the side description loss rate and given the side entropy rate.

This extended abstract is organized as follows. The next section formulates the
problem and introduces necessary notations. Section 3 presents and analyzes the new
index assignment algorithm, together with some insights that lead us to the algorithm.
Section 4 proves the optimality of the new index assignment under a condition of the
so-called S-similarity of sublattices. Section 5 shows that the S-similarity can be
satisfied by lattices commonly used in signal quantization. Sections 6 and 7 present
some new and improved closed form expressions of the expected distortion for optimal
MDLVQ, which allow the optimal parameters N and K to be computed.

2 Problem Formulation and Notations

In an MDLVQ system of K descriptions, an input vector x ∈ RL is first quantized to
the nearest lattice point λ in a lattice Λ ⊂ RL, called central (fine) lattice. Then the
point λ is mapped by a bijective labeling function α : Λ ↔ ΛK

s to an ordered K-tuple
(λ1, λ2, · · · , λK), where Λs is a coarse lattice. Typically, Λs ⊂ Λ, hence Λs is called a
sublattice. Let the components of α be (α1, α2, · · · , αK), i.e., αk(λ) = λk, 1 ≤ k ≤ K.
With the function α the encoder generates K descriptions of x: λk, 1 ≤ k ≤ K, and
transmits each description via an independent channel to a receiver.

If the decoder receives all K descriptions, it can reconstruct x to λ with the inverse
labeling function α−1. In this best case the average distortion per dimension is given
by

dc =
∑

λ∈Λ

∫

V (λ)

‖x− λ‖2 pX(x) dx.

where V (λ) is the Voronoi cell of the lattice point λ ∈ Λ.
In general, due to channel losses, the decoder receives only a subset χ of the K

descriptions, and it can reconstruct x to the average of the received descriptions:

x̂ =
1

|χ|
∑

λi∈χ

λi.

Assuming that the K channels are independent, and each has a probability pl to fail,
we can write the expected distortion as

D =
K∑

k=0

(
K

k

)
(1− pl)

kpK−k
l Dk,
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where Dk is the average distortion when receiving k out of K descriptions. For lattices
of high resolution or uniform source distribution pX such that λ is the centroid of its
Voronoi region, one can show [4]

D = (1− pK
l )dc +

∑

λ∈Λ

(
ζ1 ‖λ−mK‖2 + ζ2

1

K

K∑

k=1

‖λk −mK‖2

)
P (λ) + pK

l E[‖X‖2],

(1)
where

ζ1 =
K−1∑

k=1

(
K

κ

)
(1− pl)

kpK−k
l , ζ2 =

K−1∑

k=1

(
K

k

)
(1− pl)

kpK−k
l

K − k

(K − 1)k
, (2)

P (λ) = Pr(Q(X) = λ), and mK is the centroid of all K descriptions mK ≡ 1
K

∑K
k=1 λk.

Now note that dc, pl, ζ1 and ζ2 are constant given source and channel statistics and
given Λ, Λs. We reduce the problem of optimal MDLVQ index assignment to that of
minimizing

ds ≡
∑

λ∈Λ

(
1

K

K∑
i=1

‖λi −mK‖2 +
ζ1

ζ2

‖λ−mK‖2

)
P (λ). (3)

3 Index Assignment Algorithm

This section presents a very simple index assignment algorithm for MDLVQ of K
balanced descriptions. For clarify of presentation and avoiding immaterial details
in describing our main ideas, we consider the sublattices Λs that are geometrically
similar to Λ and clean (no central lattice point lies on the boundary of a sublattice
Voronoi cell). Let us first reveal some useful lattice structures to be exploited by the
index assignment algorithm.

3.1 Useful lattice properties

In the following study of optimal index assignment for K balanced descriptions, the
lattice Λs/K ≡ 1

K
Λs plays an important role, and it has the following interesting

relations to Λ and Λs.

Property 1 m(λ1, λ2, · · · , λK) = 1
K

∑K
k=1 λk is an onto (but not one-to-one) map:

ΛK
s → Λs/K.

Proof: 1) λ1, λ2, · · · , λK ∈ Λs ⇒
∑K

k=1 λk ∈ Λs ⇒ 1
K

∑K
k=1 λk ∈ Λs/K ; 2)

∀τ ∈ Λs/K , let λ1 = Kτ, λ2 = · · · = λK = 0, then λ1, λ2, · · · , λK ∈ Λs and
m(λ1, λ2, · · · , λK) = τ .

This means that the centroid of any K-tuples in ΛK
s must be in Λs/K , and further

Λs/K consists only of these centroids.
The sublattice Λs/K partitions the space into Voronoi cells. Denote the Voronoi

cell of a point τ ∈ Λs/K by

Vs/K(τ) = {x : ‖x− τ‖ ≤ ‖x− τ̃‖ ,∀τ̃ ∈ Λs/K}.
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We note that no central lattice point of Λ lies on the boundary of any Voronoi
cell of Λs/K .

Property 2 Λs/K is clean, if Λs is clean.

Proof: Assume for a contradiction that there was a point λ ∈ Λ on the boundary
of Vs/K(τ) for a τ ∈ Λs/K . Scaling both λ and Vs/K(τ) by K places Kλ on the
boundary of KVs/K(τ) = {Kx : ‖Kx−Kτ‖ ≤ ‖Kx−Kτ̃‖ , ∀τ̃ ∈ Λs/K}. But Kλ is
a point of Λ, and KVs/K(τ) is nothing but the Voronoi cell Vs of the sublattice point
Kτ ∈ Λs, or the point Kλ ∈ Λ lies on the boundary of Vs(Kτ), contradicting that Λs

is clean.

Property 3 Both lattices Λs and Λ are symmetric about any point τ ∈ Λs/2.

Proof: ∀τ ∈ Λs/2, we have 2τ ∈ Λs, so 2τ−λs ∈ Λs holds for ∀λs ∈ Λs; similarly,
∀τ ∈ Λs/2, we have 2τ ∈ Λ, so 2τ − λ ∈ Λ holds for ∀λ ∈ Λ.

3.2 Greedy labeling

We are now ready to state a new index assignment algorithm. We partition the
space by Voronoi cells at the sites of all points in Λs/K . According to Property 2, no
point λ ∈ Λ is on the boundary of any Voronoi region of Λs/K . To label the central
lattice points inside Vs/K(τ), we choose the |Λ∩Vs/K(τ)| nearest ordered K-tuples of
sublattice points that have the same centroid τ .

Interestingly, it follows from (3) that any bijective mapping between the |Λ ∩
Vs/K(τ)| center lattice points and the |Λ∩ Vs/K(τ)| K-tuples yields the same value of
ds. One can choose an arbitrary assignment between the two sets and still minimize
ds.

Since there are KL classes of Λs/K/Λs, there are KL classes of Vs/K(τ). We only
need to label one representative out of each class, and cover the whole space by
shifting. Thus it suffices to label a total of N central lattice points.

For the two description case, these |Λ ∩ Vs/2(τ)| ordered pairs are formed by the
|Λ ∩ Vs/2(τ)| nearest sublattice points to τ in Λs by Property 3. Note when τ ∈ Λs,
the ordered pair (τ, τ) should be used to label τ itself.

3.3 Two Examples

Let us see how the proposed index assignment algorithm works via examples on an A2

lattice, which are presented graphically. The A2 lattice Λ is generated by basis vectors
represented by complex numbers: 1 and ω = 1/2+ i

√
3/2. The first example is a two-

description case, with the sublattice Λs given by basis vectors 5−ω, ω(5−ω), which
is geometrically similar to Λ, has index N = 31 and is clean (refer to Fig. 1). There
are two kinds of Voronoi cells of Λs/2, as shown by the solid and dashed boundaries in
Fig. 1. The solid cell is centered at a central lattice point and contains 7 central lattice
points. The dashed cell is centered at the midpoint of the line segment OA, and con-
tains 8 central lattice points. To label the 7 central lattice points in Vs/2(O), we use the
7 nearest sublattice points to O: (O, A,B,C,D,E, F ). They form 6 ordered pairs with
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Figure 1: Two description index assign-
ment for the A2 lattice with index N =
31. Points of Λ, Λs and Λs/2 are marked
by ·, • and +, respectively.
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Figure 2: Three description index as-
signment for the lattice A2 with index
N = 73. Points of Λ, Λs and Λs/3 are
marked by ·, • and +, respectively.

the midpoint O : ((A,D), (D,A), (B, E), (E, B), (C, F ), (F, C), and an unordered pair
(O, O) since O is itself a sublattice point. To label the 8 central lattice points in
Vs/2(M), we use the 8 nearest sublattice points to M : (O,A, B, F, C, H, E, G). They
form 8 ordered pairs with midpoint M : (O,A), (A,O), (B,F ), (F,B), (C, H), (H, C),
(E,G), (G,E). The labels of those 7 and 8 central lattice points are given in Fig. 1.

Fig. 2 illustrates how the proposed algorithm works in the case of three descrip-
tions. The depicted index assignment is for three balanced descriptions computed for
the sublattice of index N = 73 that is generated by basis vectors: 8− ω, ω(8− ω).

3.4 Complexity

The presented algorithm is fast with an O(N) time complexity. The simplicity and
low complexity of the presented index assignment are clear because we took a greedy
optimization approach in designing it. The tantalizing question is, of course, can it be
optimal? Let the distance between a nearest pair of central lattice points in Λ be one.
The result of [3] for the first example (best known so far) is ds = 561/31 = 18.0968,
while the greedy algorithm does better, producing ds = 528/31 = 17.0323. Indeed, in
both examples, one can verify that the expected distortion is minimized as the two
terms of ds are minimized independently.

In the next section we will prove, under fairly relaxed conditions, that our greedy
index assignment algorithm is optimal for two balanced descriptions despite its sim-
plicity.

The only exact algorithm known so far for optimal MDLVQ index assignment is
linear assignment. Although applying the linear assignment algorithm to optimize
the index assignment is conceptually straightforward, a key issue that determines the
complexity remains inadequately treated. This is how to reduce the labeling problem
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from an association between two infinite sets Λ and ΛK
s to between two finite sets,

and keep the latter two sets as small as possible without compromising optimality.
A solution proposed by [4] seems to require O(N6) time because it used a candidate
set of O(N2) central lattice points (the complexity of the linear assignment problem
is cubic in the worst case). Even with such a large set of candidate central lattice
points, still no bound was given on the size of the candidate K-tuples of sublattice
points used for labeling, and no proof of optimality was offered.

4 Proof of Optimality

In the following development, we consider the natural construction: the sublattice
Voronoi cell Vs(λs) centered at λs ∈ Λs contains the N nearest central lattice points
to λs. To prove the optimality of the greedy algorithm, we need some additional
properties.

Lemma 1 If λ ∈ Vs/2(τ) and λ̃ 6∈ Vs/2(τ̃), where λ, λ̃ ∈ Λ and τ, τ̃ ∈ Λs/2, then

‖λ− τ‖ ≤ ‖λ̃− τ̃‖.

Proof: Scaling both λ and Vs/2(τ) by 2 places the lattice point 2λ in Vs(2τ);

scaling both λ̃ and Vs/2(τ̃) by 2 places the lattice point 2λ̃ 6∈ Vs(2τ̃). Since a sublattice

Voronoi cell contains the nearest central lattice points, ‖2λ− 2τ‖ ≤ ‖2λ̃− 2τ̃‖, and
hence ‖λ− τ‖ ≤ ‖λ̃− τ̃‖.

Definition 1 A lattice Λs is said to be S-similar to Λ, if Λs can be generated by
scaling and rotating Λ around any point τ ∈ Λs/2 and Λs is a sublattice of Λ.

Note the S-similarity requires that the center of symmetry be a point in Λs/2.
In what follows we assume that sublattice Λs is S-similar to Λ. Also, we denote

by Vτ the region created by scaling and rotating Vs/2(τ) around τ .

Lemma 2 If λs ∈ Vτ and λ̃s 6∈ Vτ̃ , where λs, λ̃s ∈ Λs and τ, τ̃ ∈ Λs/2, then ‖λs − τ‖ ≤
‖λ̃s − τ̃‖.

Proof: This lemma follows from Lemma 1 and the definition of S-Similar.

Lemma 3 ∀τ ∈ Λs/2, the sublattice points in Vτ form |Λ ∩ Vs/2(τ)| nearest ordered
2-tuples with their midpoints being τ .

Proof: Letting τ̃ = τ in Lemma 2, we see that Vτ contains the |Λs ∩ Vτ | =
|Λ ∩ Vs/2(τ)| nearest sublattice points to τ . Thus this lemma follows from Property
3.

Theorem 1 The proposed greedy algorithm is optimal if the sublattice is S-Similar
to its central lattice.
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Proof: By Property 1, for any λ1, λ2 ∈ Λs, (λ1 + λ2)/2 ∈ Λs/2. Now referring to
(3), the proposed algorithm minimizes the second term

∑
λ∈Λ ‖λ− (λ1 + λ2)/2‖2P (λ)

of ds, since it labels any central lattice point λ ∈ Vs/2(τ) by (λ1, λ2) ∈ Λ2
s, and

(λ1 + λ2)/2 = τ . The first term
∑

λ∈Λ
1
4
‖λ1 − λ2‖2P (λ) of ds is also independently

minimized by the algorithm. Assume that
∑

λ∈Λ ‖λ1 − λ2‖2P (λ) was not minimized.

Then there exists an ordered 2-tuple (λ̃1, λ̃2) ∈ Λ2
s which is not used in the index as-

signment, and ‖λ̃1 − λ̃2‖ < ‖λ1 − λ2‖, where (λ1, λ2) ∈ Λ2
s is used in the index assign-

ment. Let τ = (λ1+λ2)/2, τ̃ = (λ̃1+λ̃2)/2. Since (λ1, λ2) is used to label a central lat-
tice point in Vs/2(τ), λ1, λ2 ∈ Vτ by Lemma 3. However, λ̃1, λ̃2 6∈ Vτ̃ , otherwise (λ̃1, λ̃2)

would be used in the index assignment by Lemma 3. So we have ‖λ1 − τ‖ ≤ ‖λ̃1 − τ̃‖
by Lemma 2, hence ‖λ1 − λ2‖ ≤ ‖λ̃1 − λ̃2‖, contradicting ‖λ̃1 − λ̃2‖ < ‖λ1 − λ2‖.

The above proof of algorithm optimality requires the S-similarity of the sublattice.
The following theorems show that S-similar sublattices can be easily found for many
N values, especially for many lattices commonly used in signal quantization, such as
A2, Z2, ZL(L = 4k), and ZL (L odd). In the following statements, m is a positive
integer.

Theorem 2 An L-dimensional lattice Λ has an S-similar sublattice with index N , if
N = mL is odd.

Theorem 3 For the A2 or Z2 lattice Λ, a sublattice Λs is S-similar to Λ, if it is
geometrically similar to Λ and clean.

Theorem 4 The ZL(L = 4l, l ≥ 1) lattice Λ has an S-similar, clean sublattice with
index N , if N = mL/2 with m = 4n + 1.

Theorem 5 The ZL (L is odd) lattice Λ has an S-similar, clean sublattice with index
N , if and only if N = mL is odd.

5 Analytical Results for Two Descriptions and Op-
timal N

Up to now no closed form expression is known for the expected distortion of optimal
MDLVQ, except for an asymptotic result as N →∞ [3]. However, practical scenarios
for MDLVQ usually involve modest values of N [5]. As a byproduct of our algorithm
development and the proof of its optimality, we can now derive the closed form ana-
lytical solution of the side distortion achieved by optimal MDLVQ for two balanced
descriptions. Under high resolution assumption,

dc = GΛν2/L, (4)

where ν is the L-dimensional volume of a Voronoi region of Λ, and GΛ is the dimen-
sionless normalized second moment of lattice Λ.
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Let ai be the squared distance of the ith nearest sublattice point to the origin,
and bi be the squared distance of the ith nearest central lattice point in Vs(0) to the
origin. We can show that the two terms in ds are

∑

λ∈Λ

1

4
‖λ1 − λ2‖2 P (λ) =

1

4L

∑N
i=1 ai

N
,

∑

λ∈Λ

‖λ−m1,2‖2 P (λ) =
1

4L

∑N
i=1 bi

N
. (5)

The above equations lead to some interesting observations. The term N−1
∑N

i=1 ai is
the average squared distance of the N nearest sublattice points to the origin, which
was also realized by previous authors [3]. The other term N−1

∑N
i=1 bi is the average

squared distance of central lattice points in Vs(0) to the origin.
Substituting (4) and (5) into (1), we get the closed form expression for the expected

distortion,

D = (1− p2
l )GΛν2/L +

1

2
pl(1− pl)L

−1N−1(
N∑

i=1

ai +
N∑

i=1

bi) + p2
l E[‖X‖2], (6)

Let h(p) be the source entropy rate per dimension, then the entropy rate of a side
description is given by [3],

R = h(p)− (1/L) log2(Nν). (7)

Thus the optimal N can be solved by combing (6) and (7), rather than solving many
instances of index assignment problem for varying N .

For Z lattice, (6) can be simplified to

D = (1− p2
l )GΛν2/L +

1

24
pl(1− pl)(N

4 − 1)ν2/L + p2
l E[‖X‖2], i = 1, 2.

6 Analysis for K ≥ 2 Descriptions and Optimal N ,
K

Now we derive a closed form expression of the expected distortion of optimal MDLVQ
for general K ≥ 2 asymptotically. Our result improves a similar formula presented in
[4] that includes an empirically determined constant. It also allows us to determine
the optimal sublattice index N , as well as the optimal number of descriptions K.

Let Nτ denote the number of central lattice points in Vs/K(τ). As N →∞, each
Voronoi cell of Λs/K contains approximately Nτ ≈ N/KL central lattice points, which
are uniformly distributed Vs/K(τ). Hence the second term of ds is

ζ1

ζ2

∑

λ∈Λ

‖λ−mK‖2 P (λ) =
ζ1

ζ2

GΛ(Nτν)2/L =
ζ1

ζ2

GΛK−2(Nν)2/L (8)

To analyze the first term of ds, we evaluate
∑K

k=1 ‖λk −mK‖2 for the Nτ nearest
sublattice K-tuples (λ1, λ2, · · · , λK) with centroids mK = τ ∈ Λs/K . Let

f ≡
K∑

k=1

‖λk −mK‖2, ςk ≡
k∑

i=1

λi, k = 1, 2, · · · , K.
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After some tedious algebra

f =
K−1∑

k=1

k + 1

k

∥∥∥∥ςk − k

k + 1
ςk+1

∥∥∥∥
2

. (9)

There is a one-to-one correspondence between (λ1, λ2, · · · , λK) and (ς1, ς2, · · · , ςK).
So the problem of finding Nτ nearest sublattice K-tuples (λ1, λ2, · · · , λK) with given
centroid mK = τ ∈ Λs/K , is equivalent to finding the Nτ optimal sublattice (K − 1)-
tuples (ς1, ς2, · · · , ςK−1) given ςK = KmK in (9).

The ith nearest sublattice points to k
k+1

ςk+1 is approximately on the boundary of

an L dimensional sphere with volume iNν. So given ςk+1, the ith smallest value of
‖ςk − k

k+1
ςk+1‖2 is approximately (iNν/VL)2/L/L = GL(L + 2)(iNν)2/L/L, where VL

is the volume of an L-dimensional sphere of unit radius, and GL is the dimensionless
normalized second moment of an L-dimensional sphere.

Let f take on its nth smallest value f (n) at (ς
(n)
1 , ς

(n)
2 , · · · , ς

(n)
K−1), and let the sum∑K−1

k=1
k+1

k
(ik)

2/L take on its nth smallest value at (i
(n)
1 , i

(n)
2 , · · · , i

(n)
K−1) ∈ ZK−1. Then

f (n) =
K−1∑

k=1

k + 1

k

∥∥∥∥ς
(n)
k − k

k + 1
ς
(n)
k+1

∥∥∥∥
2

≈
(

1 +
2

L

)
GL(Nν)2/L

K−1∑

k=1

k + 1

k
(i

(n)
k )2/L.

Hence,

∑

λ∈Λ

K∑

k=1

‖λk −mK‖2 P (λ) ≈ (1 +
2

L
)GL (Nν)2/L 1

Nτ

Nτ∑
n=1

K−1∑

k=1

k + 1

k
(i

(n)
k )2/L

After lengthy derivation (omitted due to space limit), we arrive at

1

K

∑

λ∈Λ

K∑

k=1

‖λk −mK‖2 P (λ) ≈ GLΦK−1,L(K − 1)K
−K
K−1 N

K
K−1

2
L ν

2
L , (10)

where

Φn,L =
1 + 2

L

n + 2
L

Γ(nL
2

+ 1)
2

nL

Γ(L
2

+ 1)
2
L

.

Note ΦK−1,L = 12GK−1 for L = 1, and ΦK−1,L = 1 for K = 2.
Comparing (8) with (10), the first term of ds dominates the second term when

N →∞, thus

ds ≈ GLΦK−1,L(K − 1)K
−K
K−1 N

K
K−1

2
L ν

2
L . (11)

Substituting (11) and (4) into (1), we finally get a closed form solution of the expected
distortion for optimal MDLVQ

D = (1− pK
l )GΛν2/L + ζ2GLΦK−1,L(K − 1)K

−K
K−1 N

K
K−1

2
L ν

2
L + pK

l E[‖X‖2]. (12)

The total target entropy is Rt = KR, so we rewrite (7) to get

Nν = 2L(h(X)−Rt/K) = η, (13)
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where η is constant. Now we have

D = (1− pK
l )GΛν2/L + ζ2GLΦK−1,L(K − 1)K

−K
K−1 η

K
K−1

2
L ν

−1
K−1

2
L + pK

l E[‖X‖2]. (14)

By differentiating D to ν, we get the optimal ν. Substituting it to (13), we get optimal
N :

νopt = η

(
ζ2

1− pK
l

GL

GΛ

K− K
K−1 ΦK−1,L

)L(K−1)
2K

, Nopt =

(
1− pK

l

ζ2

GΛ

GL

K
K

K−1
1

ΦK−1,L

)L(K−1)
2K

.

Note Nopt is independent of the total target entropy rate Rt and source entropy rate
h(p). It only depends on the loss probability pl and on the number of descriptions
K. Substituting νopt into (14), the average distortion can be expressed as a function
of K. Then optimal K can be solved numerically.

7 Conclusions

Although optimal MDLVQ index assignment is conceptually a problem of linear as-
signment, the problem is originally about finding a bijective mapping between two
infinite sets Λ and ΛK

s . No good solutions are known to reduce the underlying bi-
partite graph to a modest size without missing optimality. Therefore, the problem
remains largely open. We presented a linear-time algorithm for solving the problem
of optimal MDLVQ index assignment. The algorithm is proven to be optimal for two
balanced descriptions in any dimensions. We conjecture that the algorithm is also
optimal for any number of balanced descriptions.

We also made progress in the analysis of MDLVQ performance. Exact closed form
expression of the expected distortion was derived for K = 2 and for any N . For cases
K > 2, we improved the current asymptotic expression of the expected distortion.
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